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Foreword 

 

 

 
-It is a very sad moment for me to write this "Geleitwort" lo the English 

translation-ofJtirgen Neukirch's book on Algebraic Number Theory. It would 

have been so much better, if he could -have done this himself. 

But it is also very difficult for me to write this "Geteitwort": The book 

contains NeU:kirch's Preface to the German edition.There he himself speaks 

about his intentions, the content.of the book arrd his personal view of the subject. 

What else can be said? 

It becomes dear from his Preface that Number Theory was Neukirch's favorite 

subjectin mathematics. He was enthusiastic about it, and he was also able to 

implant this enthusiasm into the minds of his students. 

He attracted them, they gathered around him in Regensburg. He told them 

thatthe subject and its beauty justified the-highest effort and so they were always 

eager and motivated to discuss and tolearn the newest developments in number 

theory and arithmetic algebraic geometry. I remember very well the many 

occasions when this equipe showed up in the meetings of the '!Oberwolfach 

Arbeitsgemeinschaft" and demonstrated their strength (mathematically and on 

the soccer field). 

During the meetings of the "Oberwolfach Arbeitsgemeinschaft" people 

come together to learn a subject which is not necessarily their own speciality. 

Always at the end, when the most difficult talks had to be delivered, the 

Regensburg crew took over. In the meantime many members of this team teach 

at German universities. 

We.find this charismaofJi.irgen Neukirch,in the book.It will be a motivating 

source for young students to study Algebraic Number Theory, and I am sure 

�hat it will attract many of them. 

At Neukirch's funeral his daughter-Christiane recited the poem which she 

often heard ,from her father: Herr van Ribbeck au/ Ribbeck im Havellandby 

Theodor'Fontane. It tells the story of a nobleman who always generously gives 

away the pears from his garden to the children. When he dies he ·asks fora 

pear to be put in his grave, so that later the children can pick the pears from the 

growing tree. 

This is -I believe - a good way ofthinking of Neukirch's book: There are 

seeds in it for a tree to grow from which the "children" can pick fruits in the 

time :to come. 

G.Harder 



Translator's Note 

 

 

 
When I first accepted Jurgen Neukiroh's request to translate hisAlgebraische 

Zahlentheorie, back in 1991, no-.one imagined thathewould-not live.to seethe 

English edition. He did see the raw version of the translation -(I gave him the 

last chapters in the Fall of 1996), and he still had time to go carefully through 

the first four chapters of it. 

 

The bulk of the text consists of .detailed technical mathematical prose and 

was thus straightforward to translate, even though the author's desire to 

integrate involved arguments and displayed formulae into comprehensive 

sentences could not simply be copied into English. However, JtirgenNeukirch 

had peppered his book with more meditative paragraphs which make rather 

serious use of the German language. When I started to work on the translation, he 

warned me that in every one of these passages, he was not seeking poetic beauty,-

but orily the precisely adequate expression of anidea.It isfor the reader to judge 

whether 1 managed to render his ideas faithfully. 

There i,sone neologism that I propose in this translation, with Jiirgen 

Neukirch's blessing: I call replete divisor, ideal, etc., what is :usually called 

Arakelov divisor, etc. (aterminology that Neukirchhadavoided in the German 

edition). Time will deliver its verdict. 

lammuch indebted to Frazer Jarvis for goingthroughmy entire manuscript, 

thus saving the English language from various infractions. But needless to say, 

I alone am responsible for all deficiencies that remain. 

After Ji.irgen Neukirch's untimely death early in 1997, -it was Ms Eva­ 

Maria Strobel whotook it upon herself to finish as best she could what Ji.irgen 

Netikirch had to leave undone. She had already applied her infinite care and 

patience to the original :German book, and she had assistedJtirgen Neukirch in 

proofreading the first fom chapters of the translation. Without'her knowledge, 

responsibility, and energy, this bodk would not be what it ;is.1n particular, a 

fair number of small corrections and modifications of the German original that 

had been accumulated thanks to.attentive readers, were taken .into account for 

this English edition. Kay Wingberg graciously helped to chedka-few of them. 

We sincerely hope that the book published here would have made its author 

happy. 

Heartythanks goto RaymondSeroul, Strasbourg, for applying-his wonderful 

expertise of TEX to the final preparation of the camera-ready manuscript. 



viii Translator's Note 

 

 

Thanks go to the Springer staff for seeing this project through until it was 

finally completed. Among them I wantto thank especially Joachim Heinze for 

interfering rarely, but effectively, over the years, with the rea:Iization of this 

translation. 

 

Strasbourg, March 1999 Norbert Schappacher 



Preface to the German Edition 

 

 
Number Theory, among the mathematical disciplines, occupies an idealized 

position, similar to the one that mathematics holds among the sciences. Under 

no obligation to serve needs that do not originate within its-elf, it is essentially 

autonomous in setting its goals, and thus manages to protect its undisturbed 

harmony. The possibility of formulating its basic problems simply, the peculiar 

clarity of its statements, the arcane touch in its laws, be they discovered or 

undiscovered, merely divined; last but not least, the charm of its particularly 

satisfactory ways ·of reasoning - all these features have at all times attracted 

to number theory a community of dedicated followers. 

But different·number theorists may dedicate themselves differently·to·their 

science. Some will push thetheoretical development only as far as is necessary 

for the concrete result they desire. Others will strive for a more universal, 

conceptual clarity, never tiring of searching for the deep-lying reasons behind the 

apparent variety ,of arithmetic phenomena. Both attitudes are justified, and they 

grow particularly effective through the mutual inspirational influence they exert 

on one another. Several beautifui textbooks illustrate the success of the first 

attitude, which is oriented towards specific problems. Among them, let us pick 

out in particular Number Theory by S.l. BoREV!CZ and J.R. SAFAREVIC [J 4]: a 

book which is extremely rich in content, yet easy to read, and which we 

especially recommend to the reader. 

The present book was conceived with a different objective in mind. It does 

provide the student with an essentially self-contained introduction to the theory 

of algebraic number fields, presupposing only basic algebra (it starts with 

the equation 2 = 1 + 1). But unlike the textbooks alluded to above, it 

progressively emphasizes theoretical aspects that rely on modern concepts. Still, 

in doing so, a special effort is made to limit the amount of abstraction used, in 

order that the reader should not lose sight of the concrete goals of number theory 

proper. The desire to present number theory as much as possible from a unified 

theoretical point of view seems imperative today, as a result of the r.evolutionary 

development that number theory has undergone in the last decades in conjunction 

with 'arithmetic algebraic geometry'. The immense success that this new 

geometric ,perspective has brought about - for instance, in the context of the 

Weil conjectures, the Mordell conjecture, of problems related to the conjectures 

of Birch and Swinnerton-Dyer - is largely based on the unconditional and 

universal application of the conceptual approach. 
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It i-s true that those impressive :resuhs can hardly be touched upon in this 

book because they require higher dimensional theories, whereas the book 

deliberately confines itself to the theory of algebraic number fields, Le., to 

the 1-dimensional case. But I thought it necessary to present the theory in a 

way which takes·these developments into account, taking them as the distant 

focus, borrowing emphases and,arguments from the higher point of view, thus 

integrating the theory of algebraic number fields 'into the :higher dimensional 

theory - or at least avoiding any obstruction to such an integration. This is 

why I preferred, whenever it was feasible, the functorial point of view and the 

more far-reaching argument to the devertrick, and made a particular effort to 

place geometric interpretation tothefore, in the spirit of the theory of algebraic 

curves. 

Let me forego the usual habit of describing the content of each individual 

chapter in this foreword; simply turning pages will yield the same information 

in a more entertaining manner. l would however like to emphasize a few •basic 

principles that have guided me while writing the book. The first chapter lays 

down the foundations of the global theory and the second of the local theory of 

algebraic number fields. These foundations are finaUy summed up in the ·first 

three sections of chapter Ill, the aimof which isto.present the perfect analogy of 

the classical notions and results with thetheory of algebraic curves and the idea 

of the Riemann-Roch theorem. The presentation is dominated by ''.Arakelov's 

point of view", which has acquired much importance in recent years. It is 

probably the first time that this approach, with all its intricate normalizations, 

has received an ex-tensive treatment in a textbook. But I finally decided not 

to employ the term "Arakelov divisor" although it is now widely used. This 

would have entailed attaching the.name of Arakelov to many other concepts, 

introducing too heavy a terminology for this elementary material. My decision 

seemed all the more justified as ARAKELOV himself introduced his divisors only 

for arithmetic surfaces. The corresponding idea in the number field case goes 

back to HASSE, and is clearly highlighted for instance in S. LANc's textbook [94]. 

It was not without hesitation that l decided to include Class Field Theory in 

chapters IV-VI. Since my book [107] on this subject had been published-no.t 

long before, another treatment of this theory posed obvious questions. Butin the 

end, after long consideration, there was simply no other choice. A sourcebook 

on algebraic number fields withoutthe crowning conclusion of class field theory 

with its important consequences for the theory of L-series would=have appeared 

like a torso, suffering from an unacceptable lack of completeness. This also 

gave me the opportunity to modify and emend my earlier treatment, to enrich 

that somewhat dry presentation with quite a few examples, to refer ahead with 

some remarks, and to add beneficial exercises. 

A lotof work went intothe last chapteron zetafunctions and £..:series. These 

functions :haYe gained central importance in recent decades, but textbooks do 
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not pay sufficient attention to1hem. -Idid not, however, include TATE'S approach 

to Hecke L-series, which is based on harmonic analysis, althoughjt would have 

suited the more conceptual orientation of the book perfectly well. In fact, the 

darity of TATE's own presentation could hardly be improved upon, and it has also 

been sufficiently repeated in other places. Instead I have preferred to turn back 

to.H£CKE's approach, which is not easy to understand in the original version, 

but for all its various advantages cried-out for a modern treatment. This having 

been done, there was the obvious opportunity of givinga thorough-presentation 

of ARTIN's L-series with their functional equation - which surprisingly has not 

been undertaken in any exi-sting textbook. 

It was a difficult decision to exclude lwasawa Theory, a relatively recent 

theory totally germane to algebraic number fields, the subject of this book.Since 

it mirrors important geometric properties .of algebraic curves, 'it would have 

been a par.ticularly beautiful vindication of our oft-repeated thesis .that number 

theory ,is geometry. Ldo believe, however, thatin this case the geometric aspect 

becomes truly convincing only if on-euses etale cohomology - which can 

neither-be assumed nor reasonably .developed here. Perhaps the dissatisfaction 

with this exclusion will be strong enough to bring about a sequel tothe present 

volume, devoted to the cohomology of algebraic number fields. 

,from the very starNhe book was.not just intended as·a modern sourcebook 

on algebraic number theory, but also as a convenient textbook for a course. 

This intention was increasingly jeopardized by the unexpected growth of the 

material which had to be covered in view of the intrinsic necessities of the theory. 

Yet I think that the bookhas.not lost that character. In fact, it has passed a first 

test inthis respect. With a bit of careful planning, the basic content of the first 

three .chapters can easily be presented in one academic year (if :possible including 

infinite Galois theory). The following term wi11 then provide scarce, yet 

sufficient room for the class field theory ofchapters IV-VI. 

Sections 11-14 of chapter I may most]y be dropped from an introductory 

.course. Although the results of section 12 on orders are irrelevant for the 

sequel, lconsiderits insertion in the bookparticularly important. For onething, 

orders -constitute the rings of multipliers.., which play an eminent role in many 

diophantine problems. But most importantly, they represent the analogues of 

singular algebraic curves.. As cohomology theory becomes .increasingly 

important for algebraic number fields, and since this is even more true of 

algebraic K-theory, which cannot be constructed without singular schemes, 

·the time has come to give orders- an adequate treatment. 

In chapter II, the special treatment of henselian fields in s.ection 6 may be 

restricted to complete valued fields, and thus joined with section 4. ff pressed 

for time,.section 10 on higher ramification may be omitted completely. 
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The firsnhree sections of chapter III should be presented inthe lectures since 

they highlight a new approach to classical results of algebraic number theory. 

The subsequent theory concerning the theorem of Grothendieck-Riemann­ 

Roch is a nice subject for a student seminar rather than for an -introductory 

course. 

Final!:)', in presenting class field theory, it saV'es considerable time if the 

students are already familiar with profi-nite groups and infinite Galois theory. 

Sections 4_:_7 ofchapter V, on formal groups, Lubin-Tate theory and the theory 

of higher ramification maybe omitted. Cutting out even more, chapter V, 3, on 

the Hilbert symbol, and VI, 7 and 8, still leaves a fully-fledged theory, which 

is however unsatisfactory because it remains in the abstract realm, and is never 

linked to classical problems. 

A word on the exercises at the end of the sections. Some .of them are not so 

much exercises, but additionalremarks which did not fit well into the main text. 

The reader is encouraged to prove his versati'lity in looking up the literature. 

I should also point out that I have not actually done all the exercises myself, 

so that there might be occasional mistakes in the way they are posed. If such a 

case arises, it is for the reader to find the correct formulation. May the reader's 

reaction to such a possible slip of the author be mitigated by Goethe's distich: 

 

"Irttum verlaHt uns nie, doch ziehet ein hoher Bediirfnis 

lmmerden streberrden Geist leise zur Wahrheit hinan." * 

 

During the writing of this book I have been helped in many ways. I thank 

the Springer Verlag for considering my wishes with generosity. My students /. 

KAusz,B. KocK, P. KoiczE, TH. MosER, M.SnEsshavecritically examined larger 

or smaller parts, which led to numerous improvements and made it possible to 

avoid mistakes and ambiguities. To my friends W.-D.GEYER, G. TAMME, and K. 

W1NGBERG I owe much valuable advice :from which the book has profited, and 

it was C. DENINGER and U.JANNSEN who suggested that I give a new treatment 

ofHecke's theory of theta series and L-series. I owe a great debt of gratitude 

to Mrs. EvA-MAR!A. STROBEL. She drew the .pictures and helped me with the 

proofreading and the formatting of the text, never tiring of going into the minutest 

detail. Let me heartily thank ail those who assisted me, and also those who are not 

named here. Tremendous thanks are due to Mrs. MARTINA HERTL who 

didthetypesetting of the manuscript in TpC Thatthe book can appear·is 

 

 

* Error is ever with us. Yet some angelic need 

Gently coaxes our striving mind upwards, towards truth. 

(Translation suggested by BARRY MAZUR.) 
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essentially due to her competence, to the unfailing and kind willingness with 

which she worked through the long handwritten manuscript, and through the 

many modifications, additions, and corrections, always prepared to give her 

best. 

 

Regensburg, February 1992 Jiirgen Neukirch 
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Chapter I 

Algebraic Integers 

 
§ 1. The Gaussian Integers 

 
The equations 

2 = l + 1, 5 = 1 + 4, 13 =4 +9,  17 = 1 + 16, 29 = 4 +25., 37 = 1 + 36 

show the first prime numbers that can be represented as a sum of two squares. 

Except for 2, they are all = 1 mod 4, and it is true in general that any odd 

prime number of the form p = a2 + b2 satisfies p = l mod 4, because 

perfect squares are = 0 or = l mod 4. This is obvious. What is not obvious 

is the remarkable fact that the converse also holds: 

 

(1.1) Theorem. For aJJprime numbers p # 2, one has: 

p = a2+b2  "(a, b E Z) {=::> p = 1 mod 4. 

 

The natural explanation of this arithmetic law concerning the ring Z of 

rational integers is found in the larger domain of the gaussian integers 

Z[i]={a+bi.ja,bEZ}, i=�- 

Inthi s  ring, the equation p = x2 + y2 turns into the product decomposition 

p = (x +iy)(x - iy), 

so that the problem is now when and how a prime number p E Z factors 

in Z[i]. The answer to this question is based on the following result about 

unique factorization in Z[i]. 

 

(1.2) Proposition. The ring Z[i] is euclidean, therefore in particular facto­ 

rial. 

 
Proof: We show that Z[i] is euclidean with respect to the funciion Z[i] -+ 

f:J U {O}, a r+ lal2. So, for a,/3 E Z[i], J3 =J 0, one has to verify the 

existence of gaussian integers y,p such that 

a=  yf3 + p and IPl2 
< 1/312

. 

It clearly suffices to find y E Z[ i] such that / j -  y /  < 1. Now, the 
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gaussian integers form a lattice in the complex plane (C (the points with 

integer coordinates with respect to the basis 1, i). The complex number j 
lies in some mesh of the lattice and its distance from the nearest lattice point 

is not .greater than half the length of the diagonal of the mesh, i,e. 1-v12. 

Therefore there exists an element y E Z[iJ with J.�  -  y j ::: ½.J2 < 1.  □ 
 

 
Based on this result about the ring Z[i], theorem (LI) now follows like 

this: it is sufficient to show that a prime number p = 1 mod 4 of Z does 

not remain a prime element in the ring Z{i). Indeed, if this is proved, then 

there exists a decomposition 

p=a•f3 

into two non-units a, f3 of Z[i]. The norm of z = x + iy is defined by 

N(x + iy) = (x + iy)(x -iy) = x2 +y2, 

i.e., by N(z) = lzl2. It is multiplicative, so that one has 

p2 = N(a) · N(/3). 

Since a and f3 are not units, it follows that N(a), N({J) ¥ 1 (see exercise 1), 

and therefore p = N(a) = a2 + b2
, where we put a = a + bi. 

Finally, in order to prove that a rational prime of the form p = 1 + 4n 

.cannot be a prime element in Z[i], we note thatthe congruence 

-1 = x2 mod p 

admits a solution, namely x = (2n) !. Indeed, since -1 = (p - 1) ! mod p 

by Wilson's theorem, one has 

-1 = (p - 1) ! = :[1 • 2 • • • (2n)l[(p - l)(p - 2) • • • (p - 2n)] 

= [ (2n) !] [(-L}2n(2n) !] = [ (2n)!] 2 mod p. 

Thus we have p \ x
2 + 1 = (x +i)(x - i). But since i ± i  (/. Z[i), p does 

not divide any of the factors x+i, x -i, and is therefore not a prime element 
in the factorial ring Z[i]. 

The example of the equation p = x2+y2 shows that even quite elementary 

questions about rational integers may lead to the consideration of higher 

domains of integers. But it was not so much for this equation that we .have 

introduced the ring Z[i], but rather in order to preface the general theory 

of algebraic integers with a .concrete example. For the same reason we will 

now look at this ring a bit more closely. 
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When developing the theory of divisibility for a ring, two basic problems 

are most prominent: on the one hand, to detemiine the units of the ring in 

question, on the other, its prime elements. The answer to the first question 

in the present case is particularly easy. A number a = a + bi  E Z[i] is a 

unit if .and only if its norm is 1: 

N(a) :=(a+ ib)(a -ib) = a2 + b2 = I 

(exercise 1), i.e., if either a2 = 1, b2 = 0, or a2 = 0, b2 = 1. We thus obtain 

the 

 

(l.3) Proposition. The group of units of the ring Z[i] consists oftb-e fourth 

roots of unity, 

Z[i]* = {1, -1, i,  -i}. 

 

In order to answer the question for primes, i.e., irreducible elements of the 

ring Z[i], we first recall that two elements a, f3- in a ring are called 

associated, symbolically a ~ f3, if  they differ only by a unit factor, and 

that every element associated to an irreducible element JT is also irreducible. 

Using theorem (1.1) we obtain the following precise list of all prime numbers 

of Z[i]. 

 

(1.4) Theor-em. The prime elements n of Z[i], up to associated elements, 

are given as faJJows. 

(1) rr = 1 + i, 

(2) rr =a+  bi with a2 + b2 = p, p = l mod 4, a > lbl > 0, 

(3) rr = p, p = 3 mod 4. 

Here, p denotes aprimenumberof Z. 

 

Proof: Numbers as in (l) or (2) are prime because a decomposition rr = a· f3 

in Z[ i] implies an equation 

p = N(n) = N(a) • N(f3), 

with some prime number p. Hence either N(a) = 1 or N(/3) = L, so that 

either a OT f3 is a unit. 

Numbers rr = p, where p = 3 mod 4, are prime in Z[i], because 

a decomposition p = a • f3 into non-units a, f3 would imply that p2 = 
N (a) • N (,B), so .that p = N{a) = N (a +bi) = a2 + b2

, which according 

to (LI) would yield p = I mod 4. 
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This being said, we have to check that an arbitrary prime element Tl 

of Z[i] is associated to one of those listed. First of all, the decomposition 

N(rr) = n · if = Pl ···Pr, 

with rational primes Pi, shows that -ir IP for some .p = Pi. This gives 

N(n)IN(p) = p2
, so that either N(rr) = p or N(rr) = p2

. In the case 

N (rr) = p we get rr = a+ bi with a2 + b2 = p, so rr is of type (2) or, 

' if p = 2, it is associated to l + i. On the other hand, if N (rr) = p2
, 

then rr is associated to p since p / Tl is an ·integer with norm one and 

thus a unit. Moreover, p = 3 mod 4 has to hold in this case because otherwise 

we would have p = 2 or p = I mod 4 and because of (1. I) p = a2 + 
b2 = (a + bi}(a - bi) could not be prime. This completes the 

�� D 

 
The proposition also settles completely the question of how prime num­ 

bers p E Z decompose in Z[i]. The prime 2 = (1 +i)(l -i) is associated to 

the square of the prime element 1 + i. Indeed, the identity 1 - i = -i{l +i) 

shows that 2 ~ (1 + i)2. The prime numbers p ·= 1 mod 4 split into two 
conjugate .prime factors 

p = (a +b-i)(a -bi), 

and the .prime numbers p = 3 mod 4 remain prime in Z[ i]. 

The gaussian :integers play the ,same role in the field 

Q(i) ={a+ bi I a,b E ilJ} 

as the rational integers do in the field Q. So they should be viewed as the 

"integers" in <Q(i). This notion of=integrality is relative to the coordinates of 

the basis 1, i. However, we also have the following characterization of the 

gaussian integers, which is independent of a choice of basis. 

 

(1.5) Proposition.  Z[i] consists precisely of those elements of the extension 

field Q(i) ofQ which satisfya manic polynomial equation 

x2+ax +b = 0 

with coeflicients a, b E Z. 

 

Proof: An element a = c +id E Q(i) is a zer-oof the polynomial 

x
2 + ax + b E (Q:[x] with a=  -2c, h = c2 

+d
2
. 

If c and d are rational integers, then so are a and b. Conversely, if a and b 

are integers, then so are 2c and 2d. From (2c)2 + (2d)2 = 4b = 0 mod 4 it 
follows that (2c)2 (2d)2 0 mod 4, since square-s are always 0 or l. 

Hence c and d are integers. □ 
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The last proposition leads us to the general notion of an algebraic integer 

as being an eiement satisfying a monic polynomial equation with rational 

integer coefficients. For the domain of the gaussian integers we have obtained 

in this section a complete answer to the question of the units, the question 

-of prime elements, and to the question -of unique -factorization. 

These questions indicate already the fundamental problems in the general 

• theory ·of algebraic integers. But the answers we found in the special 

case Z.[i] are not typical. Novel .features will present themselves instead. 

 

Exercise -1. a E Z [i]  is a unit if and only if N (a) = I. 

Exercise 2. Show '!hat, in the ring Z [iJ, the relation a{J = t:y", for a, fJ relatively 

prime numbers and € a unit, implies a= E:
1 and .{J = t:"17n, with t:', E:

11 .units. 

Exercise -3. Show that the integer solutions of .the equation 

x2 + i-= z2 

such that x, y, z > •O and (x, y, Z) = J ("pythagorean triples") are all given, up to 

possible permutation of x and y, by the formula: 

x = u
2 

- v
2
, y = 2uv, z = u

2 + v2
, 

where u, v E Z, u > v > .0, (u, v) = 1, u, v not both odd. 

Hint: Use exercise 2 to show that necessarily x + iy = Ea
2 with a unit E and with 

a= u +·iv E Z[i]. 

Exercise 4. Show that !he ring·z[i] cannot be ordered. 

Exercise 5. Show that the only units of .the ring Z[�] = Z + Z./=d., for any 

rational integer d > I , are ± l. 

Exercise 6. Show that the ring Z[Jd] = Z + Z Jd, for any squarefree rational 

integer d > L, has infinitely many :units. 

Exercise 7. Show that the ring "Z'.,[-v'2] = Z + Z-v'2 is euclidean. Show furthermore 

that its units ,are given :by ±( l + .J2)", n E Z, and detennine its prime -elements. 

 

 

 

§ 2. Integrality 

 
An algebraic number field is a finite field extension K of Ql. The ele­ ments 

of K are called algebraic numbers. An algebraic number is called integral, or 

an algebraic integer, if it is a zero of a monic polynomial f (x) E ;;z,[ x]. 

This notion ·of integrality applies not only Jo algebraic num­ bers., but occurs 

in many different contexts and therefore has to be treated in full generality. 
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In what follows, -rings are always understood to be commutative rings 

with .1. 

 

(2.1) Definition. Let A -� B be an extension .of rings. An element b E B is 

called integral over A, if it satisfies a monic equation 

.. xn-+a1xn-l+···+an-=0, n::::1, 

with coefflcients-a; EA. The ring B is called integral over A ifall elements 

b E B are integral over A. 

 

It is desirable, but strangely enough not immediately obvious, that the sum 

and the product of two elements which are integral over A are again integral. 

This wjlJ be a consequence of the following abstract reinterpretation of the 

notion of integrality. 

 

{2.2) Proposition. Finitely many elements b1, ... , bn E B are all integral over 

A if and only ifthe ring A[b1, ... , bn] viewed as an A-module is finitely 

generated. 

 
To prove this we make use ofthe following result of linear algebra. 

 

(2.3) Proposition (Row-Column Expansion). Let A = ( a ; _,;b)  e an (r x r )­ 

matrix with entries in an arbitrary ring, and let A* = (a;
1
) be the adjoint 

matrix, i.e., a0= (-I)i+J det(A;j), where the matrix AiJ is obtained from A 

by deleting the i -'th column and the j -th row. Then one has 

AA*= A* A= det(A)E, 

where E denotes the unit matrix of rank r. For any vector x = (x1, ... , Xr), 

this yields the implication 

Ax=  0 ===}  (det A)x = 0. 

 

Proof of proposition (2.2): LeLb E B be integral over A and f(x) E A[xJ 

a monic polynomial of degree n :::: l such that f(b) = 0. For an arbitrary 

polynomial g(x) E A[x] we may then write 

g(x) = q(x)f (x) + r(x), 

with q(x), r(x) E A[x] and deg(r(x)) < n_, so that one has 

g(b) = r(b) = ao +aib + ··· + a,,_rbn-l. 

Thus A_[b] is generated as A-module=b_y I ,b, ... , hn-l. 
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More generally, if b1, ... , bn E B are integral over A, then the fact that 

Afb1, ... , bn] is of :finite type over A follows by induction on n. lndeed, 

since b11is integral over R = A[b1, ... , b11_1], what we have just shown 

implies that R[b11] = A[b1, ... , b11] is finitely generated overR, hence also 

over A, if we assume, by induction, that R -is an A-module of finite type. 

Conversely, assume that the A-module A[b1, ... , bn] is finitely generated 

and that .w.1, .... , wr is a system .of generators. Then, :for any element 

' b E A[b1, ... , b11],  one finds that 

b Wi = L Gi)'Wj , i = 1, ... , r , aij  E A . 
}=! 

 

From (2.3) we s.ee that det{bE - (aij))wi = 0, i = 1, ... , r (here Eis the 

unit matrix of rank r), and since l can :be written 1 = c, w1 +··· + CrWr, the 

identity det(bE -(aij)) = 0 gives us a monic equation for b with coefficients 

in A. This shows that b is indeed integral over A. □ 

 
According to this proposition, if b1, ... , b11E B are integral over A, then-

so is any element b of A[b1, ... , b11], because A[h1, ... , .b11, b] = A[b1, ... 

, b11J is a finitely generated A-module. In particular, :given two 

int.egralelements b1 , b2 E B, then b1 + b2 and b I b2 are also integra] over A. 

At the same time -we obtain the 

 

(2.4:) Proposition. Let A � B -� .C be-two ring extensions. JfC is integral 

over Band B -isintegral over A,otbenC·is integral over A. 

 
Proof: Take c EC, and let c11 + b1c11

-
1 + • •  • + b11= 0 be an equation with 

coefficients in B. Write R = A[b1, ... , bnl Then R[c] is a finitely generated 

R-module. If B is integral over A, then R[c] is even finitely generated 

over A. since R is finitely generated over A. Thus c is integral over A.  □ 

 
From what we have proven, the set of-all elements 

A = { b E B I b integral over A} 

in a rin_g extension A � B fonns a ring. It is called the integral closure 

of A in B. A is said to be integrally -closed in B if A = A. It is immediate 

from (2.4) thatthe integr.al closure A i:s itself integrally closed in B. If j is an 
integral domain with field of fractions K, then the integral closure A of A 

in K is called the normalization of A, and A, is  simply called integrally 

closed if A = A. For instance, every factorial ring is integrally dosed. 



8 Chapter l. Algebraic Integers 

 

In fact, if a/ b E K (a, b E A) is integral over A, i.e., 

(a/b)'1 
+a1 (a/h)"-1 +···+an = 0, 

with ai  E A, then 
 

Therefore each prime element n which divides b also divides a. Assuming 

a/b to be reduced, this implies a/b E A. 

 

We now tum to a more specialized situation. Let A be an integral domain 

which is integrally closed, K its field of fractions, LI K a finite field 

.extension, and B the integral closure of A in L According to (2.4), B is 

automatically integrally dosed. Each element f3 E L is of the form 

b 
f3=-, bEB,aEA, 

-a 
because if 

an fr + ··· + aI f3 + ao = 0, Gi E A , an -::/= 0, 

then h = an f3 ·is integral over A, an integral equation 

(anf3t + ··· + a;(an/3) +ab= 0,  .a; E A, 

being obtained from the equation for f3 by multiplication by ai-1
. Further­ 

more, the 'fact-that A is integrally closed has the effect that an element f3 E L 

is inte_gral-over A if and only if its minimal polynomial p(x) takes its coef­ 

ficients in A. In fact, let f3 be a.zero of the monic polynomial g(x) E A[x]. 

Then p(x) divides g(x) in K[x], so that all zeroes /h, ... , f3n of p(x) 

are integral over A, hence 1Ire same holds for all the coefficients, m other 

words p(x) E A[x}. 

 

The trace and the norm in the .field extension LJK furnish important tools 

for the Study of the integral elements in L. We recall the 

 

 
(.2.5) "Definition. The trace and norm of an element x E L are defined to be 

the trace and determinant, respectively,,of the endomorphism 

 

,of the K -vector space L: 
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In the characteristic polynomial 

fx·(t) = det(t id·-Tx) = tn - a,tn-l + .... + (-ltan E K[t] 

of Tx, n = [L .: .K], we recognize the trace and the norm as 

a1 = TrL1K(X) and a.,,= NL1K(X). 

Since T-x+y = Tx +Ty and Txy = Tx o Ty, we obtain.homomorphisms 

TrL\K : L � K and NLIK : L* � K*. 

In the case where the extension LIK is separable, the trace and norm admit 

the following Galois-theoretic interpretation. 

 

(2.6) -Proposition. If L IK is a separable .extension and a : L ➔ K varies 

over the different K "embeddings ofL into an algebraic closure K ofK, then 

we.have 

(i) fx(t) = nu - ax), 
a 

(ii) TrLlK(x) = Z::ax, 
a 

(iii) NL1dx) = f1ax. 
a 

 

,Proof: Thecharacteristic polynomial frU) is a power 
 

of the minimal polynomial 

Px(t) = tm + Crtm-l +···+Cm, m = [K(x): K], 

of x. :In fact, 1, x, ... , x111
- 

1 is a basis of K (x) IK, and if a 1, ... , ad is a 

basis of L !K(x), then 
 

is a basis-ofL I K. The matrix ,of the linear transformation Tx : y r-+ xy with 

respect to this basis has obviousl,yonly blocks -along the diagonal, each of 

them equal Jo 

0 l 0 

0 0 J 

-�- 
0 0 

 

 

 

: i·.. 

-Cm -Cm-:J -Cm-2 -c1  • 

( 



= 

m m m 
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The corresponding characteristic·polynomial is easily checked .to 'be 

-tm + c,t m-· I+.  ···+cm= Px(t), 

so that finally fr(t) = PxCtt. 

The set HomK (L, K) of all K -embeddings of L is partitioned by the 

equivalence relation 

a ~ r  ¢==> ax = rx 

into m equivalence classes of d elements each. If a1, ... , O"m is a system of 

representatives, then we find 

-m 

Px(t) TT(t - O"jX), 

i=I 

and fx(t) = n�,(t - aixl = n;:l Ila~a/t - ax) = fla(t - ax). This 
proves -(i), and therefore also {ii) and (iii), after Vieta. □ 

 

(2.7) CoroHary. In -a tower of finite field extensions K c;.L c;.M, one has 

 

 

 

Proof.: We assume that M IK is separable. The set HomK (M, K) of K - 

embeddings of M is partitioned-b_ythe relation 
 

into m = [L : K] equiv�ence classes. lf a1, ... , am is a system ofrepresen- 

tatives, then HomK{L, K) = {ai IL Ii = 1, ... , m), and we find 

TrM1dx) = L  J. ax= E Tra;Mla;da;x) = L O"i TrM1L(X) 

i=l a~a; i=l i=l 
 

Likewise for the norm. 

·We will not need the inseparable case for the sequel. However it follows 

easily from what we have shown above, by passing to the maximal :Separable 

stibextension Ms lK. Indeed, for the inseparable degree [M  : K]; 

[M:  Ms] one has [M:  K]i =TM: LJi[L: KJ;and 

TrM1K(x) = [M: K];Trw1K(x), NM1dx) = Nw1dx)IM=KJ; 

(see [143], vol. I, chap. II, § 10). □ 
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The discriminant ofa basis a1, ... , an of a separable extension L IK is 

defined by 

 

where er;, i = 1, ... , n, varies over the K -embeddings L --+ K..Because of 

the relation 

TrL!K(aiaj) = L)oJai)(crkaJ), 
k 

the matrix (TrLJK(aw;J) is the product of the matrices (akaiyt and (aka1). 

Thus one may also write 

d(a,, ... , ctn)= det(Trr1K(aia;)). 

In the special case of a basis of type 1, 0, ... , en-i one gets 

d(l,0, ... , en-I)=  TI (0i - 01)2, 

i<j 

where ei -= a;0. This is seen by successively multiplying each-,of the first 

(n - 1) .columns in the Vandermonde matrix 

:-( :: :� r:_)- 
l 0n 0; e�r-l 

by 01 and subtracting it from the following. 

 

(2;8) Proposition. If LIK is separable and a1, ... , an .is a basis, then the 

discriminant 

 

and  

(x,y) = TrL1K(xy) 

'is a nondegenerate bilinear form on the K -vector space L. 

 

Proof: We first showthat the bilinear form (x, y) = Tr(xy) is nondegenerate. 

Let 0 he .a primitive element for L IK, i,e., L = K(0). Then 1,0, ... , gn-1 

is a basis with respect to which the form (x, y) is given by the matrix 

M = (Tr,L1K(0i-i0J-1)k1=1...., n,It isnondegenerate because, for0i = ai 0, 
we have 

det(M) = d(1,0, ... , en-I)= J](0i -01)2 
=/=- 0. 

i<j 

If a,, ... , <Xn is .an arbitrary basis of LI K, then the bilinear form (x, y) with 

respect to this basis is given by the matrix M = (Tr LIK(<Xi a j)). From the 

above it follows that d(a1, ... , an) = det(M) # 0. 0 
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After this review from .the theory of fields, we return to the integrally 

dosed integral domain A with field of fractions K, .and to its integral closure 

B in ihe finite separable extension L jK. If x E B is an integral element of 

L, then all of its conjugate.s ax  are also integral. Taking into 

account that A is integrally closed, i.e., A = B n K, (2:6) implies that 

TrLIK(X), NLrK(X)EA. 

Furthermore, for the group o-funits of B over A, we obtain the relation 

XE  B* {::::=} NL1K(X) EA*. 

For ifaNL1dx) = l, a EA, then 1 = ana ax= yx for some y EB. The discriminant 

is often u.seful because -of the following 

 
(2.9) Lemma. Let a1, ... , an be a basis of L IK which·is contained in B, of 

discriminant d = d (a 1, ... , an). Then one has 

dB-� Aa1 +··· + Aan. 

 

-Proof: If a = a,a_, +···+a-nan EB, a; E K, then the.a; are a solution of 

the .system of=linear equations- 

Tr LfK-(aia) = 1:Tr.L1daiaj)Gj, 
j 

and, as TrLfK (aia) E A, they are given as the quotient of an element of A 

by the determinant det(TrLIK (aiaJ )) = d. Therefore da1 E A, and :thu-s 

da  E Aa1 +··· + Aan . 

 

A system of elements w1, ... , w11 E B such that each b E B can be 

written uniquely as a linear combination 

b = a,cv1 +··· +·anwn 

with coefficients ai  E A, is called an int<!gral basis of B over A (or: 

an A�basis of B). Since such an inte.gral basis is automatically a basis 

of LI K, .its length n always .equals the degree [L : KJ of the field extension. 

The existence of an integral basis signifies that B is a free A-module 

of rank n = [L : K]. ln general, such :an ,integral basis does not exist. 

If, however, A is a principal ideal domain, then one has the following more 

general 

 

(2.10) Proposition. IfLiK is separable and A is ,a principal ideal domain, then 

every finitely generated -B -submodule M -j. 0 of L is a free A-module of rank 

[L : K]. In particular, B admits an integral basis over A. 
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Proof: Let M -=ft O be a finitely generated B--submodule of Land a1,   , an 

a basis of LI K. Multiplying by an element of A, we may arrange for the ai 

to fie in B. By (2.9), we then .have dB s; Aa1 + • • • + Aan, in particular, 

rank(B):::; [L: K], and since a system of.generators of the A-module Bis 

also a system of generators of the K -module L, we have rank(B) = • [L  : K]. 

Let µ,1, ... , µr E M be a system of generators of the B -module M. There 

exists an a EA, a#  0, such that aµ,i E B,.i = 1, ... , r, so that aM •s; B. 

Then 

adM -s; dB s; Aa1 +···· + Aan =Mo. 

According to the main theorem on finitely generated modules over principal ideal 

domains, since Mo is a free A-module, so is ad M, and hence also M. Finally, 

[L : K] = rank(B) :::; rank(M) = rank(ad M) :::; rank(Mo) = [L : K], 

hence rank(M) = [L : K]. □ 

 
It is in general a difficult problem to produce integral ba<;es. In concrete 

situations it can also be an important one. This is why the following proposition 

is interesting. Instead of integral bases ·of the integral closure B of A in L, 

we will now simply speak of integral bases of the extension LI K. 

 
('.l.11) Proposition. Let L IK and L'IK be two Galois extensions of degree n, 

resp. n', such that L n L' = K. Let w1, ... , Wn, resp. di, ... , w�,, be an 

integral basis of L I K, resp. L' IK, with discriminant d, resp. d'. Suppose that 

d and d' are relatively prime in the sense that xd + x'd' = 1, for suitable 

x, x' E A. Then Wi w1is an integral basis of LL',-of discriminant dn'drn. 

 

Proof: As L n L' = K, we have [LL' : K] = nn', so the nn' products w;w1 
do form a basis of LL' IK. Now 1et a be an integral element of LL', and 
write 

a = La;; Wi w  , a;; E K. 
i, j 

We have to show that a;J E A. Put /3; = LiaiJ Wi,Let G(LL'IL') 

{a1, ... , an} and G(LL'IL) = {o:{, ... , u�,}. Thus 
 

Putting 

 b = (/J,' ... '  fJn' )I' 
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one finds det{T)2 = d' and 

a=  Tb. 

Write T* for the adjoint matrix of T. Then row-column expansion (2.3) gives 

det(T)b = T*a. 

Since T* and a have integral entries in LL', the multiple d'h has integral 

entries in L, namely d'f3J = Lid' aiJ Wi. Thus d' aiJ E A. Swapping the roles 

of (w;) and (w1),one checks in the same manner that daiJ E A, so that 

aiJ = xdaiJ + x'd'au E A . 

Therefore w; w1is indeed an integral basis of LL'IK. We compute the 

discriminant L1 of this integral basis. Since G(LL'IK) = {oJc'.T� I k = 
I, ... , n, £  = 1, ... , nil, it is the square of the  determinant of the 

(nn' x nn')·matrix 

M = (crka; WjWj) = (akWi a;wj). 

This matrix is itself an (n' x n')-matrix with entries (n x n)�matrices of which 

the (£, })-entry is the matrix Qo:�w1where Q = (akw;). In other words, 

Ea.••.n'· wI'). 
'. 

EI7 I 

-1. n,wn, 

Here E denotes the (n x n)•unit matrix. By changing indices the second 

matrix may be transformed to look like the first one. This yields 

□ 
 

 

Remark: It follows from the proof thatthe proposition is valid for arbitrary 

separable extensions (not necessarily Galois), if one assumes instead of 

L n -L1 = K that L and L' are Jinearly disjoint. 

 
The chief application of our considerations on integrality will .concern the 

integral closure OK  s; K of Z � (Ql in an algebraic number field K. By 

·proposition (2.10), every finitely generated OK-suomodule a of K admits 

a Z-basis a,, ... , Ctn, 

 

 

The discriminant  

d(et1, ... , an) = det( (a;a; )) 
2 
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cis independent of the choice of a Z-basis; if a_;, ... , a� is another basis, 

then the base change Tl)atrix T = ( ai)), a; = Lj  ai j<l( j , as well as its inverse, 
has integral entries. It therefore has determinant ±1, so that indeed 

d(a;, ... , a�) = det(T)2 d(a1, ... , an)= d(a1, ...... , an). 

We may lherefore write 

d(a) = d(a1, ... , an)- 

In the special case of an integral basis cv1, ...  , Wn of o K we obtain the 

discriminant of the algebrak number field K , 

dK=d(OK)=d(cv1, ... ,cvn)- 

In general, one has the 

 

(2.12) Proposition. If u s; a' ar-e two  nonzero finitely generated o K -sub­ 

modu:Jes of K, then the·index (a' : a} is finite and satisfies 

d(a) =(a': n)2 d(n'). 

 

All we have to show is that the index (n' : .n) equals the absolute value 

of the determinant of the base change matrix passing from a Z-basis of a 

to a Z-basis of a'. This proof is part of the wel1°known theory of finitely 

generated Z a modules. 

Exercise 1. Is 3;+-_
2J an algebraic integer? 

Exercise 2. Show that, if the integral domain A is integrally closed, then so is the 

polynomial ring A[t]. 

Exercise 3. In the polynomial ring A = Q[X,-Y], .consider lhe principal ideal 

p ={X2 - Y3
). Show that pis .a prime ideal, but A/.P is not integrally closed. 

Exercise 4. Let D be a squarefree rational integer I- 0, I and d the discriminant of 

the quadratic number field K = Q(v'J.5). Show that 

d = D, if D = I mod 4, 

d =4D, if D = 2 or 3 mod 4, 

,and that .an integral basis of K  is given by {I, JD) in the .second case, by 

{1, i (I + v'D)I in the first case, and·by .{I, ½(d + v'd)} in both cases. 

Exercise 5. Show .that {I, Ti,v'22
} is an integral basis of Ql(T2). 

Exercise 6. Show that.{1,0, ½(0+02
)) is an integral basis ofQ(0},03 -0-4 = 0. 

Exercise 7. The discriminant dK of an algebraic number fieW K is always= 0 mod 4 
or=  1 mod 4 (Stickelberger's discriminant relation). 

Hint: The determinant det(a;w1) of an integral basis wf  is a sum of terms, each 
_prefixed by a positive or a negative sign. Writing P, resp. N, for the sum of the 

positive, ,resp. negative terms, one finds dK = (P - N)2 = (P + N)2 - 4P N. 
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§ 3. Ideals 

 
Being a generalization of the ring Z s::; Q, the ring o K of integers of an 

algebraic number field K is at the center of an our considerations. As in Z, every 

,non-unit a # 0 can be factored in o K into a product of irreducible 

elements. For if a is not itself irreducible, then it can be written as a product 

of two non-units a = f3y. Then by,§2, one has 
 

and the prime decomposition of a follows by inducfion from those of f3 

and 'Y. However, contrary to what happens in the rings Z and ,;;z[,i], the 

uniqueness of prime factorization does not hold in general. 

 

 

Example: The ring of integers of the field K = Q(H) ,is given by §2, exercise 

4, as OK = ;;z, + ZH.  In this ring, the rational integer 21 can be decomposed in 
two ways, 

21 = 3. 7 = o + 2J=s). o -2✓-'s ). 

All factors occurring here are irreducible in o K. For •if one had, for 

instance, 3 = af3, with a, f3 non-units, then 9 = NKrQ(a)N KIQ(/3) would 

imply NKi!Ql(a) = ±3. But the equation 

NK1Q(X + yN) = x2 + sy2 = ±3 

has no solutions in Z. In the same way it is seen that 7, I + 2,J=s, and 

1 - 2,J=s are irreducible. As the fractions 

1 ± 2R  1 ± 2,J=s 

3 7 

do not belong to OK,  the numbers 3 and 7 are not associated to 1 + 2H 

or 1 - 2H. The two prime factorizations of 21 are therefore essentially 

different. 

 

Realizing the failure of unique factorization in general has led to one ohhe 

grand events in the history of number theory, the discovery of ideal theory by 

EouMw KUMMER. Inspired by the discovery of complex numbers, Kummer's 

idea was that fhe integers of K would have to aamit an embedding into a 

bigger ,domain of "ideal numbers" where unique factorization into "ideal 
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prime numbers" would hold. For :instance, in the example of 

21 = 3 .7 =·o+2./=510 -2-v'=s), 

the factors on ,the .right would be composed of ideal -Prime numbers p1, p2., 

·p3, p4,, subject to the rules 

3 = PrP2, 7 = p3p4, 1 + 2./=5 = PtP3, 1 - 2-J'=s = P2P4. 

This would resolve the above non-uniqueness into the wonderfully unique 

factorization 

 

 
Kummer's concept of "ideal numbers" was iater replaced by that of ideals 

of the ring o K . The reason for this is easify seen: whatever an ideal number 

,a should be defined to be, it ought to be linked to certain numbers a E o K 

by a divisibility relation u I a satisfying the following rules, for.a, b, )._ E  o K, 

ala and ·alb ==> al.a±b; ala :::::;} alAa. 

And an·ideal number a should be determined by the totality of its divisors 

in OK 

I! = {.a E oK I a I a} . 
But in view of the rules for divisibility, this s.et is �rn idea-lof OK-· 

'This is -the reason why RICHARD DEDEKIND re-introduced Kummer's «ideal 

numbers" as being the ideals of OK. Once this is done, the divisibility relation 

a I a can simply be defined by the inclusion a E a, and more generally the 

divisibility relation a I b between two ideals by b � a. 1n what follows, we 

will .study .this notion of divisibility more closely. The basic theorem here is 

the following. 

 

(3.l) Theorem. The ring OK is noetherian, integrallyclosed, and every prime 

ideal p ::/= 0-is a maximal ideal. 

 

Proof: DK -is noetherian because every ideal a is a finitely generated Z­ 

module by (2.10), and therefore a fortiori a finitely generated OK -module. 

By § 2, ox is also inte,grally closed, 'being the integral closure=of 'll, i-n K. 

It thus remains to show that each prime ideal p ::/= 0 is maximal. Now, -pn Z 

is a -nonzero prime ideal (p) in Z: the primality is clear, amLif y E p, y ::/= 0, 

and 

Yn +a1yn-l +···+an =0 

is an equation for y with a; E Z, ,an ::/= 0, then a11 E :p n z. The integral 

domain .o = ox/P arises from K = Z/pZ by adjoining algebraic elements 

and is therefore again .a field (recaH .the fact that K[a] = K(a), if a is algebraic). 

Therefore p is a maximal -ideal. □ 
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The three properties of the ring OK which we have just proven lay the 

foundation of the whole theory of divisibility of its ideals. This theory was 

developed by Dedekind, which suggested the following 

 

(3.2) Definition. A noetherian, integrally closed integral domain in which 

every nonzero prime ide::11 is maximal is called a Dedekind domain. 

 

 

Just as the rings of the fonn CJK may be viewed as generalizations of the 

ring Z, the Dedekind domains may be viewed as generalized principal ideal 

domains. Indeed, if A is a principal ideal domain with field of fractions K, and 

LI K is a finite field extension, then the integral closure B of A in L is, in 

general, not a principal ideal domain, but always a Dedekind domain, as we 

shall show further on. 

Instead of the ring OK we will now consider an arbitrary Dedekind 

domain o, and we denote by K the field of fractions of o. Given two 

ideals a and b of o (or more generally of an arbitrary ring), the divisibility 

relation alb is defined by b c;;:; a, and the sum of the ideals by 

a+ b � I a+ b I a E a, h E b j . 

This is the smallest ideal containing a as well as b, in other words, il is 

the greatest common divisor gcd(n, b) of n and b. By the same token the 

intersection n n b is the 1cm (least common multiple) of a and b. We define 

the prnduct of n and b by 

ab= I L,aibi I ai Ea, hi Eb}. 

 

With respect to this multiplication the ideals of o will grant us what the 

elements alone may refuse to provide: the unique prime factorization. 

 

 

(3.3) Theorem. Every ideal a of o different from (0) and (I) admit!> a 

factorization 

a= P1· • Pr 

into nonzero prime ideals Pi of o which is unique up to the order of the factor.�. 
 

 
This theorem is of course perfectly in line with the invention of "ideal  

numbers". Still, the fact that it holds is remarkable because its proof is far  

from straightforward, and unveils a deeper principle governing the arithmetic 

in o. We prepare the proof proper by two lemmas. 
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(3.4) Lemma. For every ideal o #- 0 of o there exist nonzero prime ideals 

IJ1, IJ2, ... , !Jr such that 
 

 

Proof: Suppose the set mt of those ideals which do not fulfill this condition 

is nonempty. As o is noetherian, every ascending chain of ideals becomes 

stationary. Therefore !.1Jt is inductively ordered with respect to inclusion and 

thus admits a maximal element o. This cannot be a prime ideal, so there exist 
elements h1, h2 E o such that b1h2 E a, but b1, h2 ft. o. Put 01 = (hi)+ a, 

02= (h2) + a. Then a� o1, a � a2 and o1a2 i;: a. By the maximality of a. 

both a1 and a2 contain a product of prime ideals, and the product of these 

products is contained in a, a contradiction. □ 

 

(3.5) Lemma. Ler p be a prime ideal of o and define 

p-'�\xEKlxp<;o} 

Thenoneha8ap 1 := !LiaiXi I ai E o, Xi E p-1
\ #- o,foreveryidea/o-# 0. 

 

 
Proof: Let a E p, a -=I=- 0, and i:,1p2 - •Pr i;: (a)<;: p, with r as small as 

possible. Then one of the p;, say p1, is contained in �. and so p1 = p because 

p1 is a maximal ideal. (Indeed, if none of the IJ; were contained in p, 1hen 

for every i there would exist a; E IJ; " IJ such that a1 • Gr E p. But p is 

prime.) Since P2 •••Pr r:f:. (a), there exists h E p2 - - - p,. such that h ¢:. ao, 

i.e., a-1h r/. o. On the other hand we have hp i;: (a), i.e., a-1hp <;: o, and 

thus a-1h E p-1
. ll follows that p-1 -=po. 

Now let a-/=- 0 be an ideal of o and a1..... an a system of generators. 

Let us assume that a p 1 = u. Then for every x E p-1 

xa; = L.,a;Jct.i.  a;; E o. 
) 

Writing A for the matrix we obtain A(u:1, .. , a11)1 = 0. By (2.3). 

the determinant d =  da1 =  = dctn = 0 and thus d = 0. 

It follows that x is integral over o, being a zero of the monic polynomial 

f'(X) = det(X8;; -a1J) E o[X]. Therefore x E o. This means that p-1 = o, 

a contradiction. □ 

 
Proof of (3.3): I. Existence of the prime ideal factorization. Let 9J1 be the 

set of all ideals different from (0) and (1) which do not admit a prime ideal 

decomposition. If mt is nonempty, then we argue as for (3.4) lhat there exists 



1 
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a maximal element a in 9Jt It is contained in a maximal ideal p. and the 

inclusion o £;; p-1 gives us 

as;aµ-
1
s;pp-1�0. 

By (3.5), one has a � a p- 1 and p � p µ-1 � o. Since p is a maximal ideal, 

it follows that p µ-1 = o. In view of the maximality of a in 9'.lt and since 

a# p, i.e.. ap-1 ¥- o, the ideal oµ-1 admits a prime ideal decomposition 

op-1 = p1 •)),-,and so does a= a p-1 p = µ1 • • PrP, a contrndic.:tion. 

II. Uniqurness of the prime ide.tl factori£ation. For a prime ideal pone has: 

ab� p � as; p orb c;; p, i.e., p I ab=> p I Cl or p I b. Lei 

a= P1P2 ···Pr= q1 q2 -q_, 

be two prime ideal factorizations of a. Then p I divides a fo�tor q;. say q 1, 

and being maximal equals q1. We multiply by P\
1 

and obtain, in view of 

Pi #- P1 µ;·
1 = o, that 

Continuing like this we see that r = s and, possibly after renumbering, 

p,=q;,foralli=I. □ 

 
Grouping together the occurrenc:es of the same prime ideals in the prime ideal 

factorization of an ideal a #- 0 of o. gives a product !"\!presentation 

a=p�1··•p ':"°. V1>0. 

In the sequel such an identity will be automatically understood to signify 

that the p,- arc pairwise distinct. If in particular a is a principal ideal (a), 

then - following the tradition which tends to attribute to the ideals the r6le 

of •'ideal numhers" - we will wri1e with a slight abuse of notation 
 

Similarly, the notation a la is oflen used instead of a I (a) and (a, b) = I 

is written for two relatively prime ideals. instead of the correct fonnula 

(a, b) = a+ b = Cl. For a product a = a1 • an of rela1ivcly prime ideals 

a1... , Un, one has an analogue of the well-known "Chinese Remainder Theorem'' 

from elementary number theory. We may fonnulate this result for an arbitrary 

ring taking into account that 

 

 

 

Indeed. since a;Ia. i = I..... 11w, e tind on the one hand that o � n;',,,1 a;. 

and for a E O; we find that Oi Ia' and therefore, the factors being relatively 

prime, we get a= n1 ···Un la, i.e., a Ea. 
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(3.6) Chinese Remainder Theorem. Let a1, ... , an be ideals in a ring o 

such thatai +a;= V fori #- j. Then, ifa = n;.'=1 a;, one ha.� 

o/a � EB o/a; 
i=l 

 

Proof: The canonical homomorphism 

 

o--+ EB o/a;, 
i=l 

 
ai ------ +EBamoda1, 

i=l 

has kernel a = ni a;. It therefore suffices to show that it is surjective. 

For this, let x; mod a; E o/ai, i = I, ... , n, be given. If n = 2. we 

may write I = a1 + a2, a; E a;, and putting x = X2a1 + x1a2 we gel 

x =x1 mod a1, i = 1,2. 

lf n > 2, we may find as before an element y1 E o such that 

= I mod a1•  y1 = 0 mod  a;, 
i--.2 

and, by the same token, elements y2, ... , y,, such that 

y; = I mod a;,  )'; = 0 mod a; for i #- j. 

Putting x = X1Y1 +· + XnYn we find x = Xi mod a;, i = I, ... , n. This 

proves the surjcctivity. □ 

 
Now let o be again a Dedekind domain. Just as for nonzero numbers, we may 

obtain inverses for the nonzero ideals of o hy introducing the notion of 

fractional ideal in the field of fractions K. 

 

(3.7) Definition. A fractional ideal of K is a finitely genera1cd o-submod­ 

ule a#- 0 of K. 

 
For instance, an clement a E K* defines the fractional "principal ideal" 

(a)= ao.Obviously, since o is noetherian, an o-submodule a#- 0 of K is 

a fractional ideal if and only if there exists c E o, c ¥- 0, such that ca s; o 

is an ideal of the ring o. Fractional ideals are multiplied in the same way 

as ideals in o. For distinction the latter may henceforth be called integral 
ideals of K. 

 
(3.8) Proposition. The fractional ideals fom1 an abclian group, the ideal 

group JK of K. The identity element i.� (I) = o, and the inverse of a is 



a-1=lxEKjxas;o) 
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Proof: One obviously has associativity, commutativity and o(l) = a. For 

a prime ideal p, (3.5) says lhat p £ pp-1 and therefore pp-1 = o 
because pis maximal. Consequently, if a= p1 •··Pr is an integral ideal, 
then b = pj 1 

•  • • p; 1 is an inverse. ba = a implies that b � a-1 Conversely, 
 

if xa s; o, then xab s; b, so x Eb because ob= o. Thus we have b = a-1. 

Finally, if a is an arbitrary fractional ideal and c E o, c -I- 0, is such that 

ca s; o, then (car-1 = c-10-1 is the inverse of ca, so aa •
1
 = o. □ 

 

(3.9) Corollary. Every fractional ideal a admit.� a unique representation as a 

product 

a�TTP'" 
p 

with vp E Z and vp = 0 for almost all p. In other words, J K is the free abe/ian 

group on the set of nonzero prime idea/.� p of o. 

 

Proof: Every fractional ideal a is a quotient a= b/c of two integral ideals b 

and c, which by (3.3) have a prime decomposition. Therefore a has a prime 

decomposition of the type stated in the corollary. By (3.3), it is unique if a 

is integral, and therefore clearly also in general. □ 

 

The fractional principal ideals (a)= ao,a EK*, form a subgroup of the 

group of ideals JK, which will be denoted PK. The quotient group 
 

is called the ideal class group, or class group for short, of K. Along with 

the group of units o� of o, it fits into the exact sequence 

I---+  ---+ K*---+ .fK---+ Cf"---+ 1, 

where the arrow in the middle is given by a r--+ (a). So the class group 

CIK measures the expansion that takes place when we pass from numbers 

to ideals, whereas the unit group o"' measures the contraction in the 

same process. This immediately raises the problem of understanding these  

groups o* and ClK more thoroughly. For general Dedekind domains they 

may turn out to be completely arbitrary groups. For the ring OK of integers 

in a number field K, however, one obtains important finiteness theorems, 

which are fundamental for the further development of number theory. But 

these results cannot be had for nothing. They will be obtained by viewing 

the numbers geometrirnlly as Iauicc points in space. For this we will now prepare 

the necessary concepts, which all come from linear algebra. 

• 
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Exercise I. Decompose 33 + 11 R  inio irreducible integral clements of Q(A  ). 

Exen::lse 2. Show !hat 

54=2-3)= 13+./=17  13-.,/-47 

2 2 

are two essentially different decompn�itions into irreducible integral elements of 

Q(,,Gi'i). 

Exercise J, Le.:! d be squarefree and pa prime number not dividing 2d. Leto he the 

ring of integers of Q( ../d ). Show lhal (pl = po is a prime ideal of o if and only if 

lhe congruence .,1 
2 = d mod p has no solution. 

Exercise 4. A Dedekind domain wilh a finile number of prime ideals is a principal 

ideal domain. 

Hinl: If n = p:'1 • • • p;� f::.0 i;. an idcul, then choose elements ;r, e p,,p; and apply 

the Chine� remainder theorem fur 1hc coset.s ;riv, mod p;', 1 1 

f.xerclse S. The quotient ring �1/0 of a IJcdekind domain by an ideal n cf; 0 is a 

principal ideal domain. 

Hint: Por n = µn the only proper ideals of o/a are given by p/pn, ... , µ11
• 

1 /p". 

Choo!\e ;r e p,  p2 and show that p' = Olfv + p''. 

Exercis� 6. Every ideal of :1 Dedekind domain can be gc11erated by 1wo eletn1::nls. 

Hinl: Use exercise 5. 

Exercise 7. In a noetherian ring R in which every prime ideal is maximal. each 

descending chain of ideals n1 2 112 2 • • • heeomes statiomiry. 

Hinl: Show as in (3.4) that (0) is H product p1 • - - p, of prime ideals and that the 

-:hain /? 2 P1 2 P1P2 � ••• 2 Pi ···P, = (0) can be refined into a composition 

 

Exercise 8. Let m be a ncnzero integral ideal of the Dedekind domain Cl. Show that 

in every ideal class of Cf l, there exists an integral ideal ptime to m. 

Exercise 9. U:1 o be an integral domain in which all nom:ero ideals admit a unique 

fac1orii.illion into prime icl:ab. Show that c, is a Dedekind domain. 

Exercise 10. The fractional ideals a of a Dedekind domain o arc projcc1ive o­ 

modules, i.e., given any surjective homomorphism M �  N of Cl-modules, each 

homomorphism a �  N can be lifted to a homomorphi,m h : 11 ..... M such that 

f uh=[!.. 

 
 

 

 

§4. Lattices 

 
In §I, when solving the hasie problems concerning the gaussian integers. 

we-used at a crucial pluce the inclusion 

Z[il <;C 
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and considered the integers of Q(i) as lattice PoinL'> in 1he complex plane. 

This poinl nf view ha.,; been generalized lo arhi1mry number fields by 

Ht:RMANN M1NKOWSKI (1864-1909) and has led to results which make up an 

essen1ial pari of the foundations of algebraic number 1heory. In order to 

develop Minl<owski's 1heory we first have 10 introduce the general notion of 

lattice and study some of its basic properties. 

 

 

(4.1) Definition. Let\/ be an n-dimensiomi/ JR-vector space. A laUice in V 

is ,1 subgroup of th�fonn 

r = Zv1 + -· + Zv,,, 

withlinearlyincfependenrvectorsu1,  , Vm ofV. Them-luple(v1,  , Vm) 

i.\·called a basis and lhc set 
 

a fundamentul mesh of the lattice. The lattice is c:illcd complete or a Z­ 

structure o(V, if m = n. 

 

 
The comple1encs.-. of the lattice is ohviou.5ly 1anramoun110 rhe facr thal 

the :-et of all 1ranslates </J + y. y e r. of the fundamental mesh covers the 
entire space V. 

The above definition makes use of a choice of linearly independent 

vectors. But we will need a characteri1.ation of lauices which is independent 

of such a choice. Nore Ch.it, firsc of all, a larricc is a finitely genera.red 

subgroup of V. Bui not every tini1ely generaled subgroup is a lattice - for 
instance Z + Z.../2 £;: !R. is not. But each lattice r = Zv1 + ·• + Zvm 

has the special property of being a discrete subgroup of V. This is to say 

that every point y e r is an isolated point in the sense that there exists a 

neighbourhood which contains no other points of r. In fact, if 

Y =a1V1 +· +a,,,Vm EI', 

then, extending v1, . .• v,,, to a basis v1• . . , v,1 of V. 1he sci 

{ x1v, + ··· + .(11v,, I Xi E R, la; - x;I < I for i = I .......... mI 

dearly is such a neighbourhocxl This property is indeed characteristic. 

 

 

(4.2) Proposifion. A suhgroupr � V is a fartice if and only if it is discrere. 
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Proof: Lei I' be a discrete subgroup of V. Then r is closed. For let U be an 

arbi1rary neighbourhood of 0. Then 1hereex.ists a neighbourhood U' � U ofO 

such that every difference of elements of U' lies in U. Jf there wen:: an x 'I- r 

belonging to the closure of r, then we could find in the neighbourhood x+U' 

of x two distinct elements y1, Y2 E I', so that O #- y1 - Y'.! E U' - U' � U. 
Thus O would not be an isolated point, a contradiction. 

Let V0 he the linear subspace of V which is spanned by 1he set r, and 

let m be its dimension. Then we may choose a basis u 1,  , Um of V0 which 
is contained in r, and form the complete lattice 

 

of Vo, We claim that the index (I' ; fi1) is finite. To see this. let Y; E r vary 

over a system of representatives of the cosets inr / r0. Since fii is complete 

in Vo. the translates <Pi,+ y, y E r0, of the fundamental me�h 

<Po={x1u1+  +xml1ml.\'.i ER, 0:Sx; < lj 

cover the enlire space V0. We may therefore write 
 

As the µ; = y; - y0; e r lie discretely in the bounded set tP0, 1hey have to 

be finite in number. In fact, the intersection of r with the closure of <P0 is 

compact and discrete, hence finite. 

Puning now q =(I': I'0). we have qI' s; I(), whence 

 

r� �!li=Z(�u1)+ --+z(tum)· 

By lhe main theorem on finitely generated abclian groups, r therefore 

admi1s a Z-basis v1•.... v,., r ::S m, i.e.. r = Zv1 + -·· + Zvr. The 

vec1ors 111•...• v,- are also IR-linearly independent because they span the 

m -dimensional space V0. This shows that r is a lattice. □ 
 

 

Next we prove a criterion which will tell us when a lattice in the space V - 

given, sJy, as a discrete subgroup r � V - is complete. 

 

 

(4.3) Lemma. A fauice I' in V is complete ifandonly ifthereexistsu bounded 

subset M � V such 1ha1 the collccrion of :di lramlates M + y. y E r. coven. 
1he entire space V. 
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Proof: If I'= Zv1 +• • • + Zvn is complete, then one may take M to be the 

fundamental mesh </J = {x1v1 + • +xnvn IO:;:: Xi< l}. 

Conversely, let M be a bounded subset of V whose translates M + y, 

for y E I', cover V. Let Vo be the subspace spanned by I'. We have to 

show that V = V0. So let v EV. Since V = LJYEI'(M + y) we may write, 

for each v EN, 

vv =av+ Yv, av EM.  Yv EI'£;; Vo. 

Since M is bounded, tav converges to zero, and since Vo is closed, 

v= Jim �av+ Jim �Yi,= lim �Yv E Vo, □ 
V---->,C";u\) 11----,.,:X,I) l'->(X;j) 

 

 

Now let V be a euclidean vector space, i.e., an IR-vector space of finite 

dimension n equipped with a symmetric, positive definite bilinear form 

(,): V x V-+R.. 

Then we have on V a notion of volume - more precisely a Haar measure. 
The cube spanned by an orthonormal basis e1, ... , en has volume I, 

and more generally, the parallelepiped spanned by n linearly independent 

vectors u1, ... 1!n, 

has volume 

vol(<P) = ldetAI, 

where A = (a;k) is the matrix of the base change from e1,  , en to 

V1, ... , Un, so that v; = I:;ka;kek, Since 

((v;,uj)} = =(La;kajk) =AA1
, 

k 

we also have the invariant notation 

vol(4>) = /de!((v,-, Vj))i1
12

. 

Let r be the lattice spanned by u1, .... Vn.Then QJ is a fundamental 

mesh of r, and we write for short 

vol(I') = vol(<P). 

This does not depend on the choice of a basis u1, ..., u11 of the lattice 

because the transition matrix passing to a different basis, as well as its 

inverse, has integer coefficients, and therefore has detenninant ±I so that 

the set <P is transfonned into a set of the same volume. 

 

We now come to the most important theorem about lattices. A subset X 

of V is called centrally symmetric, if, given any point x EX, the point -x 

also belongs to X. It is called convex if, given any two points x, y E X, the 

whole line .�egment (ly + (1 -l)x / 0 � t � 1 J joining x with y is contained 

in X. With these definitions we have 
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(4.4) Minkowski's Lattice Point Theorem. Let r be a complcre lattice in 

tlie euclidean vector space V and X a centrally symmetric, convex subset ofV. 

Suppose tliat 

vol(X) > zn vol(I'). 

Then X contaim at /ea.<;t one nonzero lartice pointy E I'. 

 

Proof: It is enough to show that there exist two distinct lattice points 

YI, Y2 E I' such that 
 

In fact, choosing a point in this intersection, 

 

ix1+Y1 =  

we obtain an element 

y=y1-Y2= 

 
which is the center of the line segment joining x2 and -x1, and therefore 

belongs to X n r. 
Now, if the sets ½ X + y, y E I', were pairwise disjoint, then the same 

would be true of their intersections <Pn( ½X+y)  with a fundamental mesh <P 

of I', i.e., we would have 

vol(<t>) e> L vol( <t> n ( l X + y)). 
yeCJ' 2 

But translation of <P n ( ½X + y) by -y creates the set (<P - y) n ½X of 

equal volume, and the <P - y, y E I', cover the entire space V, therefore 

also the set ½ X. Consequently we would obtain 

vol(<P) � L vol( (<P - y) n 1x) = vol( �X) = � vol(X), 
,er 

which contradicts the hypothesis. □ 
 
 

 
Exercise I. Show that a lattice I' in IR" is rnmp!ctc if and only if the quotient IR"/ I' 
1s compact. 

Exercise 2. Show that Minkowski's la1tice point theorem cannot he improved, 

by giving an example or a centrally symmetric convex set X s;; V such that 
vol{X) = 2" vol(I') which docs not contain any nonzero point of the lattice r. 
lf X is compact, however, then the �tatement (4.4) docs remain true in the case of 
equality. 
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Exercise 3 (Minkowski's Theorem on Linear Forms). Let 

L;(X1, x,,) = i= 1, 

be real linear forms such that det(a,;) c;i 0. and let c1, , .. , c,, be positive real numbers 
such that c1 • • • c,, > I det(a;J)I. Show that there exist integers m1...  , mn E Z such 

that 

IL1(m1, .... 111")1 <c,, i = 1, 

Hil\t: Use Mlnkuwski's lallice point lf1eorcm. 
 

 

 

§ 5. Minkowski Theory 

 
The basic idea in Minkowski 's treatment of an algebraic numher lidd K IQ 

of degree n is to interpret its numbers as points inn-dimensional space. This 

explains why his theory has been called "Geometry of Numbers." It seems 

appropric1tc, however, to follow the current trend ;md call it "Minkowski  

Theory" instead, because in the meantime a geometric approach to number  

theory has been developed which is quite different in nature and much 

more comprehensive. We will explain this in § 13. In the present section, 

we consider the canonical mapping 

j:K------+K�:=TTC, af ----- ;oja=(ra), 

 

which results from the n complex embeddings r : K ---+ C. The C-vector 

space Kc is equipped with the hamitian scalar product 
 

 
Let us recall that a hennitian scalar product is given by a form JI (x, y) 

which is linear in the first variable and satisfies H(x,y) = H(y,x) as well 

as H(x,x) > 0 forx -f- 0. In the sequel we always view KL as a hermitian 

space, with respect to the "standard metric" (*)- 

 

The Galois group G(C/IR) is generated by complex conjugation 

F: z f-----+ Z. 

 

The notation F will be justified only later (see ch,1p. III. *4). F acts Oh the 

one hand on the factors of the product TTr C, but on the other hand it also 

acts on the indexing set of r's: to each embedding r: K-. C corresponds 

its complex conjugate f: K --+ C. Allogether, this defines an involution 

f: Kc------+ Kc 
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which, on the points z = (zr) E Kc, is given by 

 

 

The scalar product ( , ) is equivariant under F, that is 

(Fx,Fy) = F(x,y). 

Finally, we have on the IC-vector space Kc=  TTr C lhe linear map 

Tr: Kc ------c1- C, 
 

given as the sum of the coordinates. It is also /< invariant. The composile 

K  ! ,,.Kc� C 

gives the usual trace of K IQ (see (2.6), (ii)), 

TrK1,:;;(a) = Tr(ja). 

 

We now concentrate on the R-vector space 
 

consisting of the G(CIR.)-invariant, i.e., F-invariant, JXlints of Kc. These 

are the points (zr) such that =r = Z,. An explicit description of KR will be 

given anon. Since fa= W for a EK, one has F(ja) =)a.This yields a mapping 

j: K ------c1- K,,,,._. 

The restriction of the hermitian scalar product {, ) from Kc to K,t gives a 

scalar product 

 

on the IR-vector space KR., Indeed, for x,y E K"J:.., one 

view of the relations = {Fx,Fy) = (x,y), \x,y) = 
and, in any case, (x,x) > for x-/=- 0. 

E E. in 

= (y,x), 

 
We call the euclidean vector space 

 

the Minkowski space, its scalar product ( , ) the canonical metric, and 

the associated Haar measure (see *4, p. 26) the canonical measure. Since 

Tr o F = F o Tr we have on K"3.. the R-linear map 

Tr: K� ------c1- JR, 
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and its composite with j : K ----+ KE is agafo the usual trace of K H), 

TrK ,;;,(a) = Tr(ja). 

 

Remark: We mention in passing - it will not be used in the sequel - that 

the mapping : K ---+ KR identifies the vector space K K with the tensor 

product K ®Q 

K®QR_::_..,.K1<., a®x1--------+(ja)x. 

 

Likewise, K ®<,- C ---=-,. Kc. In this approach, the inclusion Kc{ c; Kc 

corresponds to the canonical mapping K ®Q IR ----1-- K ®'JC which is induced 

by the inclusion IR"- C. F corresponds to F(a ® z) =a®  Z. 

 
An explicit description of the Minkowski i;pace K"3. can be given in the following 

manner. Some of the embeddings r : K ----+ C are real in that they land already 

in IR, and others are complex, i.e., not real. Let 

Pi, ..,. Pr: K ---- ,. R 

be the real embeddings. The complex ones come in pairs 
 

of complex conjugate embeddings. Thus n = r + 2s. We choose from each 

pair some fixed complex embedding, and let p vary over the family of real 

embeddings and a over the family of chosen complex embeddings. Since F 

leaves the p invariant, but exchanges the er, a, we have 
 

This gives the 

 

(5,l) Proposition. There is an isomorphism 

f: K:�------n-,!.R. = R.'"+2.1· 

 
given by the rule (zr) 1-+ (x,) where 

Xp = z1,, Xo- = Re(zo-), xa = Im(:(1). 

This isomorphism transfonns the canonical metric ( , ) into the scalar product 

(x,y) = La,x,y,, 

where a, = 1. resp. o:, = 2, if r is real, resp. complex. 
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�roo,rT: he m;pi��learly an isomo!hism. lf ;: = �Zr).= (Xr + iyr). 

z = (zr) = (xT + 'Yr> E K�. lhcn Zp!p = XpXµ1 , am.I in VICW of yr, = X<7 

and y� = x�, one gets 

z(JZ� + Z<7Z� = z,,Z� + Z,,.z� = 2 Re(::11Z�) = 2(x.,.x� + X<7x�). 

This proves the claim concerning the scalar products. D 

 

The scalar product (x,y) = Lr Cl:'tXtYt transfers the canonical measure 
from KR to R.r+2.<. It obviously <liffers from the standard Lebesgue meas­ 
ure by 

volcrnonical(X) = 2s vol1.c1x:sg...,(/(X)). 

Minkowski himself worked with the Ubcsgue measure on IR.'+2.t, and 

most textbooks follow suit. The corresponding measure on KR is the one 

determined by the scalar product 

(x,y) = I: _l_x,y,. 
' a, 

This scalar product may therefore be called the Minkowski metric on KR, 

But we will systematically work wi1h the canonical metric, and denote by 

vol rhe corresponding canonical measure. 

The mapping j : K --,. K� gives us the following lattices in Minkowski 

space Kw:. 

 

(5.2) Proposition. 1f a -f. 0 is :m ide:tl of OK, then r = ja is a complete 

lattice ill KR, Its fundamental mesh has volume 

vol(I') = /id,i (OK : a). 

 

Proof: Let a1•...• a11 be a Z-hasis of a, so lhal I'= Zja1 + •·+Zja,,. 
We choose a numbering of the embeddings r: K ---l- C, r1, ... , r,,. and 

fonn the matrix A= hra;). Then, according to (2.12). we have 

d(a) = d(a1.  , . 0"11) = (de! A)2 = (OK : 0)2 d(OK) = (OK : af dK. 

and on the other hand 

(Ua;,jad) =(f:rt:a;ft:ak) =AAr. 
f=I 

This indeed yields 

vol(I') = ldet((jo;, Ja,))i '12 = ldct/11= /id,i (OK: a) D 

 

Using this proposition. Minkowski's lauice poim theorem now gives the 

following resull, which is what we chiefly intend to use in our applicationf> 

to number theory. 
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(5.3) Theorem. Ler a #- 0 be im integral ideal of K, and ler Cr > 0, for 

T E Hom(K. C), be rcaf numbers such that Cr = er and 

TIer>  A(oK: o), 

 

where A= (¾}s�. Then thcn:exisr.-.a e o,a ¥:, 0, suchrhat 

1ml < Cr  for all  TE Hom(K,C). 

 

Proof: The set X = l(Zr) E K K I lzrI < Cr} is ccnirally symmetric and 

convex. Its volume vol(X) can be computed via the map (5.1) 

/:K11.�nlR., (Zr)�(Xr), 

' 
given by x,, = zp, .Xrr = Re(z,r), xn = Jm(:(1'). It comes out to be 2' times 
lhe Lebesgue-volume of the image 

J(X) = I (Xr) E QIR I lxpl < c,,- x� + x} < c! J. 

This gives 

vol(XJ = zs voll.-bc-*oc(/(X)) = 2·· nc2cp) n(Jrc.;) = 2'·+s,r·' nCy. 

p " ' 

Now using (5.2), we obtain 

 

vol(X) > 2··+••:n-s(� r�(OK: a)= 2"vul(I'). 

Thus the hypothesis of Minkowski's lattice point theorem is satisfied. So 

Ihere does indeed exi.\t a Ianice point ja E X, a 'F 0. a E n: in other 

words lrol < CT- D 
 

 
There is also a multiplicative version of Minkowski theory. ll is based 

on the homomorphism 

j:K•-,.KC=9C*. 

 

The mulliplicative group KC admits the homomorphism 

N:K[ ----- +C' 

given by the product of the coordinates. The composite 

K" .J.. Kt�  c� 
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is the usual nonn of K IQ. 

NKiQ(a) = N(ja). 

In order to produce a lattice from !he multiplicative lhcory, we use the logarithm 

to pass from rnul!iplicativc to additive groups 

e: c•   ,,. IR. z i---+ log lzl. 

It induces a surjective homomorphism 

1,K:--,nrn:. 

and we obtain !he commutative diagram 

K.� K(; --'-· nr IR 

""'l l N l T, 

Q�-----+ C•� R. 
 

 
Thienvolution F E G(CIR) ac1s on all groups in 1his di:tgrnm. trivially 

on K., on KC as before. and on the points X = (Xr) E nr IR by (Fx)r = -'"r­ 
One clearly has 

Foj=.i-  Foe=foF, NoF=FoN,  TroF=Tr, 

i.e.. the homomorphisms of the diagram are G(Cj!R)-homomorphisms. We 

now pass everywhere to the fixed mtxlules under G(CIIR) and obtain the diagram 

 
Q• ----+ IR•� R . 

 

The R-vector space [ nr IR]~ is explicitly given as follows. Separa!e ;1s 

ttefore the embeddings r : K - C into real ones, p1, ••• , Pr, and pairs 

of complex conjugate ones, a1, rJ1, ... , O"I, a.,. We obtain a decomposition 

which is analogous to the one we saw above for [ Tir C]�. 

(n lR nR X ni lR x lR I+. 
' p • 

The factor I IR x lR )1 now consists of the points (x,x), and we identify it 

with R by the map (x,.t),...... 2x. In this way we obtain an isomorphism 

[QIRr ;,a JR'+'. 
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whkh again transfonns lhe map Tr: [ nr IR]+ ➔ R inlo the usual map 

Tr: R'+J----- + R 

given by the sum of the coordinates. Identifying [ nr IR]+ with R'..,·'. the 

homomorphism 

is given by 

i(x) = (log l.xp I, .. , log lx11, I, log lx,, 12
, ••• , log lxn,12}, 

 

 
Exercise I. Write down a constant A which depends only on K such chat every 

integral ideal a¥- 0 of K contains an element a #- 0 satisfying 

ital< A(oi;: 0)
1

/
11  

for all t E Hom(K.C), n = [K: Qj. 

Exercise 2. Show that the convex, centrally symmetric �t 

x-1(,,)eKol z;:1,,1«) 

ha� volume vul(X) = 2',r' S (M:e chap. Ill. (2.15)). 

Ext:rcise 3. Show !hat in every ideal a =I- 0 of oK lhere exis1.� an a =I- 0 such 1ha1 

IN,qQ(a)I,::: M(o,\: a). 

where M = � (�)" /jd;T (the so-called Minkowski bound). 

Hint: Use exercise 2 to proceed as in (5.3), and make use of the incqu:1lity be1ween 
arithmetic and geometric means, 

 

 

 

 

§ 6. The Class Number 

 
As u first application of Minkowski theory, we are going to show that the 

ideal class group CIK = JK/PK of an algebraic number tit:ld K is finite. 

In order to count the ideals a# 0 of the ring OK we consider their absolute 
norm 

91(a) = (o,, a). 

(Throu£hout lhis book the case of the zero ideal a = 0 is oftc:n tacitly 

excluded, when its consideration would visibly make no sen�.) This index 
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is finite by (2.12), and 1he name is justifi� by the special case of a principal 

ideal (a) of o,.,. where we have lhe identity 

ryj((a)) = INK1Q(•)I. 

Indeed, if w1, ...• Wn is a Z-basis of OK. then a w1,  • aw11is a Z-basis of 

(a)= aOK, and if A= (a,_1) denotes the transition matrix, a /JJ; = 'f:a;j Wj, 

then, as was pointed out already in �2, one has I det(A)I = (OK : (a)) as 

well as det(A) = NKIQ(a) by detinition. 

 

(6.1) Proposifiun. If a = p�1 
• • p:�is the prime faeroriz,uion of an ideal 

a # 0, then one has 
 

 

Proof: By the Chinese remainder theorem (3.6), one has 

OK /a= OK /p�1 GI· EB OK /IJ�', 

We are thus reduced to considering the case where a is a prime power p". 

In the chain 

P 2 p�2 ··· 2 p" 

one has p; =p pi+I because of 1hc unique prime factori:L:ation. and each 
quotient pi/p

1
+

1
 is an OK /p-vector space of dimension I. In fact, if a E 

p,i pi+I and b =(a)+ pi+l. then p' 2 b � pi+I and consequently pi = b, 

because otherwise b' = bp-1 would be a proper divisor of p = µi+lp-,. Thus 

a= a mod pi+I is a basis of the OK/p-vcctor space µi/µi+
1
. So we have 

pi /pi+I � OK /p and tl1erefore 

')l(pv) = (OK : p�") = (OK  : p')(p: p2) .. (pv-1: pl')= IJt(pf' 0 

 
The proposilion immedia1ely implies lhc muhiplica1ivi1y 

ryj(nb) = ryj(o)ryj(b) 

of the ah!.olute nonn. It may therefore be extended to a homomorphism 

91:.IK---+ R� 

detined on all fractional ideals a = np p"f, vll E Z. The following lemma. 

a consequence of (5.3), is crucial for the tiniteness of the ideal clas� group. 

 

(6.2) 1.,emma. In every ideal a =F O of OK there cxisls an a e a. a # 0, such 

rhat 
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Proof: Given F: >  0, we choose positive real numbers Cr,  for r E 

Hom(K, C), such lhat Cr = er and 

!J',� (�)'//4T<n(a)+s 

Then by (5.3) we find an element a Ea, a -=I- 0, satisfying 1ml <Cr.Thus 

 

IN,,o(aJI �IJlrnl < (�)'//4T<n(a)H. 
 

This being true for all c > 0 and since 

there has to exist an a E a, a #- 0, such 

 

is always a positive integer, 

 

□ 
 

 

(6.3) Theorem. The ideal class group Cf K = lK JPK is finite. Its order 

hK = (h:  PK) 

is ca/fed the class number of K. 

 

Proof: If p -=/=- 0 is a prime ideal of OK and p n Z = pZ, then OK/µ is a 

finite field extension of Z/ pZ of degree, say, f � I, and we have 

<Jl(p) � pi_ 

Given p, there are only finitely many prime ideals p such that p n Z = p7.,, 

because this means that p I (p). lt follows that there are only finitely many 

prime ideals p of hounded absolute norm. Since every integral ideal admits 

a representation n = Pt · pJ:'1 where vi > 0 and 
 

there are altogether only a finite. number of ideals o of OK with bounded absolute 

norm IJ1(a) .:'.SM. 

11 therefore suffices to show that each class laJ E Cl K contains an integral 
ideal n1 satisfying 

'l1(a,J ..c; M � (�}'v%1 
For this, choose an arbitrary representalivc a of the class, and a y E OK, 

y ::/= 0, such that b = y a-1 £ OK-By(6.2), there exists a Eb, a i= 0, such 

that 

I NKIQ(a)I • <Jl(b) '� 'l1( (a)b-') � <Jl(ab-'J ..c; M. 

The ideal n1 = ab-1 = ay -In E Lal therefore has the required property. D 
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The theorem of the finiteness of lhe class number h K means that passing from 

numbers to ideals has not thrust us into unlimited new territory. The 

most favourable case occurs of course when hK = I. This means that OK 

is a principal ideal domain, i.e., that prime factorization of elements in the 

classical sense holds. In general, however, one has hK > 1. For instance, 

we know now that the only imaginary quadratic fields Q(,JJ), d squarefree 

and < 0, which have class number I are those with 

d=-1, -2, -3, -7, - II,-19, -43, -67, -163. 

Among real quadratic fields, dass number I is more common. In the range 

2 =::; d < I00 for instance, it occurs for 

d � 2, 3, 5, 6, 7, I I, 13, 14, 17, 19, 21, 22, 23, 29, 

31, 33, 37, 38, 41, 43, 46, 47, 53, 57, 59, 61, 

62, 67, 69, 71, 73, 77, 83, 86, 89, 93, 94, 97. 

It is conjectured that there are infinitely many real quadratic fields of class  

number L But we do not even yet know whether there are infinitely many 

algebraic number fields (of arbitrary degree) with class number I. It was 

found time and again in innumerable investigations that the ideal dass groups 

CIK behave completely unpredictably, both in their size and their structure. 

An exception to this lack of rule is Kt.NKICHI IWASAWA 's discovery that the 

p-part of the class number of the field of p11-lh roots of unity obeys a very 

strict law when n varies (sec l136], th. 13.13). 

In the case of the field of p-th roots of unity, the question whether the 

class number is divisible by p has played a very important special r6le 

because it is intimately linked to the celebrated Fermat's Last Theorem 

according to which the equation 

xi'+ yP =Z/1 

for p 2: 3 has no solutions in integers -1- 0. In a similar way as the sums of 

two squares x2+ y2 - (x +iy)(x -iy) lead to studying the gaussian integers, 

the decomposition of ;,;I'+ yl' by means of a p-th root of unity  I leads to 

a problem in the ring Zl{ j of integers of Q((). The equation  = zl' - xi' 

there turns into the identity 

y·y· ·y=(z-x)(z-(x) ••(z-i;-P-1x). 
 

Thus, assuming the existence of a solution, one obtains two multiplicative 

decompositions of the same number in .Z[(]. One can show that this 

contradicts the unique factorization - provided that this holds in the 

ring Z[(]. Supposing erroneously that this was the case in general - in 

other words that the class number h1, of the field Q(() were always equal 
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10 I - some aclually 1hough11hey had proved "Fenna1's Last Theorem'' in 

1his way. Kw'1Mt:H, however, did not fall into this lrap. Instead, he proved that 

the arguments we have indicated can be salvaged if one only assumes pf hp 

instead of hp = 1. In this case he called a prime number p regular. otherwise 

irregular. He even showed that p is regular if and only if the numerators 

of the Bernoulli numbers B2, H4, . , Bp-., are not divisible by p. Among 

the first 25 prime numbers < 100 only three are irregular: 37, 59, and 67. 

We still do not know today whether there are infinitely many regular prime 

numbers. 

The connection with Fcnnal's lasl theorem has al last become obsolete. 

Following a surprising discovery by the mathemaiician GtkH,\RO FR£Y, who 

established a link with the 1heory of elliptic rnrves, it was KMYNl-."IHRIBET, 

who munagcd to reduce Fermat's statement to another. much more important 

conjei.:ture, the Taniyama-Shimura-Weil Conjecture. This was proved in 

sufficient generality in 1994 by ANl)R/..W Wu.r.-s, after many years of work, and 

with a helping hand from R1c11.-.RD T�rUJR. See (144]. 

TI1e regular and irregular prime numhers do however cominuc to be 

important. 
 
 

 

Exercise I. How many intt:gral ideals a are there with the given norm 'Jl(a) = n'! 

Eurrlsc 2. Show that the quadratk fields with discriminant 5. 8, 11, - 3, - 4. -7, 
-8, - 11 have class number I. 

Exercise 3. Show that in every ideal class of an algebraic number field K of degree n, 

there exists an integrnl ideal a such th111 
 

Hint: Using exercise: 3. §5. proceed a.�in the proof of (6.3). 

Ext!rdst! 4. Show that the absulull.; ,..<1\u<:: ol" the discriminant ldK I is > 1 for c,..ery 

algebraic number field K "I- Q (Minkow�ki's theorem on the discriminant. see 
chap. Ill. (2.17)). 

Exercise 5. Show that the abwlu1c value of the tiiscriminant ldKI tends to oo with 
1he degree II of the field. 

 
Exercise 6. Let a be an imegral ideal of K ;md a"'= \a). Show 1ha1 a hecomcs a 
principal ideal in lhe field L K (":/ii). in lhe sense 1h:u ao,. = (a). 

Exercise 7. Show that, for every number field K. there exisf� a finite extension L 
such that every ideal of K bcrnmcs u principal ideal. 
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§ 7. Dirichlet's Unit Theorem 

 
After considering the ideal class group C!K, we now turn to the second 

main problem posed by the ring OK of integers of an algebraic number 

field K, the group of units oK. It comains the finite group µ,(K) of the 

roots of unity that lie in K, but in generaJ is not itself finite. Its size is in 

fact determined by the number r of real embeddings p : K ➔ R and the 

numbers of pairs a. a : K ➔ C of complex conjugate embeddings. In order 

to describe the group, we use the diagram which was set up in §5: 

K* � K�� [ n, IR]+ 

l N l T 

Q*  .,.. JR* � IR 

 

In the upper part of the diagram we consider the subgroups 

oK = { F: E OK I NK1Q(E") =±I},  the group of units, 

S = { y E Ki,_ I N(y) =±I}, the "nonn-onc surface", 

H = { x E [QR] +I Tr(x) =Of,  the "trace-zero hyperplane". 

 

We obtain the homomorphisms 

oK -1+ S�  H 

and the composite A := £ o j : oK ➔  H. The image will be denoted by 

r  = A(oK) � If, 

and we obtain the 

 

(7. I) Proposition. The sequence 

I-----,. µ,(K)------+ oK � r  .., o 
 

1s exact. 

 

Proof: We have to show that 11(K) is the kernel of A. Fort; E ;l(K) and 

r : K ➔ C any embedding, we find log Ir t; I = log I = 0, so that certainly 

11(K) � ker(A). Conversely, let f E oK be an element in the kernel, so 

that A(1::) = t(.iF:) = 0. This means that lul = I for each embedding 
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r  K --+ C, so that }t.' = (re) lies in a bounded domain of the IR­ 

vector space KP., On the other hand. j£ is a point of the lattice joK of K3. 

(see (5.2)). Therefore the kernel of A can contain only a finite number of 

elements, and thus, being a finite group, contains only roots of unity in K*. 

□ 

 
Given this proposition, it remains to determine the group I'. For this, we 

need the following 

 

(7.2) Lemma. Up to multiplication by units there a.re only finitely many 

elements a E OK of given norm N Ki-::;,(a) = a. 

 

Proof: Let a E Z, a > I. In every one of the finitely many cosets of 

DK /aoK there exists, up to muhiplication by units. al most one element a 

such that IN(a)I = INK11J(a)I =a. For if fi =a+ay. y E OK, is another 
one, then 

a N(fi) 
�fi-y 

 

E OK 

 

because N(/J)//3 E CJK, and by the same token �=I± N:a)YE t)K, 

i.e., fJ is associated to a. Therefore, up to multiplication by units, there 

arcatmost(oK :aoK)elementsofnorm±a. D 

 

(7.3) Theorem. The group r is a complete lattice in the (r + s - !)­ 

dimensional vector space H, and is therefore isomorphic to Z/ 1·'-
1
. 

 

Proof: We first show that r = is a lattice in H, i.e., a discrete 

subgroup. The mapping A : oK --+ II  by restricting the mapping 
 

 
and it suf!lces to show that, for any c > 0, the bounded domain {(xr) E 

f1r RI Ix, I Sc} contains only finitely many points of r =  Since 

C((zr)) = (log lzrl), the preimage of this domain with respect is the 

bounded domain 
 

It contains only finitely many clements of the sel JoK because this is a 



subset of the lattice joK in [ f1r CJ+ (see (5.2)). Therefore r is a lattice. 



§7. Dirichlet's Unit Theorem 41 

 

We now show that r is a complete lattice in //. This is the principal 

claim of the theorem. We apply the criterion (4.3). So we have to find a 
bounded set M ,;; II such that 

II=  LJ(M+y). 
yE/' 

We construct !his sel through ils preimage with respect 10 1he surjective 

homomorphism 

f:S�N. 

More precisely, we will construct a bounded set Tin the nonn•onc surface S, 

the multiplicath·e translaLions T jr-, r, E o;:, of which cover J.11 of S: 

S = LJ Tje 
HOK 

For x = (xr) E 'f, it will follow that the absolute values IXr I are bounded 

from above and also away from zero, because TT, lxrl = I. Thus M = f(T) 

will also be bounded. We choose real numbers <"r > 0, for r E Hom(K, C), 

satisfying c, = q- and 
 

and we consider the set 

X= j(c,)E K,I la,1 <c,j 

Fur an arhi1rary poinl y = (y,) E S. it follows that 

Xy =I(,,) EK, I 1,,1 < ,;} 

where(.'� = Cr IYr I, and one has c� = er and nr ('� = nr Cr = C because 

TTr IYtI= IN(y)I = I. Then, by (5.3), there is a point 

ja=(rn)eXy, llEOK, aj-0. 

Now, according lo lemma (7.2), we may pick a system a1, .. ,a,.,, E OK, 

a, -=fa 0, in such a way that every a E OK with O < INK1Q(a)I .:S C is 
associated to one of these numhers. The set 

N 

T=SnLJX(jad-
1 

j:] 

 

then has the required property: since X is bounded, so is X(ja;)-1 and 

therefore also T, and we have 

S=  LJ T.1,:. 
fHl� 



• 
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In fact, if y € S, we find by the above an a E OK, a ,f:. 0, such that 

ja e Xy-
1

, so Jo= xy-
1
 for some x EX. Since 

 

a is associated 10 some «;, a, = i·a. € E oK. Consequently 

y = x,ja-1 = xj(a;-1e). 

Since y,j1:: ES. one finds x}a/
1 

ES n X}a,�1 s; r, and thus ye Tje, □ 

 
From proposition (7.1) and theorem (7.3) we immedi:ilcly deduce Dirich­ 

let's unit theorem in its classical form. 

 
(7.4) Theorem. The group of units tJ/(' of o K is the dirccl producl of the finirc 

cyc/icgroupJi(K) and .i free abc/ian group of rank r + s - I. 

 

]n other words: there exist units e1•.. , i::1, t = ,. + s - I, called 

fundamental units. such that any other unit f can be wrinen uniquely as a 

product 

wilh a root of unity < and into;;:gcrs v,. 

 

Proof: In lhe exact sequence 

1 �  µ,(K) � O:K � r ---- +o 

r is a free abclian group of rank r = r + s - 1 by (7.3). Let v1.  . , v1 he 

a Z•basis or r, let e1.  . e, e o}i" he prcim.iges of the v;, and let A s;: o;., 
be the subgroup generated hy the £;. Then A Is mapped isomorphically onto 

r by I,, i.e., one has µ(K) n A= I 1) and therefore oK = µ,(K) x A.  [l 

 

Identifying [ nrR]t =Rrt-i (see 95, p.33), H becomes a subspace or 
the euclidean space Rr 11 .and 1hus i1self .a euclidean space. We may therefore 

speak of 1he volume of the fundamental mesh vol().(oK)) or 1he unit l.itticc 

I' = A(o�) � II. and will now compute it. Let f:1, . . , E,. I = r + s - I. 

be a system of fond.imcnta! units and <.P the fundamemal mesh o( the unit 

lanice >..(oK), spanned by the vectors >...(F1)...  , i,(er) E // . The vector 

. 1) E !Rr+.< 
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is obviously orthogonal to H and has length 1. The !-dimensional volume 

of Q) therefore equals lhe (t + !)-dimensional volume of the parallelepiped 

spanned by Ao, A(ci).... , A(c,) in RI+1. But this has volume 

)."' >,(,,) ).,(,,) ) 

±det  : : 
( 

Ao1+1 A1+1CE1) A1+1\F1) 

Adding all rows to a fixed one, say the i-th row, this row has only zeroes, except 

for the first emry, which equals ,Jr+s. We therefore get the 

 

(7.5) Proposition. The volume of the fundamental mesh of the unit lat­ tice 

A(o�) in H is 

 
where R is the absolute \'a/ue of the detenninant oLm arbitrary minor of rank 

t = r + s - I of the following matrix: 

 
 
 

 

This absolute value R is called /he regulator of the field K. 

 
The importance of the regulator will only be demonstrated later (see 

chap. VII, §5). 

 
Exercise 1. Let D > 1 be a s4uarefree integer and d the discriminant of the real 

4uadratic number field K = Q(,,/D) §2. exercise 4). Let X1,Y1 be the uni4uely 
determined rational integer solution equation 

x2 - dy� = -4, 

or - in case this equation has no rational integer solutions - of the e4uation 

r2 -dy2 =4. 

for which x1• y1 > 0 are as small as possible. Then 

€1= t1 + ,/ii 
 

is a fundamenhil unit of K. (The pair of e4ua1ions ,t" - dy2 = ±4 is called Pell's 
equation.) 

Exercise 2. Check the following tah!e of fundamental unit� t'1 for Q(,/D): 
 

D Ill 
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Hint: Chtx:k one hy one for y = l, 2, 3,  whether one of the numhers tly1 :i::4 is a 

s4.uare x2. By 1hc unit 1hcorem this is bound !0 happen, with 1he plus sign. However, 
for fi,;ed y, let preference be given 10 the minus sign. Then 1hc tir.;1 case, in this 

order. where dyf ,=. 4 =.(;,gives lhe fundamental unite, = (x, + y, Jd)/2. 

Exercise 3. The I.fa.Ute of HastinJ(s (Oc1oher 14. 1()66). 

"Thi.: men of Harold �tood well together, as their woni was. and fonned thirt..:en 
s4uares, wi1h a like number of men in every square thereof. and woe to 1hc hardy 
Norman who ventured to enter their redoubts: for u single blow of u Saxon war­ 
h.itched would break his lance and cut through his coat of mail.. When Haro!d 

threw himself into the fray the Sa,;ons were one mighty square of men. shouting the 

battle-cries, ·ut �•. 'Olicros1;e !', 'Godemile ! '," IFic!itious historical text, following 

e.�...cnlia!ly problem no. 129 in: H.E. Dundem:y, Amusmu'llt.f in Matlu:matio, !9!7 

(Dover rcprinL., 1958 and 1970).) 

Question. How many troops doe� this suggest Harold II had a! 1he baUle of Ha�lings? 

Exercise 4. Lt:1 ( be a primitive p-th 

that Z[i;I• = (OZ(( +C1}*. Show 

if p=5. 

of unity, p an odd prime number. Show 

=(±{1(1+()"10st <5,nEZ), 

Exercise S. Le1 ( be a primitive m-th root of unity, m �].Show 1hat lhe numbers 

�  for (k,m) = I are units in the ring of integers or the field Q({). Thesubgroup 

of the grour of uniL'! they generate i,; ca!led the group of cyclotumic units. 

Exercise 6. Let K be a totally real number field, i.e., X = Hom(K .C) = Hom(K. R). 

and lei T be 11 proper noneJ1Jply .,uhscl of X. Then there exis1s a uni,r , $3lisfying 

0 <re< I for re T. and H > I for r rf; T. 

Hint: Apply Minkowsld.:r.lank:c point theorem to the uni1 l:micc in 1racc-:t.Cro spate. 

 

 

 

 

§ 8. Extensions of Dedekind Domains 

 
Having studied the ideal class group and the group of units of the ring OK 

of integers of a number tlcld K, we now propose to make a first survey of 

the set of prime ideals of OK. They are oflen referred to a� the prime ideals 

of K - an imprecise manner of speaking which is, however. not likely to 

cause any misunderstanding. 

Every prime ideal ):If- 0 of OK contains a rational prime number p (see 

§3. p. 17) and is therefore a divisor of the ideal JJOK. Hence the question 

arises as to how a prirne number p factors into prime ideals of lhe ring OK. 

We treat this problem in a more general context, staning from an arbitrary 

Dedekind domain oar the base instead of Z, ,md taking im;reud of OK the 



integral closure O of o in a finite extension of its field of fractions. 
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(8.1) Proposition. Leto be a Dedekind domain with field of fractions K, lei 

LI K be a finite extension of K and O tiJe integral clomre of o in L. Then0 

i.� again a Dedekind domain. 

 

Proof: Being the integral closure of o, 0 is integrally closed. The fact that 

the nonzero prime ideals \l) of O are maximal is proved similarly as in the 

case o = Z (see (3.1)): p = \l) n o is a nonzero prime ideal of o. Thus 

the integral domain C'J/� is an extension of the field o/p, and therefore has 

itself to be a field. because if it were not. then it would admit a nonzero 

prime ideal whose intersection with o/p would again be a nonzero prime 

ideal in o/p. It remains to show that O is noetherian. In the case that is of 

chief interest to us, namely. if LI K is a separable extension. the proof is 

very easy. Let a1,  , O.n be a basis of LI K contained in ('), of discriminant 

d = d(a1, an), Then d -=I=- 0 by (2.8), and (2.9) tells us that O is 

contained in the linitely generated a-module oa1/d +  • + oa11/d. Every 

ideal of O is also contained in this finitely generated c-module, and therefore 

is itself an a-module of finite type, hence a fortiori a finitely generated C'J­ 

module. This shows that O is noetherian, provided LI K is separable. We 

ask the reader's permission to content ourselves for the time being with 

this case. We shall come hack to the general case on a more convenient 

occasion. In fact, we shall give the proof in a more general framework 

in 9 12 (see (12.8)). □ 
 

For a prime ideal p of o one always has 

pO,<O. 

In fact, let Jf E p "- p2 (p -=I=- 0), so that no= pa with pf a, hence p+a = o. 

Writing 1 = h + s. with h E p and s E a, we find s ff:. p and sp £ pa = rr o. 

If one had pO = 0, then it would follow that sO = spO <; rrO, so that 

s = .rrx for some x E On K = o, i.e., s E p, a contradiction. 

A prime ideal p -=I=- 0 of the ring o decomJXlses in ('J in a unique way into 

a product of prime ideals, 

pO � <µ\' . ,µ;, . 

Instead of p(') we will often write simply p. The prime ideals 'l]; occurring in 

the decomposition are precisely those prime ideals ,,P of O which lie over p 

in the sense that one has the relation 

p = \l)no. 

This we also denote for short by \l) Ip, and we call � a prime divisor of p. 

The exponent e; is called the ramification index, and the degree of the field 

extension 
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is called the inertia degree of ip; over p. If lhc extension LI K is separable, 

the numbers Ci, j; and the degree n = LL  K] are connected by the 

following law. 

 

(8.2) Proposition. Let l IK be separable. Then we have the fundamental 

identity 

Leif;=n. 
i=I 

 

Proof: The proof is based on the Chinese remainder theorem 

0/pO ;a (I)0/'P;'. 
i:I 

0/pO and 0/�? are vector spaces over the field K = o/p, and it suffices 

to show that 

dim,..(OipO) = ll and dim.,(0/1l('} = e;f;. 

In order to prove the first identity, let w1, .... rv,,, e O be representatives 

of a basis W 1, ... , Wm of O /pO over IC (we have seen in the proof of (8.1) 

that O is a finitely genera1ed a-module, so certainly dim�•(O/pO) < oo). 
his sufficiem to show 1ha1 w1, ... , (J)m is a basis of LIK, Assume the 

W1•...• Wmare linearly dependent over K. and hem.:e also over o. Then 

there are elements a1•... , am E o nm all zero such that 

Consider lhe ideal a = (a1..... «m) of o and find a E a I sm.:h that 

a(/. a-•p, hence aa %. p. Then the clemems aa1.. . Odm lie in o, but not 

all belong lO p. The congruence 

aa1w1 + ·+ aamWm: 0 mod p 

thus gives us a linear dependence among the o,i1•..., aim over K, a contrn­ 

dlction. The W1, ...• Wm are therefore linearly independent over K. 

In order to show that the w; arc a basis of LIK, we consider the o­ 
modules M = ow1 + •·· + ow111 and N = 0/M. Since ('.J = M + pO, 

we have pN = N. As LIK is separable, 0. and hence also N, arc finitely 

generated o-modules (see p. 45). If a1..... asis a system of gcneralors 
of N. then 

a1=La,jaj  fora1'jEp. 

J 

Let A be the matrix (aij) - I, where I is the unit matrix of ranks, and let 

8 be lhc adjoint matrix of A. whose entries arc the minors of rank (s - I) 



1
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of A. Then one has A(cr1, ... , a_1f = 0 and BA= di, with d = det(A). 

(see (2.3)), Hence 

0 = BA(a a.,)
1 = (dct1, ... da. 

1 

and therefore dN = 0, i.e., dO ::; M = ocv1 + ··· + Ow111. We have 

d -=I= 0, because expanding the determinant d = det((a;;) - /) we find d = 
(-I}' mod p because a11 E p. It follows that L = dL = Kw1 +  + Kcvm. 

cv1,  . , w111 is therefore indeed a basis of LI K. 

In order to prove the second identity, let us consider the descending chain 
 

of K-vector spaces. The successive quotients q:3/ ;q:3;1+1 in this chain are isomorphic 

to O/q:31, for if a E q:3)" "- q:3;+1
, then the homomorphism 

0------+ q:3)'/q:3;'+1
, a i-----+ aa, 

has kernel �' and is surjective because �i is the gcd of q:3;·+1 and 

(a)= aO so that q:3/ = cr:O + q:3;+1
. Since .f; = [0/�; : K], we obtain 

dim,;(q:3/ /q:3;'+1
) = ,t;- and therefore 

□ 
 

 

Suppose now that the separable extension LI K is given by a primitive 

element O E O with minimal polynomial 

p(XJ E o[X]. 

so that L = K (0). We may then deduce a result about the nature of the 

decomposition of p in O which, albeit not complete, does show characteristic 

phenomena and a striking simplicity. It is incomplete in that a finite number 

of prime ideals are excluded; only those relatively prime to the conductor of 

the ring of0] can be considered. This conductor is defined to he the biggest 

ideal J of O which is contained in o(O]. In other words 

Since O is a finitely generated o-module (see proof of (8.1 )), one has -8 -1- 0. 

(8.3) Proposition. Let p be a prime ideal of o which is relatively prime to the 

conductor:S ofo[0], and let 
 



48 (J1.aptcr I. Algebraic Integers 

 

 

be rhe focrorization ofrhe pnlynomfol f,(X) = p(X) mod pinto irreduc:ibles 

'p;(X) = Pi(X) mod p overthe residue class fieldo/p, with all p,(X) € o[X] 

monic. Then 
 

are rhe different prime idea/.s of O :1bove p. The inertia degree Ji of�; i.�the 

degree of"p;(X), and one ha.� 

p = >+n'I''I 

Proof: Writing 0' = oLOJ and O = o/p, we have a canonical isomorphism 

0/pO ;; O'/pO' ;; o(XJ/(p(X)). 

The tirs1 isomorphism follows from lhe relative 11rimali1y pO + 3" = 0. As 

� s; O', it follows that O = pO+O', i.e., the homomorphism O'--,.0/pO 
is surjec1ive. lt has kernel pO n O', which equals pCJ'. Since (p. �no) = I. 
it follow, that pO n O' � (p + ,\')(pO n 0') � pO'. 

The second isomorphism is deduced from the surjective homomorphism 

c,(XJ -  o[Xi/(p(X)) 

ilskernel is the ideal generated by p and p(X), and in view of O' =0(8) = 
o(Xj/(p(X)), we ha,c O'/pO' ;; ofXl/(p(X)). 

Sim:e "p(X) = n�=I "ji;(X)"•, rhe Chinese remainder lheorem linally gives 

1hc isomorphism 

o[XJ/(iitX)) ;; E!,o[Xl/(p,(X))'' 
i=l 

This shows that the prime ideals of the ring R = O!X] /('p(X)) are the 

principal ideals (/J;) generated by the 'p;(X) mlXl 'p(X), for i = I,  ., r. 

that the degree IR/Cji,): B] equals the degree of the polynomial 'p,(X), and 

tha1 

(Ol =<ii)= no,,J''. 
i=I 

In view of lhc isomorphism OfXl/("p(X)) � OfpO, /(X) 1-,J- /(0). the 

same situation holds in 1hc ring O =0 j'pfJ. Thus lhc prime ideals �; of 

0 correspond to the prime ideJls ("p,-), and they are 1he prindpal ideals 

generated by the p; (0) moJ ))0. The degree [ c5/�, : Bl is the degree of the 

polynomial "p;(X), and we have (0) = n�=1i_p;•. Now let q.:3; = p0+p;(0)(') 

he thi.: preimagc of i,p, with respt:Cl to the canonical homomorphism 

o-o;po. 
Then 1+!,·, for i = I.  . , r, varies over the prime ideals of O above p. 

/1 = I 0/�; : o/p) is the degree of the JX)lynomial /J;(X). Furthcnnore 13? 
is the preimage of�? (he0tuse e; = #I$" IVE N}), and pO 2 n;-1.-.P?' 

-�O that po1n;..,.,1J? and therefore pO = n;·=.11:· because Lt•;/;= II. 

D 



1 

fj8. Extensions of Dedekind Domains 49 

The prime ideal pis said to split completely (or to be totally split) in L, 

if in the decomposition 

p = q3�1 . q3�•,. 

onehasr = n = !L: KJ, so that e; = f; = 1 for all i = I.  ,r. pis 

called nonsplit, or indecomposed, if r = I, i.e., if there is only a single 

prime ideal of L over p. From the fundamental identity 

 

r,e,fi�n 
i=I 

we now understand the name of inertia degree: the smaller this degree is, 

the more the ideal p will be tend to factor into different prime ideals. 

The prime ideal q:l, in the decomposition p = n;·=I qJ;" is called 

unramified over o (or over K) if e1 = I and if the residue class field 

extension 0/q:lilo/p is separable. If not, it is called ramified, and totally 

ramified if furthennore Ji = I. The prime ideal p is called unramified if 

all q}; are unramified, otherwise it is called ramified. The extension LIK 

itself is called unramified if all prime ideals p of K are unramilied in L 

The case where a prime ideal p of K is ramified in L is an exceptional 

phenomenon. In fact, we have the 

 

(8.4) Proposition. If L K is separable, then there,ire only finitely many prime 

ideals of K which are ramified in L. 

 

Proof: Let O E O be a primitive element for L, i.e.. L = K(0), and let 

p(X) E o[XJ be its minimal polynomial. Let 

d = d(l,0.  , 0n-l) = n(0; - 0 )
2 E o 

 
be the discriminant of p(X) (see §2, p. 11). Then every prime ideal p of K 

which is relatively prime to d and to the conductor J of o[O J is unramified. 
In fact, by (8.3), the ramincalion indices ei equal I as soon as they are equal 

to I in the factorization of "p(X) = p(X) mod pin o_/p, so certainly if "p(X) 

has no multiple roots. But this is the case since the discriminant d = d mlXI p 

of p(X) is nonzero. The residue class field extensions 0/q};lo/p are 

generated by iJ = fJ mod �i and therefore separable. Hence p is unramilicd. 

0 

 
The precise description of lhe ramified prime ideals is given by the 

discriminant of 01o. It is defined to be the ideal iJ of o which is generated by 

the discriminants d(w1,  , wn) of all bases w1,  .,wn of LIK contained 
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in 0. We will show in chapter Ill, *2 that the prime divisors of U are exactly 

the prime ideals which ramify in L. 

 

Example: The law of decomposition of prime numbers /J in a quadratic 
number field Q(,JQ) is intimately related to Gauss's famous quadratic 

reciprocity law. The latter concerns the problem of integer solutions of the 

equation 

x
2
+hy=a, (a,hEZ). 

the simplest among the nontrivial diophantinc equations. The theory of this 

equation reduces immediately to the case where b is an odd prime number 

p and (a,p) = I (exercise 6). Let us assume this for the sequel. We are 

then facing the question as to whether a is a quadratic residue mod p. 

i.e., whether the congruence 

x2 = a mod p 

does or docs not have a solution. In other words. we want to know if 

the equation _f2 = ii, for a given element a = a mcxl p E F;,, admits 

a solution in the field FI' or not. For this one intrcxluces the Legendre 

symboJ (%), which, for every rational number a relatively prime top, is 

defined to be (_*) = l or -1, according as x
2 == a mod p has or docs not 

have a solution. This symbol is multiplicative, 

(�)�(�)(%) 
This is because the group IF;, is cyclic of order p-1 and the subgroup IF;,2 of 

squares has index 2, i.e., F;1;F;,2 
�  Z/22. Since(�)= I<===;,, a E 11<';,2, 

one also has 
p(a)= a"-" mod p. 

In the case of squarefree a, the Legendre symbol ( %) bears the following 

relation with prime factorization. (*) = I signifies that 

x2 
- a-= (x - i:t)(x + a) mod p 

for some a E 2. The conductor of 2/�} in the ring of inicgers of Q( ./a) is 

a divisor of 2 (see S 2, exercise 4). We may therefore apply proposition (8.3) 

and obtain the 

 

(8.5) Proposition. For squarefreea and (p, la) = I, welwvctheequivalence 

(�)=I {::::::::> p istotallysplitinQCJO). 
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For the Legendre symbol, one has the following remarkable law, which 

like none other has left its mark on the development of algebraic number 

theory. 

(8.6) Theorem (Gauss's Reciprocity Law). For two di.�tinct odd prime 

numbers f <md p, the following identity holds: 

£- )(I-'.) =(-1)--Y,_--,--,,,'----_ 

p I 

One also has the two "supplementary theorems" 

p(-') = (-1) I�';' , p(2) = (-1) 2�c'. . 

Proof: (7f") = (-1)9 mod p implies(�)=(-!)� since pf 2. 

In order to determine ( f,), we work in the ring Zf il of gaussian integers. 

Since (I +i)2 = 2i, we find 
 

and since (I +i)1' = 1 +i" mod p and ( fi) = 29  mod p, it follows that 

({
2

) 
)

(I +ili---,
'
-
"

-- = I +i(-1)---
,
Y
, 

-
' 

mod p. 

From this, an easy computation yields 

([) =(-1)"""4 modp,  resp. (}) = (-l)t¥ mod p, 

if P;  
1 

is even, resp. odd. Since9 = P;  
1 
� = P;  

1 
�, 

deduce ( fi) = 

In order to prove the first formula, we work in the ring?.[(], where ( is 

a primitive £-th root of unity. We consider the Gauss sum 
 

and show that 

 

( 



52 Chapter L Algebraic Integers 

 

For this, let a and h vary over the group (Z/C£)*, put c = ah 1 and deduce 

from the identity ( 7) = (�) that 
 

= I:(�)I:,h(,-<)+I:(�). 
,t-1 £.  /, /, £ 

Now Le(7) = 0, as one secs by multiplying lhe sum with a symbol ( f) = 
-1,  and putting�= ,,·-1 gives Lhr;l>(<·-I) =� +�2 +.  + �f-t = -l. 

from which we indeed find that 

(=f )r' = H)i-1) H- I�e. 

This, together with the congruence ( i) = t�  mod p and the identity 

(=t) = (-l)r_,.i, implies 

r:l' = r(r2)� = r(-1)9 Si (*)mod p. 

On the other hand one has 
 

so that 

r(D � r(-IJ'f s-' (%)mod p 

Multiplying by r and dividing by ±f yields the claim. □ 

 
We have proved Gauss's reciprocity law by a rather contrived calculalion. 

In § IO, however, we will reL:ugni:u: the lruc reason why it hulds i11 the law 

of decomposition of primes in the field of £-th roots of unity. The 

Gauss sums do have a higher theoretical  though, as will become 

apparenl later (see VU, S2 and S6). 

 

Exercise l. lf o. and. b arc ideals of o, then one has et = et O n o and 

alb{===} uOlbO 

Exercise 2. For 
conductor ;s- = lu E 

ideal 21 of O. there exists a H E O such th<1t the 
olA]} is prime to 21 and such that L = K (A). 

Exercise 3. If a prime ideal p of K is totally split in two sep<1rahle extensions LI K 
<1nd L'IK, then it is also totally split in the composite extension. 
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Exercise 4, A prime ideal p of K is totally split in the separable extension LIK if 

and only if it is totally split in the Galois closure NIK of l, IK. 

Exercise 5. For a number field K the statement of proposition 

prime decomposition in the extension K(0) holds for all prime 

com.:cming the 

pf(O:O[RI). 

Exercise 6. Given a positive integer h > I, an 

quadratic residue mod h if and only if it is a 

divisor p of h, and if a= I mod 4 when 41h. 

a relatively prime lo h is a 

residue modulo each prime 

resp. a= I mod 8 when Slh. 

Exercise 7. Let (a,p) =land av=r,, mod p, v = I,  �-1, 0 < r,, < p. T �en 

t.he r,, give a permutation TC of the numhers I. . . , p - I. Show that sgn TC = ( 1//). 

 

Exercise 8. Let iln =�•where r = 
1 \./5, p' = l- ./5 (a,, is the 11- 

th Fibon,it:ci number). If pis a prime number cf. 2,5, then one has 

ap = ( j) mod p. 

 

Exercise 9. Study the Legendre symbol ( ¾) as a function of p > 3. Show that the 

property of 3 being a quadratic residue or nonresidue mod p depends only on the 

class of p mod 12. 

Exercise IO. Show that the numher of solutions of x2 = a mod p equals I + ( fJ). 

Exercise 11. Show that the number of solutions of the congruence ax2 + hx + c = 
0 mod p. where (a,p} = 1,equals I+ (/)

2 4
 ac). 
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The question of prime decomposition in a finite extension LI K takes 

a particularly interesting and important tum once we assume LI K to be a 

Galois extension. The prime ideals arc then subject to the action of the Galois  

group 

G � G(LIK). 

The "ramification theory" that arises from this assumption has been intro­ 

duced into number theory by D,ivw HILBERT (1862-1943). Given a in the 

ring CJ of integral elements of L, the conjugate aa, for every a E G. also 

belongs to CJ, i.e., G acts on 0. If 'l3 is a prime ideal of CJ above p, then 

so is a,P. for each a E G, because 



a,P no= a(,P no)= ap= p. 

The ideals a,P, for a E G, are called the prime ideals conjugate to ,P. 
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(9.1) Proposition. The Galois group G acts transitively on the set of all prime 

ideals 1,pofO lying above p, i.e., the.�e prime ideals are al/ conjugates of each 
other. 

 

Proof: Let 13 and >..JJ' be two prime ideals above p. Assume >..JJ' ::/= a\_}] for 

any a E G. By the Chinese remainder theorem there exists x E Osuch that 

xa==Omo<lW' and x==lmoda$ forall uEG. 

Then the nonn NL1K(X) = nf1E(i ax belongs to�/ n O = p, On the other 

hand, x ¢ a� for any a E G, hence ax¢� forany a E G. Consequently 

n,-cG ax¢� no= p, a contradiction. 0 

 

(9.2) Definition. If,P is a prime ideal of O. then the subgroup 

G'Jl�{acGia'lJ�'P) 

is ca/led the decomposition group of$ over K. The fixed field 

Z'l-l={xELlax=x  forallaEG,,p) 

is called the decomposition field of',}} over K. 

 

The decomposition group encodes in group-theoretic language the number 

of different prime ideals into which a prime ideal p of o decomposes ln CJ. 

For if q3 is one of them and a varies over a system of representatives 

of the cosets in G/Gr+i, then aq:3 varies over the different prime ideals above 

p, each one occurring precisely once, i.e., their number equals the index (G: 

G'l-J). In particular, one has 

G,:i, = 1 {::::::=;> Z13 = L {=::=:, pis totally split, 

G'l-l = G {::::::::} Z<:JJ = K �  p is nonsplit. 

The decomposition group of a prime ideal a q3 conjugate to q3 is the 

t:Oil_jugale- .-;ubgmup 

Ga'l-J = a G,:pa-1
. 

In fact, for r E G, one has the equivalences 

t"EGa'l-J {::::::::} ral.JJ=al.JJ {::::::::} a-1,al.JJ=I.JJ 
 

 

Remark: The decomposition group regulates the prime decomposition also 

in the case of a non-Galois extension. For subgroups U and V of a group G, 

consider the equivalence relation in G defined by 

a ~ r,' {::::::::} a'=  l/OV  for u EV, V E \/. 
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The corresponding equivalence classes 

UaV=\uavluEU, vEV} 

are called the double cosets of G modd U, V. The set of these double cosets, 

which form a partition of G, is denoted U\G/V. 

Now !cl LI K be an arbitrary separable extension, and embed it inlo a 
Galois extension NIK with Galois group G. In G, consider the subgroup 

H = G(NIL). Let p be a prime ideal of Kand Pp the set of prime ideals 

of L above p. If 11 is a prime ideal of N above p, then the rule 

H\G/G,v---+ Pp, HaG,v i-------+ a11nL. 

gives a well-defined bijection. The proof is left to the reader. 

In the Galois case, the inertia degrees f1, . , _t;. and the ramification 

indices e1, . . , er in the prime decomposition 

p = 11�1 -11�' 

of a prime ideal p of K are both independent of i. 

f'i = " " " = f,. = f,  CJ = • " " = e,. = ,.; . 

In fact, writing 11 = 111, we find 11; = a;11 for suitable a; E G, and the 

isomorphism a; : (') --+ (') induces an isomorphism 

0/11 :::_,.. O/a;11, a mod 11i-------+ aia mod ai11, 

so that 

J, ~ [ 0/a,!J): o/p] ~ [ 0/!J): o/p].  ; ~ I. 

Furthermore, since a; (pO) = pO, we deduce from 

!JJ"lpO a,(!JJ")la,(pO) (a,!J)J"lpO 

the equality of thee;, i = I, r. Thus the prime decomposition ofp in C'J 
takes on the following simple fonn in the Galois case: 

p~(l)a!JJ)', 

where a varies over a system of representatives of G /Gr;µ. The decomposi­ 

tion field Z,,p of 11 over K has the following significance for the decompo­ 

sition of p and the invariants e and f. 

 

(9.3) Proposition. Let 11z = 11 n Z'+l be the prime ideal of Zti below q]. 

Then we have: 

(i) 11z is nonsplit in L, i.e., qJ is the only prime ideal ofl above11z­ 

(ii) 1J over Z<JJ has ramification index e and inertia degree f. 

(iii) The ramification index and the inertia degree of111. over K both equal I. 
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Proof: (i) Since G(LIZ,:p) = G<,p, the prime ideals above 'lJz are the a'l], 

fora E G(LIZ13), and they are all equal lO �. 

(ii) Since in Lhe Galois case, ramification indices and inertia degrees are 

independent of the prime divisor, the fundamental identity in this case reads 

n =e.fr, 

wheren :=#G,r = (G: G,:p). Weseethereforcthat#G,:ii = [L: Z,:µ] = ef. 

Let e', resp. e'', be the ramification index of I'.;) over Z<µ, resp. of 'l]z over K. 

Then = q:1�' ... in Z,:p and '137 = 'l]c' in L, so that p = q:1,•,, .,, .. , i.e., 

e =   One also obviously gets the analogous identity for the inertia 

degrees f = f'f''1. The fundamental identity for the decomposition of q:Jz 

in L then reads [L : Zw] = e'f', i.e., we have e'f' = ef, and therefore 

,'�,,r�1.,"�r�1. □ 

 
The ramification index e and the inertia degree f admit a further interesting 

group-theoretic interpretation. Since a O = 0 and a'l] = qJ, every a E G'l3 

induces an automorphism 

a:O/q]----+0/'l],  amod'l3t ------ ,-aamod'l3. 

of the residue class field 0/'13. Putting K(l.p) = 0/'-P and K())) = o/p, we 

obtain the 

 

(9.4) Proposition. The extension K('l]) IK(p) is nomrnl and ;.1dmits 11 surjective 

homomorphism 

 

Proof: The inertia degree of '-Pz over K equals I, i.e., Z<µ has the same 

residue class field K())) as K with respect to p. Therefore we may, and 

do, as;o;un1e that Zw = K, i.e., Gw = G. Let 0 E ('J be a n:-:prt:senlalive 

of an element 0 E K('-l}) and /(X), resp. jf(X), the minimal polynomial 

of(} over K, resp. of 0 over K(p). Then 0 = 0 mod l.p is a zero of the 

polynomial _f(X) = /(X) mod p, i.e., ;if(X) divides .f(X). Since LIK is 

nonnal, f(X) splits over O into linear factors. Hence .f(X) splits into linear 

factors over K('l]), and the same i;o; true of jf(X). In other words, K(V')IK(P) 

is a normal extension. 

Now let 0 be a primitive element for the maximal separable subextension 

of K('l])lk(p) and 

a c G(K(')J)IKIPI) � G(K(P)lil)IK(PJ) 
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Then aiJ is a root of if(X), and hence of J(X), i.e., there exists a zero(}' 

of f (X) such that 0' = a 0 mod qJ. O' is a conjugate of O, i.e., 01 = o 0 

for some o E G(LIK). Since oO = rr0 mod >.p, the automorphism o is 
mapped by the homomorphism in question to rJ. This proves the surjectivity. 

□ 

 
(9.5) Definition. The kernel /,ll £ G'll of the homomorphism 

G� -  G(K(']'.l)IK(p)) 

is called the inertia group ofqJ over K. The fixed field 

T<p={xELlax=x  forallaE/,:p} 

is ca/led the inertia field ofqJ over K. 

 

This inertia field T,p appears in the tower of fields 
 

and we have the exact sequence 
 

Its properties arc expressed in the 

 

(9.6) Proposition. The extension Tq,IZq, i.� normal, and one ha.� 
 

If the residue field extension K(q]) IK (p) is separable, then one has 
 

In this case one finds for the prime ide;li '-PT of T;p below q3: 

(i) TI,e ramification index ofq] over '-P·r is e and the inertia degree is I. 

(ii) The ramification index of!,pr over!,pz i.� I, and the inertia degree i.� f. 

 

Proof: The first two claims follow from the identity #G,+l = e.f. So we only 
have to show statements (i) and (ii). Using the fundamental identity, they all 

follow from K('-Pr) = K(�). As the inertia group f.:p of� over K is also the 

inertia group of qJ over Tq,, it follows from an application of proposition (9.4) 

to the extension LIT,:µ that G(K(!,p)IK('f.lr)) = I, hence K(!,pr) = K(!,p). □ 
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In the diagram 

K 
 

we have indicated the ramification indices of the individual tield extensions 

on top, and the inertia degrees on the bottom. In the special case where the  

residue field extension K(qJ)IK(p) is separable we find 

!�; = I {=::} T,11 = l {::::::::} p is unramiiicd in L. 

In this case the Galois group G(K(q,})IK(p)) � G,,p of the residue class field 

extension may be viewed as a subgroup of G = G(LIK). 

 

Hilbert's ramification theory, with its various refinements and generaliza­ 

tions, belongs naturally to the theory of valuations, which we will develop 

in the next chapter (see chap. 11, §9). 

 

Exercise 1. If /.IK is a Galois extension of algebraic number fields v,ith noncyclic 

Galois group, then there are at most finitely many nonsplit prime ideals of K. 

Exercise 2. If LI K is a Galois extension of algebraic number fields, and � a prime 

ideal which is unrarnitied over/<. (i.e., p = 1,Pn K is unramificd in/.), then there is 
one and only one automorphism ,p,.p E G(l,IK) such that 

ip,_pa=a'1mod� forallaEO, 

ft is called the Frobenius automorphism. The dcrnmpo­ 

and ip13is a generator of G,1:.1- 

Exercise 3. Let LI K be a solvable e:dension of prime degree p (not necessarily 

Galois). If the unramificd prime ideal p in L has two prime factors ilJ and 11}' of 
degree 1, then it is already totally split (theorem of F.K. SCHMIDT). 

Hint: Use the following result of GAI.OIS (sec [75], chap. II, § 3): if G is a transitive 

solvable pennutation group of prime degree p, then there is no nontrivial pem1utation 

o E G which fixes two distinct letters. 

Exercise 4, Let L IK be a finite (not necessarily Galois) extension of algebraic number 

fields and NIK the nonnal closure of LIK. Show that u prime ideal p uf K is totally 

split in L if ,md only if it is totally split in N. 

Hint: Use the double cosct decomposition H\G/G13, where G = G(NIK). H = 

G(NIL} and G'-P is the decomposition group of a prime ideal� over p. 
 
 

 

§ 10. Cyclotomic Fields 

 
The concepts and results of the theory as far as it has now been 

developed have reached a degree of abstraction which we will now balance 
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by something more concrete. We will put the insights of the general theory 

to the task and make them more explicil in the example of the n-th 

cyclotomic field Qi((), where ( is a primitive n-th root of unity. Among 

all number fields, this !ield occupies a special, central place. So studying it 

does not only furnish a worthwhile example but in fact an essential building 

block for the further theory. 

It will be our first goal to determine explicitly the ring of integers of the 

field Q((). For this we need the 

 

(10.1) Lemma. Let 11 be a prime power f 11 and put A = 1 - I;. Then the 

principal ideal (A) in the ringo of integer.� ofQ(l;) is 11primc ideal of degree I, 

and we /Jave 
 

Furthennore, the basis l, (, , 1;11-1 o[Q(()IQ has the discriminant 

d(l,l;, 1;11-
1)=±£"'. s=f"-1(vf-v-l). 

 
Proof: The minimal polynomial of ( over Q is the 11-th cyclotomic poly­ 

nomial 
 

Putting X = I, we obtain the identity 
 

 

But I - (g = s11(1 - (), for the algebraic integer Ei: = t--=-z- 
1 + ( + •· + (g-l_ If 1( is an integer such that gg' = I mod  then 

 
1 

1-l; 1-((1:)1: 
�=�=I+I;'�+   +((g)g'-i 

 

is integral as well, i.e.. Fg is a unit. Co�sequently £ = e(l - l;)'i'Wl, with 

the unite= n�F:g, hence £0 = (A)IO(t'l. Since IQ((): Q] = ip(r), the 

fundamental identity (8.2) shows that (A) is a prime ideal of degree I. 

Let ( = (1, .  . r,1 be the conjugates of (. Then the cyclotomic 

polynomial is ¢n(X) = nf,...1(X -(1) and (sec §2, p. 11) 

 

±d(l,(. ,J-I) � n ((,-(;) �n,t,;(,,) � Nc,md</>;(n) 
i#-j i=I 
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Differentiating the equation 
 

and substituting t; for X yields 
 

with the primitive £-th root of unity�= t;.f''-
1
• But NQU:)IQ(i; - I)= ±t, 

so that 

NQ(OIQ(� -   I)=      N.:,;,(01(;(�  -   1t•-l  = ±£1'''  I 

Observing that ( •l has norm ±1 we obtain 

 □ 
 

 
The ring of integers of IQ(() is now determined, for arbitrary n, as follows. 

 

 
(10.2) Proposition. AZ-basis of the ring o of integers ofQ(O is given by 

I,(, .... ('1 1
. withd = tp(n), in other words. 

o=Z+Z(+  +zt;d-l=Zi(J. 
 

 
Proof: We first prove the proposition in the case where n is a pnme 

power ev_ Since d(I,(, .......... t'1-
1) = ±f', (2.9) gives us 

 

Putting).= I - lemma (10.1) tells us that o/>..n = ?.ff?,, so that 

o = Z + Ao, and 

Ao+Z[(J=o. 

Multiplying this by A and substituting the result Ao= A2o + i,Z[t;], we 

obtain 

Iterating this procedure, we find 

A'o+Zr(J=o fora/I t;::'.:I. 
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Fort = s r.p(C) this implies. in view of£ o = ),._l9ti''lo (sec (10.1)). that 

In the general case, let n = €'(1  €�'. Then (; = 

root of unity, and one has 

is a primitive t:;' -th 

 
 

 
and Q:((1) • Q((i-l) nQ((i) = Q. By what we have just seen. for each 

i = I,  , r, the elements I,(;.  . <t-1
, where d; = form an 

integral basis ofQ((; )IQJ. Since the discriminants d(l. (;,  = ±(' 
are pairwise relatively prime, we conclude successively from that the 

elements (/1 
•• ?;/', with j; = 0. d; - 1, fom1 an integral basis of 

Q(OIQ, But each one of these elements is a power of C. Therefore every 

a E o may be written as a JX!lynomial a = f(() with coefficients in Z. 

Since ( has degree rp(/l) over Q, the degree of the polynomial f(() may be 

reduced to r.p(11) - I. In this way one obtains a representation 

 
a =ao+a1( +  +arp(nl-l('f'(l.'}-l 

Thus I,(,  , ("'(n)-l is indeed an integral basis. □ 
 

 

Knowing that zrtl is the ring of imcgcrs of the field Q:(() we are now in 

a position to state explicitly the law of decomposition of prime numbers p 

into prime ideals of Q(n. It is of the most beautiful simplicity. 

 

 

(10.3) Proposition. Let 11 = TT// p1
'1, be the prime factorization ofn and, for 

every prime number p, let fp be lhc smallest positive integer such that 

pf,,= I mod n/p"'p. 

Then one has in Q(() the factorization 

p = ())1 ••·p,-)'f'(fl"l'J. 

 

where p1,  , p,. are di.�tinct prime ideals, ,-1.Il of degree fp- 
 

 

Proof: Since o = Zf(l, the conductor of Z[(I equals I. and we may 



apply proposition (8.3) to any prime number p. As a consequence, every p 
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decomposes into prime ideals in exactly the same way as the minimal polynomial 

¢11(X) of ( factors into irreducible polynomials mod p. Ali we have to show 

is therefore that 

¢,(X) � (p,(X)-- p,(X))"'p"''J mod p, 

where p1(X ), ... , Pr (X) are distinct irreducible polynomials over  of 

degree fr,, In order to see this, put n = pvrm. As �i, resp. 1Jf, over 

primitive roots of unity of order m, resp. p"'', the products �i r/j vary precisely 

over the primitive n-th roots of unity, i.e., one has the decomposition over o: 
 

 

Since XP''r - I=== (X - l)f'".1
' mod p, one has 1JJ = I mod lJ, for any prime 

ideal p Ip. In other words, 

¢11(X) ==' ncx -t i ) ' ( !{p ' 'P=)   ¢m(X)'l'(p'';,) mod p. 

 

This implies the congruence 

¢n(X) = <Pm(X)'f(p"I') mod p. 

Observing that /p is the smallest positive integer such that ph' = 1 mod m, 

it is obvious that this congruence reduces us to the case where p 1 n, and 

hence ip(pv1,) = l{)(l) = 1. 

As the characteristic p of o/p does not divide n, the JX)lynomials X" - I 

and nx"-1 have no common root in o/p. So X" - l mod p has no 

multiple roots. We therefore see that passing lo the quotient o ----+ o/p 

maps the group µ11 of n-th roots of unity bijectively onto the group 

of n-th roots of unity of o/p. In particular, the primitive n-th root of 

unity t modulo p remains a primitive n-th root of The smallest 

extension field of Ff' = 'll/ p'll containing it is the field because its 

multiplicative group IF>,, is cyclic of order pfi,_t. lf<'pfi, therefore the 

field of decomposition of the reduced cyclotomic polynomial 

:{!,,(X) = ,P,,(X) mod p. 

Being a divisor of X" - I mod p, this polynomial has no multiple roots, 

and if 

¢,,(X) � ji,(X)-- p,(X) 

is its factorization into irreducibles over Ff!, lhen every 

polynomial of a primitive n -th root of unity f E 

therefore fp• This proves the ptOJX)Sition. 

 

is the minimal 

Its degree is 

□ 

 



Let us emphasize two special cases of the above law of decomposition: 



§ 10. Cyclotomic Fields 63 
 

 

(10.4) Corollary. A prime number pis ramified in Q(O if and only if 

n=Omcxlp. 

except in the case where p = 2 = (4, n). A prime number p -I=- 2 i.� totally 

split in Q(O if and only if 

p= I modn. 

 

The completeness of these results concerning the integral basis and the  

decomposition of primes in the field Q(() will not be matched by our study 

of the group of units and the ideal class group. The problems arising in this 

context are in fact among the most difficult problems posed by algebraic number 

theory. At the same time one encounters here plenty of astonishing laws which 

are the subject of a theory which has been developed only recently, 

lwasawa theory. 

 

The law of decomposition (10.3) in the cyclotomic field provides the  

proper explanation of Gauss's reciprocity law (8.6). This is based on the 

following 

 

(10.5) Proposition. Let .e and p be odd prime numbers,£* = (- I) -Y- £, and 

( a primitive £-th root of unity. Then one ha.�: 

p i8 totally .�plit in Q(�)  {=:> p splits in Q(() inlo an even 

number of prime ideals. 

 

Proof: The little computation in §8, p. 51 has shown us that .e = ,2 with 

r = Lao=(Z/tzl•(�)ta, so that Q(v'F) £ Q((). If pis totally split in 

Q(,,/F), say p = p1p2, then some automorphism a of Q(() such that 

ap1 = p2 transforms the set of all prime ideals lying above p1 bijectively 

into the set of prime ideals above p2. Therefore the number of prime ideals 

of Q(O above p is even. Now assume conversely that this is the case. Then 

the index of the decomposition group Gp, or in other words, the degree 

[Zp : Ql of the decomposition Held of a prime ideal p of Q(t) over p. 

is even. Since C(Q(()IQ) is cyclic, it follows that Q(,,/F) s; Zµ. The inertia 

degree of p n Zµ over Q is I by (9.3), hence also the inertia degree 

of p n Q(./F). This implies that pis totally split in Q(./F). □ 
 

From this proposition we obtain the reciprocity law for two cxld prime 

numbers .e and p. 

-l)(P- )--(-!)!,,-.!£;.;.! 
p  £ 

( 

/-1 



 

J 

= 

= 
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as follows. It suffices to show that 
 

In fact. the completely elementary result (-=f) = (-1)� (sec �8, p.SI) 

then gives 
 

By (8.5) and (10.S), we know that ( f) = I if and only if p decomposes 

in the field Q({) of £-th root.� of unity into an even number of prime ideals. 

By ( 10.3), this number is r =£  
1 

, where f is the smallest positive integer 

such that pf = J mod  i.e., r is even if and only if f is a divisor 

of t;  
1
. But this is tantamount to the condition p(f- lJ/l = I mod £. Since 

an element in the cyclic group  has an order dividing  f � 
1 

if and only if 

it belongs to Ff, the last congruence is equivalent to ( 7) = I. So we do 

have = (1f) as claimed. 

 

Historically, Gauss's reciprocity law marked the beginning of algebraic  

number theory. ll was discovered by t,'uu,R, but first proven by GAuss. The 

quesl for similar laws concerning higher power re.�idues, i.e., the congruences 

x11 a mod p, with n > 2, dominated number theory for a long time. 

Since this prohlem required working with then-th cyclotomie field, KuMMr11's 

attempts to solve it led to his seminal discovery of ideal theory. We have 

developed the basics of this theory in the preceding sections and tested it 

,;m::ccssfully in the example of cyclotomic t!elds. The further development 

of this theory has led to a totally comprehensive generalization of Gauss's  

reciprocity law, Artin's redprocity law, one of the high points in the history 

of number theory, and of compelling chann. This law is the main theorem 

of class field theory, which we will develop in chapters IV-VI. 

 
Exercise 1. (Dirichlet's Prime Number Theorem). For every natural number n there 

arc infinitely many prime numbers f' 1 mod n. 

Hint: Assume there are only linitely many. Let P be their product and consider the 
JJ-lh cyclolomic polynomial ¢,11• Nol all numlxrs  for x e= Z, can equal J. 

Let pl<Pn(xnP) for suitahle .r. Deduce from this. (Dirichlet's prime 

number theorem is valid more for prime number\ pc= a mod n, provided 
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Exercise 2. For every finile abelian group A there exists a Galois extension LIQ 
wilh Galois group G(LIQ) � A. 

Hint: lh,e exercise I. 

l<'.xercise .t Every quadratic number field Q( ./d) is contained in snme cyclotomic 
field Q(I;,,). (,, a primitive n-th root of unity. 

Exercise 4. Describe the quadratic subfield� of Q({")IQ-. in the case where n is odd. 

Exercise 5. Show that Q(.;=T), Q(.J2), (H/=2) are the quadrntic subfields of 
Q({N)IQ forn = 2Y.q:::: 3. 

 

 

 

§ 11. Localization 

 
To "localize" means to form quotients, 1he most familiar r.:ase being the 

passage from an integral domain A to i1s field of fractions 

K = {1, j a E /\. h EA, {Oil• 

More genemlly. choosing instead of A, IOJ any nonempty S � A, {01 

whir.:h is closed under muhiplicarion. one again ob1ains a ring struclurc on 

J\S-1 =1; EK I a EA.. \'Es}. 

The most important special case of such a multiplicative subset is the 

complement S = A, p of a prime ideal p of A. In thi� case one writes Ap 

instead of As-1
• and one calls the ring Ap lhc localization of A at p. When 

dealing with problems that involve a single prime ideal p of A al a lime it is 

oflen expedient to replace A by the localization Ap. This procedure forgeli. 

everything that has nothing to do with p. and brings oul more clearly all the 

propenies cunceming p. For imaance, the mapping 

qi------ qAp 

gives a I-I-correspondence between the prime ideals q � p of A and the 

prime ideals of Ap. More generally for any multiplicative sCl S. one has the 

 

(11.l) Proposition. The mapping.,; 

qt----) qs-1 ;ind D �  0 n A 

arc muwafly inverse I-I-correspondence.�f,etwee11 the prime ideal.�q � A"S 

of A a11d che prime ideals D of AS 1. 
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Proof: If q � A " S is a prime ideal of A. then 

u,_ - q"c-l-_lq-;I q E q. s Edcj 

is a prime ideal of As-1
. Indeed, in obvious notation, the relation%� ED, 

i.e., =!fa.implies that s''aa' = qss' E q. Therefore aa' E q:_because 

s" ¢ q, and hence a or a' belong to q, which shows that � or ? belong 

to D. Furthermore one has 
q�QnA. 

since  = a ED n A implies q = as E q, whence a E q because s ¢ q. 

Conversely, let Q be an arbitrary prime ideal of As-1. Then q = D n A 

is obviously a prime ideal of A, and one has q £; A "'- S. In fact, if q were 

to contain ans ES, then we would have I = s •}ED. because+ E As-1. 

Furthermore one has 

For if TE 0, then a= T • s  ED n A= q, hence�= a} E qs-1
. The 

mappings q r-+ qs-1 and D 1--+ D n A are therefore inverses of each other, 

which proves the proposition. □ 

 
Usually S will be the complement of a union LJP"X p over a set X of 

prime ideals of A. In this case one writes 

A(X)� \f I f.gcA. g,'Omo<lpfmpcxj 

instead of As-1. The prime ideals of A(X) correspond by (11.1) 1-1 to 

the prime ideals of A which are contained in LJp.:X p, all the others are 

being eliminated when passing from A to A(X). For instance, if X is finite 

or omits only finitely many prime ideals of A, then only lhc prime ideals 

from X survive in A(X). 

In the case that X consists of only one prime ideal 1,1, the ring A(X) is 

the localization 

A,� { f I f.g EA.  g ,' 0 mod p} 

of A at p. Here we have the 

 
(11.2) Corollary. If p isaprimeideaJofA, then Ap is a local ring, i.e., Ap has 

a unique maximal ideal. namely mp = pAp. There is a canonical embedding 

A/p '-------+ A,/m,, 

identifying Ap/mp with the field of fractions of A/i.,. In p<-1.rticular, if p is a 

maximal ideal of A, then one has 

A/p" � Ap/m;  for n 2: I. 
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Proof: Since the ideals of Ap correspond 1-1 to the ideals of A contained 

in p, the ideal m11= pA11is the unique maximal ideal. Let us consider the 

homomorphism 

l: A/pn-----+ A11/m�, a mod pn i--------+ a mod m;. 

For n = I, f is injective because p = mp n A. Hence Ap/mpAp becomes the 

field of fractions of A/p. Let p be maximal and n 2-. I. For every .1· E A "'- p 

one has pn + sA = A, i.e., S = s mlXI p11 is a unit in A/pn. For n = 1 this 

is clear from the maximality of p, and for n :::: 1 it follows by induction: 

A= p11 1 +sA =} p =pA =p(pn-l +sA) ':z pn +sA =} p" +sA = !\. 

Injectivity off: let a EA be such that a Em;, i.e.. a= h/s with h E 

s ¢ p. Then as= h E p11
, so that a ."f = 0 in A/pt1, and hence ii= O in 

Surjectivity off: let a/s E Ap, a EA, s ¢ p. Then by the alxive, there 

exists an a' E A such that a = a's mod pn. Therefore a/s = a' mod pn Ap, 

i.e., a/s mod m; lies in the image off. □ 

 
In a local ring with maximal ideal m, every element a ¢ m is a unit. 

Indeed, since the principal ideal (a) is not contained in any other maximal 

ideal, it has to be the whole ring. So we have 

A*= A"'- m. 

The simplest local rings, except for fields, are discrete valuation rings. 

 

(11.3) Definition. A discrete valuation ring i.� a principal ideal domain o with 

a unique maximal ideal p -I- 0. 

 

The maximal ideal is of the fonn p = (rr) = rro, for some prime 

element Jr. Since every element not contained in p is a unit, it follows 

that, up to associated elements, Jr is the only prime element of Every 

nonzero clement of o may therefore be written as E ;rn, for some E E o*, 

and n 2-. 0, More generally, every clement a -I- 0 of the tield of fractions K 

may be uniquely written as 

a=ETCn, EEO*, nEZ. 

The exponent n is called the valuation of a. It is denoted v(a), and it is 

obviously characlCrized by the equation 

(a)= p<'(aJ_ 

The valuation is a function 

1.1: K*-----+ Z. 
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Exlcnding it to K by the convention v(O) = •Xl, a simple calculation shows 

lhat it satisfies the conditions 

v(ah) = v(a) + v(h), v(a +b) � min{ v(a), v(h)). 

This innocuous looking function gives rise to a theory which �ill occupy all 

of the next chapter. 

The discrete valuation rings arise as localizations of Dedekind domains. 

This is a consequence of the 

 
(11.4) Proposition. If o i.� a Dedekind domain, and S c:; o,  jO} is a multi­ 

plicative subset, then o s-1 is also a Dedekind domain. 

 

Proof: Let Q1 be an ideal ofos-1 and a= Qlno. Then 12{ = aS 1, because 

if :f E Ql, a E o and s E S, then one has a = -s � E Ql no=  a, so that 

Y = a - +, E as-1. As a is finitely generated, so is 2l, i.e., os-1 is noetherian. 

It follows from (II.I) that every prime ideal of os-
1
 is maximal, because 

this holds in o. Finally, os-1 is integrally dosed, for if x E K satisfies the 

equation 

xn+�xn-1+· +�=0 
S1 Sn 

with coefficients f E os-1
, then multiplying it with the n-th power 

of s = �- . Sn shows that sx is integral over o, whence sx E o and 

therefore x E os-1. This shows that os-1 is a Dedekind domain. □ 

 

(11.5) Proposition. Leto be a noetheri,m integral domain. o is a Dedekind 

domain if and only ii: for all prime ideals p -1- 0, the loca/i7.ations Op arc 

discrete valwilion rings. 

 
Proof: If o is a Dedekind domain, then so arc the localizatiom Op. The 

maximal ideal m = pop is the only nonzero prime ideal of Op. Therefore, 

choosing any TC Em "- m2, one necessarily finds (;r) = m. and furthennore 

mn = (JTn). Thus 011 is a principal ideal domain, and hence a discrete 

valuation ring. 

Leuing p vary over all prime ideals -1- 0 of o, we find in any case that 

o=nop. 
µ 

For if* E np Op, with a, hE o, then 

o={xEoi.rnEho) 
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is an ideal which c_ann�t be con�ained in any prime ideal of o. In fact, for 

any p, we may wnte h = -1;: with c E o, s ff. p, so that sa = he, hence 

s Ea " p. As a is not c_onta��ed in any maximal ideal, it follows that a= o, 

hence a= I - a Eh o, 1.e.,h E o. 

Suppose now that the Op are discrete valuation rings. Being principal ideal 

domains, they are integrally closed (see §2), so o = np Op is also integrally 

dosed. Finally, from (11.1) it follows that every prime ideal p -I- 0 of o is 

maximal because this is so in Op. Therefore o is a Dedekind domain.  n 

 

For a Dedekind domain o, we have for each prime ideal p -I- 0 the discrete 

valuation ring Op and the corresponding valuation 

Vp : K* ---- )- z 

of the field of fractions. The significance of these valuations lies in their 

relation to the prime ideal factorization. If x E K"' and 

(xl � IT p'', 
p 

is the prime factorization of the principal ideal (x), then, for each p, one has 

\!p = Vp(X). 

In fact, for a fixed prime ideal q -I- 0 of o, the first equation above implies 

(because p Oq = Oq for p -I- q) that 

xoq = (TTp''P)oq = q"•1oq = m�". 
p 

Hence indeed Vq(X) = Vq, In view of this relation, the valuations Vp arc also 

called exponential valuations. 

The reader should check that the localization of the ring Z at the prime 

ideal (p) = pZ is given by 

Z(J,J = {*Ia,h E Z, pfh}. 

The maximal ideal pZ(f') consists of all fractions a/h satisfying p 1 h, 

and the group of units consists of all fractions a/h satisfying p ah. The 

valuation associated to Z(p), 

Vp : Q  )- Z U \ooj, 

is called the p-adic valuation of Q. The valuation vp(x) of an clement 

x E Q* is given by 

vr,(x) = v, 

where x = p''a/h with integers a,h relatively prime top. 
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To end this section, we now want to compare a Dedekind domain o to 

the ring 

o(X)={{lf,gEo, g'¢0modp forpEX}, 

where X is a set of prime ideals #- 0 of o which contains almost all 
prime ideals of o. By ( 11.1 ), the prime ideals -I- 0 of o(X) are given as 

Px = po(X), for p EX, and it is easily checked that o and o(X) have the 

same localizations 

Op= o(X)px· 

We denote by Cl(o), resp. C/(o(X)), the ideal class groups of o, resp. 

o(X). They, as well as the groups of units a� and o(X)*, are related by the 

following 

 

(11.6) Proposition. There is a canonical exact .�equence 

I ---+  ---+ o(X)*-----+ EB K+ Jo;---+ Cl(o)-----+ Cl(o(X))---+ I, 
p/X 

andonehasK*/o;;::: Z. 

 
Proof: The first arrow is inclusion and the second one is induced by the 

inclusion o(X)* ----+ K�, followed by the projections K* --+ K*Jo;. If 

a E o(X)* belongs to the kernel, then a E Op for 1- X, and also for p E X 

because Op = o(X)px, hence a E np o� =  (see the argument in the 

proof of (I 1.5)). This shows the exactness at o(X)*. The arrow 

EB K�Jo; ----- + C/(o) 
p/X 

is induced by mapping 

EB O'p mod o; 1--------+ n p"p\O'p)' 

p¢X ptX 

where Vp : K*--+ Z is the exponential valuation of K associated to Op, Let 
ffip;"X aµ mod o; be an element in the kernel, i.e., 

= (a) = npv,(a)' 

p 

 

for some a E K �. Because of unique prime factorization, this means that 

vp(a) = 0 for p E X, and Vp(ap) = vµ(a) for p (/:. X. It follows 

that a E npcX o; = o(X)* and a = aµ mlXI o�. This shows exactness 

in the middle. The arrow 

Cf(o)-----+ Cf(o(X)) 
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comes from mapping a i---+ ao(X). The classes of prime ideals p E X 

are mapped onto the classes of prime ideals of o(X). Since C/(o(X)) is 

generated by these classes, the arrow is surjective. For p ¢ X we have 

po(X) = (1), and this means that the kernel consists of the classes of the 

ideals TTp¢X p''r. This, however, is visibly the image of the preceding arrow. 

Therefore the whole sequence is exact. Finally, the valuation Vp : K• ,.. Z 

produces the isomorphism K* /o; ;:: Z. □ 

 

For the ring of integers OK of an algebraic number field K, the proposition 

yields the following results. Let S denote a finite set of prime ideals of OK 

(not any more a multiplicative subset), and let X be the set of all prime 

ideals that do not belong to S. We put 

of= OK(X). 

The units of this ring are called the S-units, and the group Ctf = Cl(of) 

the S-class grnup of K. 

 

(11.7) Corollary. For the group K5 = (oft of S-units of K there i.� an 

isomorphism 

 

where r ands are defined as in§ 5, p. 30. 

 

Proof: The torsion subgroup of Ks is the group 11(K) of roots of unity 

in K. Since Cl(o) is finite, we obtain the following identities from the exact 

sequence ( 11.6) and from (7.4): 

rank(Ks) = rank(oK) + rank( EB Z) = #S +r + s - 1. 
p,c,<; 

This proves the corollary. □ 
 

(11.8) Corollary. The S-class group Clk = Cf(ok) is finite. 

 

 

 
Exercise 1. Let A be an arbitrary ring, not an integral domain, let M be 

an A-module and Sa multiplirntivcly dosed  A such that Or/:. S. In M x S 
consider the equivalence relation 

(m,s) ~ (m'.s') {==} 3s"ES such that s'1(s'm - sm') = 0. 

Show that the of equivalence classes (m,s) fonm an A-module. and that 

M --;. Ms, a f-)-  isa homomorphism. In particular, As is a ring. It is called 

the localization A   respeel to S. 
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Exercise 2. Show that, in the above situation, the prime ideals of As correspond 1-l 

to the prime ideals of A which are disjoint from 5. If pc; A <md P.1 c;  correspond 

in this way. then As/P1• is the localization of A/p with respect to the of S 

Exercise 3. Let f : M --+ N be a homomorphism of A-modules. Then the following 

conditions are equivalent: 

(i) f is injective(surjective). 

(ii) fµ: Mµ ➔ N-., is inje<.:tivc (surjcctivc) for every prime ideal p. 

(iii) fm Mm --+ Nm is injective (surjcctivc) for every maximal idea! m. 

Exercise 4. Let Sand T be two multiplicative subsets of A, and r• the image of T 

in A.1. Then one has A.w � (A.dr- 

Exercise 5. Let : A ---,. B he a homomorphism of rings and S a multiplicatively 

closed subset that f(S) c; s•. Then f induces a homomorphism A.1• ----- ),- B. 

Exercise 6, Let A he an integral domain. If the localiz11lion A1• is integral over A, 

then A.1 = A. 

Exercise 7 (Nakayama's Lemma). Let A be a local ring with maximal ideal m, let M 

he an A-module and N � M a submodule such that M / N is linitcly generated. Then 

one has the implication: 

M=N+mM ===* M=N. 
 
 
 
 

 

§12. Orders 

 
The ring OK of integers of an algebraic number lield K is our chief interest 

because of its excellent property of being a Dedekind domain. Due to 

important theoretical as well as practical circumstances. however, one is 

pushed to devise a theory of greater gencralily which comprises also the 

theory of rings of algebraic integers which, like the ring 
 

are not necessarily imcgrally dosed. These rings are the so-called orders. 

 

 

(12.1) Definition. Let K IQ be an algebraic number field of degree n. An order 

of K i.� a subring o of OK which contains an integral basis of length n. The 

ring OK is called the maximal order of K. 
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In concrete terms, orders are obtained as rings of the form 

 

where a1, ... , a, are integers such that K == Q(a1. , a,.). Being a 

submodule of the free 2-module t)K, o does of course admit a Z-basis which, 

as Qo = K, has to be at the same time a basis of K IQ, and therefore has 

length n. Orders arise often as rings of multipliers, and as such have their 

practical applications. For instance, if a1,  .• an is any basis of K IQ and 

M = Za1 + ·• • + Za11, then 

OM = ( a E K I aM � M} 

is an order. The theoretical significance of orders, however, lies in the fact 

that they admit "singularities", which are excluded as long as only Dedekind 

domains with their "regular" localizations Op arc considered. We will explain 

what this means in the next section. 

In the preceding section we studied the localizations of a Dedekind 

domain OK. They are extension rings of OK which are integrally closed, 

yet no longer integral over Z, Now we study orders. They are subrings 

of OK which are integral over Z, yet no longer integrally closed. As a 

common generalization of both types of rings let us consider for now all 

one-dimensional noetherian integral domains. These are the noetherian 

integral domains in which every prime ideal p ¥ {} is a maximal ideal. 

The term "one-dimensional" refers to the general definition of the Krull 

dimension of a ring as being the maximal length d of a chain of prime 

ideals Po� P1 �- ··�Pd, 

 

(12.2) Proposition. An ordero ofK is a one-dimensional noethcrian integral 

domain. 

 

Proof: Since o is a finitely generated Z-module of rank n = [K : IQ], 

every ideal a is also a finitely generated Z-module, and a fortiori a finitely 

generated o-rnodulc. This shows that o is noetherian. If p #- 0 is a prime 

ideal and a E)) n Z, a #- 0, then ao � p � o, i.e., )) and o have the same 

rank n. Therefore o/p is a finite integral domain, hence a field, and thus p 

is a maximal ideal. 0 

 

 
In what follows, we always let a be a one-dimensional noethcrian integral 

domain and K its field of fractions. We sel out by proving the following s1ronger 

version of the Chinese remainder lhcorem. 
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(12.3) Proposition. lfa #- 0 is an ideal oft), then 

o/a. ;:;: EB Oµ/uoµ = EB op/uop. 
p p=>ll 

 

 

Proof: Let ap = o n aop. For almost all p one has p £. a and therefore 

aop = Op, hence Clp = o. Furthermore, one has ll = np cip = np:::,a ap. 

Indeed, for any a E nv Op, the ideal b = {x E o I xa E o/ docs not belong 

to any of the maximal ideals p (in fact, one has s�a E o for any Sp '{- p). 

consequently, b = o, i.e., a=  I a En, as claimed. (II.I) implies that, 

if p 2 a, then p is the only prime ideal containing iip- Therefore, given two 

distinct prime ideals ):land q of o, the ideal ciµ+aq cannot he contained in any 

maximal ideal. whence Op+ iiq = o. The Chinese remainder theorem (3.6) 

now gives the isomorphism 

o/a � EB o/iip, 
p=>ll 

and we have o/011= Op/noµ, because P = p mod Op is the only maximal 

-�� □ 

 
For the ring o, the fractional ideals of o, in other words, the finitely generated 

nonzero o-submodules of the field of fraclions K, no longer form a group - 

unless o happens to be Dedekind. The way out is to restrict attention to 

the invertible ideals, i.e., to those fractional ideals a of o for which there 

exists a fractional ideal b such that 

ab= o. 

These fonn an ahelian group, for trivial reasons. The inverse of a is still the 

fractional ideal 

u-1={xEKlxus;o}, 

because it is the biggest ideal such that uu-1 <; o. The invertible ideals of o 

may be characterized as those fractional ideals whicl1 are ''locally" principal: 

 

 

(12.4) Proposition. A fractional ideal a of o is invertible if ,md only it: for 

every prime ideal ).l -1- 0. 

 

 

is a fractional principal ideal of Op. 
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Proof: Let a be an invenihle ideal an<l ab = o. Then I = L�=•a;h; 

wilh a; E a. hi E b, and not all a;h; E Op can lie in the maximal ideal 
pop, Suppose a1h1 is a unil in Op, Then ap = a1op because, for x e ap, 

xh1 E apb = Op, hence x = xh1(b1ai)-1a1 E a10p, 

Conversely. assume op = oop is a principal ideal apOp, ap e K', for 
every p. Then we may and do assume that ap E a. We claim that the 

fractional ideal 0-
1 = {x e K I xo s; o} is an inverse for n. If this were not 

the case, then we would have a maximal ideal p such that 00-
1 s;; p C o. 

Let a1. • .• a11 be generators of a. As a; E Op Op. we may wri1e a; = ap�• 
with h; e o. s; E o,  t,. Then s;a; e apCJ, Putting., = .{1 • • • Jn, we have 

sa, e apO for i =I, ...,11, hence Jap1a f; o and therefore .w;• e a-1. 

Consequen1\y, s = .rnp1
ap e 0-

1
0 s; p, a contradiction. D 

 

We dcno1c the group of invertiblt: ideals of CJ by J (O). It rnnt11ins the 

group P(o) of fractional principal ideals ao. a EK�. 

 
{12.5) Definition. The quoticnr group 

Pic(o) = .l(o)/P(o) 

i.� called the Picard �roup of the ring o. 

 

In the case where o is a Dedekind domain, the Picard group is nf (.:oursc 

nothing but the ideal class group CIK, In general, we have the following 

descrip1ion for J(o) and Pic(o). 

 

(12.6) Proposition. Th� correspo11denc:e a 
i.-.omorphism 

(aop) yields an 

J(o) ;a a, P(o,J. 
p 

ldcmifyit1g r/1e- .�ubgroup P(o) wi1h il.s irn,1ge in the dire,:t sum one gcu 
 

 
Proof: For every a e ./(a), Op= no1, is a principal ideal by (12.4), and we 

have Op = Op for almosl all p because a lies in only lini1ely many maximal 

ideals p. We therefore ublain a homomorphism 



./(o)-----,. EB P{op), n �  (ap). 
p 
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It is injective, for if Op = Op for all p. then as; np Op = o (see the proof 

of (11.5)), and one has to have a = o because otherwise there would exist 

a maximal ideal p such that a <;;; p C o, i.e., ap <; pop -1- Op,  In order to 

prove surjectivity, let (apOp) E ffiP P(op) be given. Then the a-submodule 

a= napOp 
p 

of K is a fractional ideaJ. Indeed, since af:'o� = 011foralmost all p, there is 

some c E CJ such that cap E Op for all p, i.e., ca<;;; np Op = o. We have to 

show that one has 

 

for every p. The inclusions; is trivial. In order to show that apop <;;; aop, let 

us choose c E o, c -I=- 0, such that cap1aq E o for the llnitely many q which 

satisfy ap'aq ¢ Oq. By the Chinese remainder theorem (12.3), we may find 

a E o such that 

a= c mod p and a E ca;
1

aqoq  for q #- p. 

Then f: =ac-1 is a unit in Op and apE E nqagOq = a, hence 

OpOp = (apE)Op � OOp. □ 

 

Passing from the ring o to its normalization 0, i.e., to the integral closure 

of o in K, one obtains a Dedekind domain. This is not all !hat easy to prove, 

however, because t'? is in general not a finitely generated o-module. But at 

any rate we have the 

 

(12.7) Lemma. Lei o be a one-dimen.�ional noctherian integral domain and 0 

its normalization. Then, foreach ideal a # 0 o[o,the quotient ()jab is :1 finitely 
generated o-module. 

 
Proof: Let a En, a# 0. Then 0/ni:1 is a quoticm of  ii thus suffices 

to show that i5/a0 is a finitely generated o-module. thi� end, consider 

in o the descending chain of ideals containing ao 

Om= (amOno,ao). 

This chain becomes stationary. In fact, the prime ideals of the ring o/ao 

are not only maxima! but also minimal in the sense that o/ao i.� a zero­ 

dimensional noetherian ring. In such a ring every descending chain of ideals 

becomes stationary (see §3, exercise 7). If the chain Clm = am mod ao is 

stationary at n, then so is the chain a.m. We show that, for this n, we have 

(J �a-no+ a:!.). 
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Lei /j = i E 6, h, c E o. Apply the descending chain condition to the 

ring 0/<-·0 and lhe chain of ideals (ll"'). where ii = a mod co. Then 

(iih) = (ah-11), i.e., we !ind some .( e o such that ah :: .wh+1 mod l'O. 

hence ( I - xa)ah Eco. and therefore 

h . h (1-xa)ah 1, 

f3 = Z.(l -xa) +fixa = +/Jxa Ea- o+aD. 

Let h be lhe smallest positive integer such that fJ E a-"o + ab. It then 

suffices 10 show that h _::: n. Assume h > n. Writing 

fi = � + mi with u E o, ii E b, 

 
we have u = ah(/1 - aU) E a"O no�  a11= tlh+l because h > 11, hence 

u = ah+tti' +au', u' Et:, ii' E 0. Substituting this into(*) gives 

f3 = �
a - 

+a(1i+ii') Ea1-1'o+a0. 

This contn1dic1s the minimality of h. So we do have b £: a "o + ai:J. 

0/aO thus becomes a submodule of the a-module (a ·"o + aO)/aO 
generated by a-" mod aO. h is 1hercforc itself a fini1ely genera1ed o-module. 

q.c.d. □ 

 
(12.8) Proposition (KRULL-AK/7.UK!). Lero be a one-dimCJJ/;ion.1/ noetherian 

integrnl domain with held of {ractior1s K. Let LI K be a Jinitc exrcn.�ion and() 

the imegr;iJclo.�ure of o in L. Then O is a Dedekind domain. 

 

Proof: The far.:ts !hat O is inicgrally dosed and that every nonzero prime 

ideal is mnximal. arc deduced a.,; in (3.1). ll remains 10 show 1hat CJ is 
noe1hcrian. Let w1•..  , r,>,, he a basis of L ]K which is contained in CJ. 

Then the ring00 = orw1•  , w,,I is a finitely genemted o-mo<lule and in 

particular is noetherian since o is nocthcrian. We argue as before that CJ0 is 

one-dimensional and are thus reduced to the case L = K. So lcl '21 be an 

ideal of CJ and a E Qt r o, a ::f:. 0: then hy the above lemma OjuO is a finitely 

generated o-mOOulc. Since o is noetherian, so is the o-submodule 

Zi./aO. and .ilso the 0-rnodulc Qt. D 

 

Remark: The above proor is taken from K,tl'L'\NSKY's book 182J (see also 

110 I I). 11 show1>al the same time 1h:.11proposition (8.1), which we had proved 

only in the 1.:a� of a separable extension LIK, is valid for general tinite 



extensions of the field of fractions of a Dedekind domain. 
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Next we want to compare the one-dimensional noetherian integral do­ 

main o with its nonnalization 6. The fact that 8 is a Dedekind domain is 

evident and does not require the lengthy proof of ( 12.8) provided we make 

the following hypothesis: 

 

(*) o is an integral domain whose normalization  is a linitely generated 

o-modulc. 

 

This condition will be assumed for all that follows. It avoids pathological  

situations and is satisfied in all interesting cases, in particular for the orders 

in an algebraic number field. 

The groups of units and the Picard groups of o and O are compared with 

each other by the following 

 

(12.9) Proposition. One has the canonical exact sequence 

I ------+  ------+ O* ------+ EBo;;o; ------+ Pic(o)------+ Pic(O) -------+ 1. 
p 

In the sum, p varies over the prime ideals -=I=- 0 of o and Op denote.� the integral 

closure of Op in K. 
 

 

Proof: If j) varies over the prime ideals of 0, we know from (12.6) that 

 

J(ol "' 

 

If p is a prime ideal of o, then pO splits in the Dedekind domain into a 

product 

i.e., there are only finitely many prime ideals of() above p. The same holds 

for the integral closure Op of Op, Since every nonzero prime ideal of Op 

has to lie above pop, the localization Op has only a finite number of prime ideals 

and is therefore a principal ideal domain (see S3, exercise 4). In view of ( 

12.6), it follows that 

P(Op) = J (Op) � EB P(Oµ) 

p::::,p 

and therefore 

1 (o) "' EB EB P(o,J "' EB P(op). 
P Pcc!P P 
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Observing that P(R) _ K*/R* for any integral domain R with field of 

fractions K, we obtain the commutative exact diagram 

I ---+ K* /o* ---+ EB K* /o; ---+ Pic(o) ---+ I 

l· , 1# 1, 
I ---+ K* ;o• ---+ EB K* ;o; ---+ Pic(O) ---+ I. 

' 
For such a diagram one has in complete generality the well-known snake 

lemma: the diagram gives in a canonical way an exact sequence 

I ---+ kcr(a)---+ ker(f!)---+ ker(y) 

� coker(a) ---+ cokcr(,8) ---+ coker(y) ---+ I 

 
relating the kernels and cokernels of a,/3,y (see [23], chap. Ill, §3, 

lemma 3.3). In our particular case, a, /3, and therefore also y, are sur:jective, 
whereas 

ker(a) = 8*Jo*  and  ker(/3) = 

 
This then yields the exact sequence 

I ---+ o* ---+ O* ---+ ---+ Pic(o) ---+ Pic(tJ) ---+ 1.  D 

 

 

A prime ideal p =I=- 0 of o is called regular if Op is integrally closed, and 

thus a discrete valuation ring. For the regular prime ideals, the summands 

in (12.9) are trivial. There are only finitely many non-regular prime 

of o, namely the divisors of the conductor of o. This is by definition 

the biggest ideal of E) which is contained in o, in other words, 
 

Since t7> is a finitely generated o-module, we have f -1- 0. 

 

 

(12.10) Proposition. For any prime ideal p -# 0 of o one has 

P f f -¢==} p is regular. 

lf1his is chc case. then p = p() is a prime ideal of() and Op= Op. 
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Proof: Assume p t f, i.e., p # f, and let t E ,f  p. Then tO £;; o, hence 

0 � 7o � Op. If m = pop is the maximal ideal of Op then, putting 

P = m n 0, P is a prime ideal of O i;uch that p i; p n o, hence p = p n o 

because p is maximal. Trivially, Op s;; Op, and if conversely Y   for 

a E b, .1· E (7,  f:j, then ta E o and t.r E o,  f:, hence ¥ = II E op. 

Therefore Op =Op.Thus, by (11.5), Op is a valuation ring, i.e., p is regular. 

One has furthennore that p = pO. In fact, P is the only prime ideal of 6 

above p. For if q is another one, then t\, = Op i; f)q, and therefore 

p = 6 n j:iop s;; o n cjoq = q. 

hence P = q. Consequently, p() = j:i", withe 2: I, and furthermore 

m =pop= (pO)op = p''op = m", i.e., c = 1 and thus p = pO. 

Conversely, assume Op is a discrete valuation ring. Being a principal ideal 

domain, it is integrally dosed, and since O is integral over o, hence a f'ortiori 

over Op, we have i) i; Let  , x,, be a system of generators 

of !he tl-module 0. We may  with a, E f), Si E o,  p. Setting 
s = s1  • s11 E o,  p, we find sx1, . E o and therefore sO £;; 0, i.e., 

s E f, IJ. It follows that p 1f. 0 

 

We now obtain the following simple description for the sum EBv o;;o; 

in (12.9). 

 

Proof: We apply the Chinese remainder theorem ( 12.3) repeatedly. We have 

(IJ o/f;::::::: ffiop/fop, 
p 

The integral closun: 8p of op possesses only the finitely many prime ideals 

that lie above pop, They give the localizations  where j:i varies over the 

prime ideals above p of the ring At the same 2>p is the localintion 

of O with respect to the multiplicative suhset O,  j:i. Since f is an ideal of(}. 

ii follows that fOp = f.:Jp, The Chinese remainder theorem yields 

Op/fDp 3: EB Op/fDp 
ji�p 

and 

(2) 8/j ;::::::: EB EB c'\)/fOp - 

P P2P 
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Passing to unit groups, we get from (I) and (2) that 

(3) (o/!)'/(o/1)' � 
 

For f £ p we now consider the homomorphism 

 

It is surjective. In fact, if F: mod ft\, is a unit in bp/f8p, then£ is a uniL in 8µ. 

This is so because the units in any ring are precisely those elements that are 

not contained in any maximal ideal, and the preimages of the maximal ideals 

of 6p/f6µ give precisely a\l the maximal ideals of Op, since f6p s; p6p. 

The kernel of i.p is a subgroup of  which is contained in Op, and which 

contains a;. It is therefore equal to We now conclude that 

o;;o� � (bp/fbp)*/(op/fop)*. 

This remains true also for p £ f because then both sides are equal to 1 

according to (12.10). The claim of the proposition now follows from (3). D 

 

 

Our study of one-dimensional noctherian integral domains was motivated 

by the consideration of orders. For them, (12.9) and (12.11) imply the 

following generalization of Dirichlet's unit theorem and of the theorem on the 

!initeness of the class group. 

 

 

(12.12) Theorem. Leto be an order in an algebraic number field K, OK the 

maximal order, and f lhe conductor of o. 

Theo the groups o}( /o* aod Pic(o) are finite aod one has 
 

# Pic(o=) 

 

�h_K� #(OK If>* , 
(a� , o')  #(a/f)' 

where h K is the class number of K. In particular, one has that 

rank(o*) = rank(o�) = r + s - I. 

 

Proof: By (12.9) and (12.11). and since Pic(oK) = C!K, we have the exact 

sequence 
 

This gives !he claim. CJ 
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The delinition of the Picard group of a one-dimensional noetherian integral 

domain o avoids the problem of the uniqueness of prime ideal decomposition 

by restricting allcntion to the invertible ideals, and thus leaving aside 

the information carried by noninvcrtibles. But there is another important 

generalization of the ideal class group which docs take inLo account all prime 

ideals of o. It is based on an artificial re-introduction of the uniqueness of prime 

decompmition. Thi.� group i.� called the divisor class group, or Chow group 

of o. Its definition starts from the free abelian group 

o;v(V) = EB Zp 
p 

on the set of all maximal ideals p of o (i.e., the set of all prime ideals � 0). 

This group is called the divisor group of o. Its elements are fonnal sums 

D = I:n,p 
p 

with np E Z and flp = 0 for almOSl all p, called divisors (or 0-cycles). 

Corollary (3.9) simply says that, in the case of a Dedekind domain, the divisor 

group Div(o) and the group of ideals are canonically isomorphic. The 

additive notation and the name of the group stem from function theory where 

divisors for analytic functions play the same role as ideals do for algebraic 

numbers (sec chap. Ill, *3). 

In order to define lhe divisor class group we have to associate to every 

/" EK� a "principal divisor" div(/). We use the case of a Dedekind domain 

to guide us. There the principal ideal (_/") was given by 

<n = n p"•'0. 
p 

where Vp : K* � ::Z is the p-adic exponential valuation associated to the 

valuation ring Op. In general, Op is not anymore a discrete valualion ring. 

Nevertheless, Op defines a homomorphism 

ordp: K* � ::Z 

which generalizes the valuation function. If f = a/h E K*, with a, h E o, 
then we put 

ordp(f) = f"v(op/aop) � foP(op/hop). 

where  denotes the length of an Op-module M, i.e., the maximal 

length strictly decreasing chain 

M = Mo � M1 ;1 · 1 Mt = 0 

of all-submodules. In the special case where Oµ is a discrete valuation ring 

with maximal ideal m, the value v = Vp(a) of a E Op, for a -f 0, is given 

by the equation 

aOp=rn''. 
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It is equal to the lcnglh of the Op-module op/mv, because the longest chain 

of submodules is 
 

Thus the function ordp agrees with the ex1xmential valuation Vp in this case. 

The property of the function ordp to be a homomorphism follows from 

the fact (which is easily proved) that the length function t0" is multiplicative 

on short exact sequences of Op-mlXlules. 

Using the functions ordp : K* ---+ Z, we can now associate to every 

element f E K* the divisor 

div(f) � Locd,(f)p, 

' 
and thus obtain a canonical homomorphism 

div: K" -----+ Div(o). 

The elements div(f) are called principal divisors. They fonn a subgroup 

P(o) of Div(o). Two divisors lJ and D' which differ only by a principal 

divisor arc called rationally equivalent. 

 

(12.13) Definition. The quotient group 

CH1(o) =Div(o)/P(o) 

is called the divisor class group or Chow group of o. 

 
The Chow group is related to the Picard group by a canonical homomor­ 

phism 

div: Pic(o)-----+ CI/1(o) 

which is defined as follows. If a is an invertible ideal, then, by ( 12.4), aOp­ 

for any prime ideal i-, -/- 0, is a principal ideal apOp, ap EK*, and we put 

div(a) = L- ordp(ap)):l. 
p 

This gives us a homomorphism 

div: J(o) ----- + Div(o) 

of the ideal group J (o) which takes principal ideals into principal divisors, 

and therefore induces a homomorphism 

div : Pic(o) -----+ CH 1 (o). 

In the special case of a Dedekind domain we obtain: 
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(12.14) Proposition. If o is a Dedekind domain. rhen 

div: Pic(o)-,,,. Cl/1(o) 

is :m isomorphi�m. 

 

 
fi:xerclse 1. Show thal 

CfX.YJ/(XY - X}.  C[X, YJ/(XY - !). 

CIX.Y)/(X2-Y3
). C[X,Yl/(Y1-X1-X1) 

areonc-rlimem,ional noeJheriim rings. Which one.� are integral domain'-'-' DeJr.rn1ine 

their nmmali7.alions. 

Hint: For instance in the fast ell.ample, put I= X/Y and show that the homomor­ 

phism C{X. Y/----,. c,,,. ,\'I-+(
2 

- /,YI-+ f(t1 - /), ha.� kernel (Y1 - X2 - X·'). 

Exercise 2, Let a am.I b be positive integers that arc not perfect squares. Show that \he 

fundamental unit of the order Z + Z ./a of the tield Q( ./a) is also the fundamental 

unit of the order 'J'. + Z-/a + Z-.,Ch + Z,,/a�  in the field Q(./a,�). 

Exercise 3. Le1 K be a number field of degree n = IK : QI. A complete module 
in K is a subgroup of the fom1 

M = Za1+·· + Zt.t�. 

where a1 ....• a,. arc linearly independent elements of K. Show that 1he ring of 
mulriplicn. 

is an onler in K. bo1 in general not the maxima! order. 

Exercise 4. Determine the ring of nrnltiplierj; o of 1hc complete module M = 
Z + z./2 inQ(,/2). Show that t = ! + ./2 is a fum.hunemul uni1 of o. Dct..:rminc 

.ill integer solutions of .. Pell'$ equation·· 

x
2
 -2/ =7. 

Hint: N(x + y./2) = x1 - 2y2, N(3 + ,/2) = N('5 + 3,/2) = 7. 

Exencise 5. In a one-dimensional noetherian integral domain lhe regular prime 

ideals ,f. 0 are precisely lhe inv1:rtihlc prime ideals. 

 

 

 

§ lJ. One-dimensional Schemes 

 
The first approach to the theory of algebraic number fields is dominated 

by the methods of arithmetic and algebra. But the theory may also be treated 

fundamemally from a geometric point of view. which will bring out novel 

a�pects in a variety of way�. This geometric interpretation hinges on the 

possibility of viewing numbers a� functions on a topologkal space. 
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In order to explain this, let u.<; stan from polynomials 

f(x) - a,,x" + ·+au 

with complex coefficients a; E C, which may be immediately interpreted 

as functions on the complex plane. This propeny may be formulated in a 

purely algebraic way as follows. Let a e C be a point in the complex plane. 

The set of all functions f(x) in the polynomial ring C[x] which vanish at 

the point a fonn:s the maximal ideal p = (x - a) of C[xl. In 1his way the 
points of the complex plane correspond 1-1 to the maximal ideals of Cfxl. 

We denote the set of all the.,;;e maximal ideals by 

M = Max(Cixl). 

We may view M as a new kind of space and may interpret the elements f(x) 

of the ring C[x] a,;; functions on M as follows. For every point p = (x - a) 

of M we have the canonical isomorphism 

crxl/P -2, C, 

which sends the residue class f(x) mod p to /(a). We may thus view this 

residue class 

/(p) := f(x) mod p E •(p) 

in the residue cla.-.s field K(p) = C(x)/p as the "value.. of / at lhe poim 

p E M. The topology on C cannot be trnnsferred to M hy algebraic means. 

All that can be salvaged algebr.i.ically arc the point sets defined hy equations 

of the form 
f(x) =0 

(i.e., only the finite sets and M itself). These sets are defined to be the closed 

subsets. ln tile new formulation they are !he sets 

V(f)= JpeMI /(p)=OI = Jpe Mlp2(f(x))J. 

 
The algebraic inlerprelation of functions given above leads 10 1he fol­ 

lowing geome1ric perception of completely general rings. f-or an arbitrary 

ring o. one introduces the spectrum 

X = Spec(o) 

as being !he �et of all prime ideals p of o. The Zariski topology on X is 

defined by stipulating that the sets 

V(n)= IPI P 2•J 

be the closed sets. where a varies over the ideals of o. This does make X into 

a topological space (observe lhal V(o) U V(b) = V(ab)) which, however, is 

usually noLHausdorff. The closed points correspond to the maximal ideals 
of o. 
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The elements f E o now play the r61e of functions on the topological 

space X: the "value" off  at the point p is defined to be 

f(p) ,� f mod P 

and is an element of the residue class field K(p), i.e., in the field of fra{:tions 

of o/p. So the values off do not in general lie in a single field. 

Admitting also the non-maximal prime ideals as non-closed points, turns 

out to be extremely useful - and has an intuitive reason as well. For imtance 

in the case of the ring o = C[xJ, the point j) = (0) has residue class 

field K(P) = C(x). The "value" of a polynomial .f E C[x] at this point 

is f (x) itself, viewed as an element of C(x). This clement should be thought 

of as the value of f at the unknown place x - which one may imagine lo 

he everywhere or nowhere at all. This intuition complies with the fact that 

the closure of the point p = (0) in the Zariski topology of X is the total 

space X. This is why p is also called the generic point of X. 

 

Example: The space X = Spec(Z) may be represented by a line. 

 

7  11 generic point 

For every prime number one has a closed point, and there is also the generic point 

(0), tl1e closure of which is the total space X. T/1e nonempty open sets in X 

arc obtained by throwing out finitely many prime numbers p1,   p11• 

The integers a E Z are viewed as functions on X by defining the value of a 

at the point (p) to be the residue class 

a(p) = a mod p E Z/pZ. 

The fields of values are then 

Z/2Z, Z/3Z, Z/5Z, Z/7Z, Z/IIZ, . .,(). 

Thus every prime field occurs exactly once. 

 
An important refinement of the geometric interpretation of elements of 

the ring o as functions on the space X = Spec(o) is obtained by fanning 

the structure sheaf ox. This means the following. Let U -I=- 0 be an open 

subset of X. If o is a one-dimensional integral domain, then the ting of 
"regular functions" on U is given by 

o(Ui � If I a(P) #o  foe all p Eu\. 
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in other words, it is the localization of o with respect to the multiplicative 

set S = o " UpcU p (See � 11), In the general case, o(U) is defined to 

consist of all elements 

S = (sp) E fl Op 
PEU 

which locally are quotients of two elements of o. More precisely, this means 

that for every p E U, there exists a neighbourhood V i; U of p, and elements 

f,g E o such that, for each q EV,  one has g(q) # 0 and sq=  fig 

in Oq, These quotients have to be understood in the more general sense 

of commutative algebra (sec § 11, exercise I). We leave it to the reader to 

check that one gets back the above definition in the case of a one-dimensional 

integral domain o. 

If V £; U are two open sets of X, then the projection 

TI Op -------+ TI Op 

p<c/J pEV 

induces a homomorphism 

PUV : o(U) -----+ o(V)' 

called the restriction from U to V. The system of rings o(U) and mappings 

pu v is a sheaf on X. This notion means the following. 

 

(13.1) Definition. Let X be a topological space. A presheaf F of abclian 

groups (rings, etc.} consists of the following data. 

(I) For every open set U, an abelian group (<l ring, etc.) :F(U) is given. 

(2) For every inclusion U £; V, a homomorphism Puv : :F(U) ---+ :F(V) is 

given, which is c,llled restriction. 

These daw <Jre subject to the following conditions: 

(a) F(0) � 0, 

(b) Puu is the idenlityid: :F(U)--+ :F(U), 

(c) Puw=Pvwopuv,foropcnsetsW£V£;U. 

 
The elements s E :F(U) arc called the sections of the presheaf :F over U. 

lf V £; U, then one usually writes  = s Iv. 'The dcfmition of a 

presheaf can he reformulated most in the language of categories. 

The open sets of the topological space X form a category X1<">Pin which only 

inclusions arc admitted as morphisms. A presheaf of abclian groups (rings) 

is then simply a contrav:irianl functor 

F: X1or------'>- (ah), (rin�s) 

into the category of abelian groups (resp. rings) such that F(0) = 0. 
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(13.2) Definition. A presheaf :Fon the topological space X is called a sheaf 

if, for all open coverings (U1 f of the open sets U, one /ms: 

(i) Ifs,s' E F(U) are two sections such thatslu, = s'l1I, foralli, then 

s=s'. 

(ii) Jfsi E :F(U;) isafamilyo[sectionssuchthat 
 

for all i. j, then there exist.� a sections E F(U) such thal s lu, = s; for all i. 

 
The stalk of the sheaf F at the point x E X is defined to be the direct 

limit (see chap. IV, §2) 

F, � li") F(U). 
/J:u 

where U varies over all open neighbourhoods of x. In other words. two 

sections su E :F(U) and sv E F(V) are called equivalent in the disjoint 

union  if there exists a neighbourhood W s:; U n V of x such 

that = sv Iw. The equivalence classes are called germs of sections 

at x. They are the elements of Fx. 

We now return to the spectrum X = Spcc(o) of a ring o and obtain the 

 

(13.3) Proposition. The rings o(U), together with the restriction mappings 

Pu v , form a sheaf on X. II is denoted by ox and cnlled the structure sheaf 

on X. The stalk of ox at the point p € X i.� the localization Op, i.e., 

OX,p ;, Op. 

 

 

The proof of this proposition follows immediately from the definitions. 

The couple (X,ox) is called an affine scheme. Usually, however, the structure 

sheaf ox is dropped from the notation. Now let 

(f): 0 ----- + o' 

be a homomorphism of rings and X = Spec(o), X' = Spec(d). Then <p 

induces a continuous map 
 

and, for every open subset U of X, a homomorphism 

Ii�: o(U)-----+ o(U'), s i-----+ so fll'· 

where U' = f -I (U). The maps J1:, have the following two properties. 
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a) If V � U arc open sets, then the diagram 

r 
o(U) �'-· o(U') 

l  r l 
o(V) � o(V') 

 

is commutative. 

b) for p' EU'� X' and a E o(U) one has 

a(/lp')) �o => f,j(a)(p') �o. 

A continuous map f : X' --+ X together with a family of homomorphisms 

fli; c)(U)--+ o(U') which satisfy conditions a) and b) is called a morphism 

from the scheme X' to the scheme X. When referring lO such a morphism, 

Lhe maps fl) are usually not written explicitly. One can show that every 

morphism between two affine schemes X' = Spec(o') and X = Spec(O) is 

induced in the way described above by a ring homomorphism <p ; o ---+ 01
• 

The proofs of the above claims arc easy, although some of them are a hit  

lengthy. The notion of scheme is the basis of a very exlensive theory which 

occupies a central place in mathematics. As introductions into this important  

discipline let us recommend the books [511 and [104]. 

We will now confine ourselves to considering noethcrian integral do­  

mains o of dimension :S 1, and propose to illustrate geometrically, via the  

scheme-theoretic interpretation, some of the facts treated in previous sec­  

tions. 

l. Fields. If K is a field, then the scheme Spec(K) consists of a single point 

(0) on top of which the field itself sits as the structure sheaf. One must 

not think that these one-point schemes arc all the same because they differ 

essentially in their structure sheaves. 

2. Valuation rings. If o is a discrete valuation ring with maximal ideal p, then 

the scheme X = Spec(O) consists of two points, the closed point x = p with 

residue class field K(p) = o/p, and the generic point T/ = (0) with residue 

class field K(TJ) = K, the field of fractions of o. One should think of X as 

a point x with an infinitesimal neighbourhood descrihed by the 

generic point T/: 

X: 

 
This intuition is justified by the following observation. 



f 

f 

X  ry 
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The discrete valuarion rings arise as localizations 

o,� [f I J.geo, g(p),601 

of Dedekind domains o. There is no neighbourhood of p in X = Spcc(o) 

on which all fum:1ion.'i E Op are defined becau.�e, if o is not a local 

ring. we find by the Chinese remainder theorem for every point q "# p, 

q :t,. 0,. an element g e o satisfying g ::::. 0 mod q and >: :;;;; I mo<l p. 

Then } e Op as a function is nol defined at q. But every element { E Op 

is defined on a sufficii::ntly small neighbourhood; hence one may say that 

all clements  of the discrete valuation ring Op are like functions defined 

on a "germ" of neighbourhoods of p. Thus Spcc(o,,) may be thoughl of as 

such a "germ of neighbourhoods" of p. 

We want 10 point out a small discrepancy of intuitions. Considering the 

spectrum of 1he one-dimensional ring C[x ], the points of which constitute the 
complex:plane, we will not want to visualize the infinitesimal neighbourhood 

x,, = Spcc(Cfxfp) ofa point p = (x -a) as a small fine segment, but rather 

as a little disc: 

c-:-� 

This two-dimensional nature is actually inherent in all discrete valuation 

rings with algebraically closed residue field. But the algebraic jus1itica1ion of 

this imuition is provided only by the introduction of a new 1opology, the etale 

topology, which is much finer than the Zariski topology (sec 11031. {f32!). 

3. Dedekind rings. The spectrum X = Spcc(o) of" Dedekind domain o is 

visualized as a smooth curve. At each poilll p one may consider the 

locali1.ation Op. The inclusion o � Op induces a morphism 
 

which extracts the scheme X p from X as an "infinitesimal neighbourhood" 

of p: 
 
 

 

X = Spec(o) 

--��-·-··/ 

generi(.: point 
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4. Singularities. We now consider a one-dimensional noclherian integral 

domain o which is not a Dedekind domain, e.u., an order in an algebraic 

number field which is different from the maximal order. Again we view the 

scheme X = Spec(o) as a curve, Bul now the curve will not be everywhere 

smooth, but will have singularities at certain points. 

 

� x� = Spec(c.ip) 

l 

X = Spcc(o) 

 

 

These arc precisely the nongeneric points p for which the localization Op is 

no longer a discrete valuation ring, that is to say, the maximal ideal pop is 

not generated by a single element. For example, in the one-dimensional ring 

o = C[x. y]/(y2 - x3
), the closed points of the scheme X are given by the 

prime ideals 

)l == (x - a, y - h) mod (y2,-C1
) 

where (a, h) varies over the points of C2 which satisfy the equation 

h2-a3 =0. 

 

 

 
The only singular point is the origin. Jt corresponds to the maximal ideal 

)lo= (X, Y), where X = x mod(/- - x'), Y = y mod (y1 - x3
) E o. The 

maximal ideal )loOp0 of the local ring is generated by the elements .X, y, and 

cannot be generated by a single element. 

 

5. Normalization. Passing to the nomialization O of a one-dimensional 

noetherian integral domain o means, in geometric terms, taking the resolution 

of the singularities !hat were just discussed. Indeed, if X = Spec(o) and 
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X = Spec(O), then the inclusion o '------+ 0 induces a morphism f: X--,. X. 

 

 

x 

 

 
X 

 

 
Since fJ is a Dedekind domain, the scheme X is to be considered as smooth. 

Jf pE) = P? - - . p;• is the prime factorization of p in b, then P,. ., p,. arc 

the different points of X that are mapped to p by .f. One can show that p 

is a regular point of X - in the sense that Op is a discrete valuation ring - 

if and only lfr = 1, e1 = 1 and f1 = (6/P1: o/p) = I. 
 

6, Extensions. Let o be a Dedekind domain wilh field of fractions K. 
Let LIK be a finite separable extension, and O the integral closure of o 

in L. Let Y = Spec(o), X = Spec(O), and 

(:X-c,- y 

the morphism induced by the inclusion o '------+ 0. If pis a maximal ideal of o 
and 

pO = ,:p�1. -'l3�' 

the prime decomposition of p in O, then '131, ... , 'lJ,. are the different points 

of X which are mapped to)) by f, The morphism f is a "ramified covering." 

It is graphically represented by the following picture: 

 

 

 

 

X 

 

 

 
------.------.-- y 

t  ramified points t 

Thls picture. however, is a fair rendering of the algebraic situation only 

in the case where the residue class fields of o arc algebraica//y closed (like 
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for lhe ring C[x I). Then, from the fundamental identity L; e, ,t; = n, there 

are exactly 11 = [L : K1 points q31,  ,. q}11 of X lying above each point p 
of Y, except when p is ramified in o, At a point p of ramification, several 

of the points q}1, _ . , �,, coalesce. This also explains the terminology of 

idc,ils that "ramify." 

If LIK is Galois with Galois group G = G(LIK), then every auto­ 

morphism rr E G induces via a : 0 --+ 0 an automorphism of schemes 

a : X ----+ X, Since the ring o is fixed, the diagram 

X � X 

/',y,/f 

 
is commutative. Such an automorphism is called a co,·ering transformation 

of the ramilied covering X / Y. The group of covering transfonnations is 
denoted hy Auty(X). We thus have a canonical isomorphism 

G(LIKJ ;c Auty(X). 

In chap. II, �7, we will sec that the composite of two unramified extensions 

of K is again unramified. The composite K, taken inside some algebraic 

closure K of K, of all unramitied extensions LI K is called the maximal 

unramified extension of K. The integral closure  of o in K is still a one­ 

dimensional integral domain, but in general no longer noetherian, and, as a 

rule, there will be infinitely many prime ideals lying above a given prime 

ideal p -=I=- 0 of o. The scheme Y = Spec((,) with the morphism 

fcY-+Y 

is called the universal covering of Y. It plays the same r6le for schemes 

that the universal covering space X -+ X of a topological s�ace plays in 

topology. There the group of covering transfonnations Autx(X) is canoni­ 

cally isomorphic to the fundamental group rr1(X)_ Therefore we define in 

our present context the fundamental group of the scheme Y by 

rr,(Y) = A,t,(Y) = G(KIKJ. 

This establishes a first link of Galois theory with classical topology. This 

link is pursued much further in etale topology. 

 

The geometric point of view of algebraic number fields explained in this 

section is corroborated very convincingly by the theory of function fields of 

algebraic curves over a finite field IFr· In fact, a very close analogy exists 

between both theories. 
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§ 14. Function Fields 

 
We concJude this chapter with a brief sketch of the theory of function fields. 

They represent a striking analogy with algebraic number fields, and since they 

are immediately related 10 geometry. they actually serve as an important model 

for the theory of algebraic number fields. 

The ring Z of integers with its lield of fractions Q exhibits obvious 

analogies with the polynomial ring lFp[tl over the field lFp with p elements 

and its field of fractions Fµ(t). Like Z, Fp[!J is also a principal ideal domain. 

The prime numbers correspond to the manic irreducible polynomials p(t) E 

Fp[t]. Like the prime numbers they have finite fields JF,,,1, d = dcg(p(t)), 

as their residue class rings. The difference is, however, that now all these 

fields have the same characteristic. The geometric character of the ring lF,,[t] 

becomes much more apparent in that, for an element f = f(f) E IF,,[t], the 

value of .f at a point p = (p(t)) of the affine scheme X = Spec(IF,,[t]) is 

actually given by the value /(a) E Fp, if p(t) = t - a, or more generally 

by /(a) E IF/Id' if a E IFP,1 is a zero of p(t). This is due to the isomorphism 

 

IFpll]/p-----==-+ F pd' 

which takes the residue class f()J) = f mod p to f(a). In the analogy be­ 

tween, on the one hand, the progression of the prime numbers 2, 3, 5, 7, 

and the growing of the cardinalities p, p2, p3, p4, . . of the residue fields 

IFP'' on the other, resides one of the most profound mysteries of arithmetic. 

One obtains the same arithmetic theory for the finite extensions K of 1F,,(r) 

as for algebraic number fields, This is dear from what we have developed 

for arbitrary one-dimensional noetherian integral domains. But the crucial  

difference with the number field case is seen in that the function field K 

hides away a finite number of further prime ideals, besides the prime ideals 

of o, which must be taken into account in a fully-fledged development of 

the theory. 

This phenomenon appears already for the rational function field Fp(t). 

where it is due to the fact that the choice of the unknown t which detennines 

the ring of integrality l'ii'pltl is totally arbitrary. A different choice, say 

t' = 1/t, detennines a completely different ring IF,,11 /tl, and thus completely 

different prime ideals. It is therefore crucial to build a theory which is  

independent of such choices. This may be done either via the theory of 

valuations, or scheme theoretically, i.e., in a geometric way.  

 
Let us first sketch the more na"ive method, via the theory of valuations. 

Let K be a finite extension of IFp(/) and o the integral closure ofIFpU] in K. 
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By* 11, for every prime ideal p #- 0 of o there is an associated normalized 

discrete valuation, i.e., a surjective function 
 

Vp:K----.--.-+ZU{oo} 

satisfying the properties 

(i) Vp(O) = 00, 

(ii) Vp(ah) = Vp(a) + Vp(h), 

(iii) vp(a + h) :=:: min{vp(a), vp(h)). 

The relation between the valuations and the prime decomposition in the  

Dedekind domain a is given by 

(a) � np"''"'. 
p 

The definition of a discrete valuation of K does not require the subring o to 

be given in advance, and in fact, aside from those arising from a, there are 

finitely many other discrete valuations of K. In the case of the field IFp(t) 

there is one more valuation, besides the ones associated to the prime ideals 

p = (p(t)) of IFp[tl, namely, the degree valuation v("')Q. For  E IF1,(t), 

f, 8 E F1,(tl, it is defined by 

ix(  f) �dcg(g) - dcg(.f). 

It is associated to the prime ideal p = yIF p[yl of the ring IFp[yl, where 

y = 1/t. Onecanshow that this exhausts all normalized valuations of the 

field F,,(r). 

For an arbitrary finite extension K of F,,(t), instead of restricting attention 

to prime ideals, one now considers all normalized discrete valuations v11of K 

in the above sense, where the index p has kept only a symbolic value. As 

an analogue of the ideal group we form the "divisor group", i.e., the free 

abelian group generated by these symbols, 

Div(K) = \ L npp I nµ E Z, 1111= 0 for almost all p) . 
p 

 

We consider the mapping 

div: K*   ,.. Div(K),  div(f) = L v11(f)p, 
p 

the image of which is written P(K), and we define the divisor class group 

of K by 

C/(K) � /J;,(K)/P(K). 
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Unlike lhe ideal class group of an algebraic number field, this group is not finite. 

Rather, one has the canonical homomorphism 

deg: Cl(K)------+ Z, 

which associates to the class of p the degree dcg(p) = \K(P) : !Ff' l of the 

residue class field of the valuution ring of p, and which associates to the 

class of an arbitrary divisor a = LP n11p lhc sum 

deg(o) = L np deg(p). 

For a principal divisor div(f), f E K'*, we find by an easy calculation that 

deg(div(f)) = 0, so that the mapping deg is indeed well-defined. As an 

analogue of the finiteness of the class number of an algebraic number field, 

one obtains here the fact that, if not Cl(K) itself, !he kernel C/0(K) of 

deg is finite. The infinitude of the class group of function fields must not 

be considered as strange. On the contrary, it is rather the finiteness in the 

number field case that should be regarded as a deficiency which calls for  

correction. The adequate appreciation of this situation and its amendment 

will be explained in chap. III, � I. 

 
The ideal, completely satisfactory framework for the theory of function 

fields is provided by the notion of schem�. In the last section we inlroduced 

affine schemes as pairs (X,ox) consisting of a topological space X = 
Spec(o) and a sheaf of rings ox on X. More generally. a scheme is a 

topological space X with a sheaf of rings ox such that, for every point of X, 
there exists a neighbourhood U which, together with the restriction ou of 

the sheaf ox to U, is isomorphic to an affine scheme in the sense of S 13. 

This generalization of affine schemes is the correct notion for a function field 

K. It shows all prime ideals at once, and misses none, 

In the case K = IFp(f) for instance, the corresponding scheme (X, ox) 

is obtained by gluing the two rings A = ll,,[uj and B = Fplv], or 

more precisely the two affine schemes U = Spec(A) and V = Spec(B). 

Removing from U t'1e point !Jo = (u), and t11c point p.CXJ = (v) from V, 
one has U-[Pol = Spec(!F'p[ll.U-1l), V-{Pocl = Spec(l<'p[V, v-1n, and the 

isomorphism f : F,,lu, u-11 ---+ 1Fp[v, v-1l, u 1-+ v-1, yields a bijection 

�: V - IP�) -  U - IPoL  p ,_ r'(p). 

We now identify in the union U U \/ the points of V - {p'.XJ/ with those 

of U -{µ0) by means of rp, and obtain a topological space X. It is immediately 

obvious how to obtain a sheaf of rings ox on X from the two sheaves ou 

and ov. Removing from X the point p'.X;, resp. p0, one gets canonical 

isomorphisms 

(X-{Px/,Ox-fp,,c\);::: (U,ou). (X-{po\,Ox-1p111);::: (V,ov). 
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The pair (X, ox) is the scheme corresponding to the field !F1,(f). It is called 

the pr-ojecth·e line over IFI' and denoted IP' ,. 
1 

( 
P~ �\, 

p,, '" 
 

More generally, one may similarly associate a scheme (X,ox) to an 

arbitrary extension K IFp(t). For the precise description of this procedure 

we refer the reader to [51]. 

u 



Chapter II 

The Theory of Valuations 

 

 
§1. The p-adic Numbers 

 
The p-adic numbers were invented at the beginning of the twentieth 

century by the mathematician KURT HF.NSF!. (1861-1941) with a view to 

introduce into number theory the powerful method of power series expansion 

which plays such a predominant r61e in function theory. The idea originated 

from the observation made in the last chapter that the numbers f E Z may 

be viewed in analogy with the polynomials/(:) E C[zj as functions on the  

space X of prime numbers in Z, associating to them their "value" at the 

point p EX, i.e., the element 

f(p) ,�J mod p 

in the residue class field K(p) = Z/ pZ. 

This point of view suggests the further question: whether not only the 

"value" of the integer f E Z at p, but also the higher derivatives off can he 

reasonably defined. In the case of the polynomials f(z) E C[zl, the higher 

derivatives at the point z = a are given by the coeflicients of the expansion 

f(z) =ao +a1(z - a)+· • +a11(z -at, 

and more generally, for rational functions f(z) = 

/?, h E C[z], they are defined by the Taylor expansion 

 

{(z) = ,tJ av(z - a)v, 

 

E C(z), with 

provided there is no pole at z = a, i.e., as long as (L -a) f h(z). The fact that 

such an expansion can also be written down, relative to a prime number p 

in Z, for any rational number f E Q as long as it lies in the local ring 
 

leads us to the notion of p-adk number. First, every positive integer f EN 

admits a p•adic expansion 



f = ao +a1p +···+anp", 
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with coefficients a1 in /0, I, .... p- I}. i.e., in a fixed system of represent­ 

atives of the "field of va)ucf' K(p) = IF11. This representation is clearly 

unique. 11 is computed explicitly by successively di"iding by p, fonning the 

following system of cquaiions: 

f = ao + Pfi. 

/1 = a1 + Ph- 

 

 

/�·-I = Gn-1 + Pfn. 

J;1 = an, 

Here a; E {O, I. . , p- lj denotes the representative of/; mod p e Z/ pZ. 

In concrete cases, one sometimes wri1es the number f simply as the se4ucnce 

of digits a0,a1a2 .. an, for instance 

216=0.0011011 (2-adic). 

216 = 0.0022   (3-adic). 

216= 1,331 (5-m..lic}. 

As soon as one tries to write down such p-adic expansions also for negative 

integers, let alone for fractions, one is forced to allow infinite series 

f avpv = ao +a1J?+a2p
2+ 

,,cc/J 

This notation should at fir�t be understood in a purely fonnal sense, i.e., 

L�,:,,0a,,p1
' simply stands for the sequence of partial sums 

Sn= Lai•P", n = 1,2,. 
,=0 

 

( LI) Definilion. Fix a prime number p. A p-adic inh:ger is a formal infinite 

scrie.� 
ao+a1p +a2p

2 + · 

wl1ere O ::S a; < p, for all i = 0. I, 2.... Tl1e sel of all p-.Jdic integers i::; 

denoted by z,,. 
 

The p-adic e;-;pansion of an arbitrary number f e Z(r,) results from the 

following proposition about the residue classes in Z/pnz. 

 

(1.2) Proposition. T/1e residue c/as.�es a mod pfl E Z/ pn'l. can be uniquely 

represented in the f01m 

a =ao+a1p +a2p
2 + ···+an-1()

11
-
1 

mod p" 

whe� 0 :5 a; < p for i = 0, .... 11 - I. 
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Proof (induction on 11): This is dear for n = I. Assume the statement is 

proved for n - I. Then we have a unique representation 

a=ao+a1p+a2p2+·  +a11_2p11••2+,.:pn-1, 

for some integer,.:. If,.:= an .1 mod p such that O _::: an-I < p. then an-I 
is uniquely detennined by a, and the congruence of the proposition holds. 

□ 

 
Every integer f and, more generally, every rational number f E the 

denominator of which is not divisible by p, defines a sequence of 

classes 

.f,1 = f mod pn E Z/pnz, n = 1.2, 

for which we find, by the preceding proposition, 

,f1 = ao mod p. 

S2=ao+a1pmodp2
, 

."f, =an+ a1p + a2p2 mod /F'  etc., 

with uniquely dctcnnincd coefficients a0, a1,a2, ... E [O. I, .......... p-1) which 

keep their meaning from one line to the next. The sequence of numbers 

Sn =ao+a1p+a2p
1
+··•+a,,_1p" 1

, n = 1,2, 

defines a p-adic integer 

L a,,pv E z,,. 
••=0 

We call it the p-adic expan�ion off. 

 

In analogy with the Laurent series f(z) = L�-m a.,(z - a)'', we now 

extend the domain of p-adic integers into that of the formal series 

 

 
where m E Z and O ._::: av < p. Such series we call simply p-adic numbers 

and we write Q\, for the set of all these p-adic numbers. If f E Q is any 

rational number, then we write 

 

f=fp-
111 

where1-:,hEZ, (,.:h.p)=I. 

and if 
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is the p-adic expansion of Ti, then we attach to f the p-adic number 

aop-m +a1p-m+l + · ·+am +a111+1P + ··· E QP 

as its p-adic expansion. 

In this way we ohtain a canonical mapping 

 

iji ---+ Q,,' 

which takes Z into Zp and is injective. For if a. b E Z have the same p-adic 

expansion, then a - bis divisible by p11 for every n, and hence a = h. We 

now identify IQ with its image in Q,,, so that we may write Q <;;:; QP and 

Z <;;:; z,,. Thus, for every rational number f E Q, we obtain an identity 

 

 

This establishes the arithmetic analogue of the function-theoretic power series 

expansion for which we were looking. 

 

Examples: a) -1 = (p - l) + (p-  l)p + (p-  l)p2 +. 

In fact, we have 

-I =(p- l)+(p- l)p+  +(p-l)p"-l -/1, 

hence-I =(p- l)+(p-l)p+·  +(p- l)p11
-
1 modp". 

b) G = I + p + p2 + 

In fact, 

 

 

hence 

I= (I+ p+···+ /Jll-1)(1 -p)+ p". 

� - = I +p+•·•+p"  mod p". 
1-p 

 
One can define addition and muhiplication of p-adic numbers which 

tum Zp into a ring, and IQP into its field of fractions. However, the direct 

approach, defining sum and product via the usual carry-over rules for digits, 

as one does it when dealing with real numbers as decimal fractions, leads 

into complications. They disappear once we use another representation of the 

p-adic numbers f = L�o avpl!, viewing them not as sequences of sums of 

integers 
11-1 

Sn=  a,,p"' E Z, 



V=O 
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but rather as sequences of residue classes 
 

The terms of such a sequence lie in different rings Z/pnz, but these are 

related by the canonical projections 
 

 

and we find 
 

In the direct product 

Z/ p'Z = I (x,),cr, Ix, E Z/ p'Z}' 
11=1 

we now consider all elements (x11)1n::N with the property that 

A11(Xn+i)=Xn for all n= 1.2,. 

This set is called the projective limit of the rings Z/ p11Z and is denoted 

by �  Z/ p"Z. In other words, we have 

 

!j_!!! 'Jl/p
11

Z = j (xn)n.=N E fi Z/p
11

Z I A,,(X11+1) =Xn. fl= 1,2, .. 
n 11=1 

The modified representation of the p-adic numbers alluded to above now 

follows from the 

 

 

(1.3) Proposition. Associating to every p-adic integer 
 

the sequence (.f,,),,'=n of residue classes 

,_, 

S,, = L a�p'' mod p11E Z/pnz. 
V=O 

yields a bijection 
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The proof is an immediate consequence of proposition (1.2). The projective 

limit Q_!!! Z/pnz offers the advantage of being dearly a ring. In fact, it i� a 

subring of lhc direct product TT��1 Z/ pnz where addition and multiplication 

are defined componentwise. We identify ZI' with MI!! Z/ pnz and obtain the 

ring of p-adic integers Zf!. 

Since every element f E Q/J admits a representation 

 

 

with g E Zp, addition and multiplication extend from Zp to Qf! and Q,, becomes 

the field of fractions of Zp. 

In Zp, we found the rational integers a E Z which were determined by 

the congruences 

a =ao+a1p+·  +a11-1JJ
11 1

mod p
11

• 

0 ::Sa; < p. Making the identification 

z,, = fu!! Z/p"Z 

 
the subset Z is taken to the set of tuples 

(amodp, amodp2
, amodv',  .)E  fiz;p'1Z 

11=1 

and thereby is realized as a subring of z,,. We obtain ij as a subfield of the 

field Q/! of p-adie numbers in the same way. 

 

Despite their origin in function-theoretic ideas, the p-adit: numbers live up 

to their destiny entirely within arithmetic, more precisely at its classical  heart. 

the Diophantine equations. Such an equation 

F(x1,  . X11) = 0 

is given by a polynomial F f' 7.:[x1•••• , x11l, and Lhe question is whether 

it admits solutions in integers. This difficult problem can be weakened by 

considering, instead of the equation, all the congruences 

F(..r1, •••• x1i)=Dm<Xlm. 

By the Chinese remainder theorem, this amounts to considering the 

congruences 

F(x1, .... x,,) = Omod /' 

modulo all prime powers. The hope is to obtain in this way infonnation about 

the original equation. This plethora of congrnences is now synthesized again into 

a single equation by means of the p-adit: numbers. In fact, one has the 
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(1.4) Proposition. Let f(x1,  , x11) he a polynomial wirh integer cocni- 

cicnts, and fix a prime number p. The congruence 

F(x1, ......,Xn):=Omodp1
' 

is solv.Jbfe for arbitrary 11 2! I if and 011/y if rhe equation 

P(x1, ....... ,x,,)=0 

is !iiolv11ble in p-adic integers. 

 

Proof: As established above, we view the ring Zp as the projective limit 

z, = !i'!J Z/ p"Z £ TI Z/ p"Z. 
" ••=I 

Viewed over the ring on the right, the equation F = 0 splits up into 

components over the individual rings 'il.,/ p''Z. namely, the congruences 
 

 

If now 

 

 

(X1 ...  , Xn) = (x\"
1

,,,,. xtt')) vE:i E z;, 

with (xr•·J),,.EN E Zp =�  Z/p'"L, is a p-adic solution of the equation 

f(,-i:1.  . l,,) = 0, then 1he congruences are .�olved by 

F(.l,:"'1, ... ,x�">) :Omod pv, 11 = 1.2. 

Conversely, let a solution (xld, ... , x�vl) of the congruence 

F(x1, ... , x11);;;; 0 mod p" 

be given for every 11 2:: I. If the elemcn1s (.-i:f"'>.,<'N En:. Z/p"Z arc 
already in !J_!!! Z/p"Z, for all i = I,  . n. 1hcn we have a p-adic solution 

of the equation F = 0. But thiii is not automatically lhe. case. Wr: will 

lhcrefore extract a subsequence from the sequence (xi"), ... , x,;v)) which 

tits our needs. For simplicity of notation we only carry this out in the case 

n = I, writing x., = xlv)_The general case follows ex:ac1ly lhe :same pattern. 

In wha1follows, we view (xu) a., a sequence in Z. Since Z/pZ is finite. 

!here are infinitely many terms x,. which mod p arc congmenl lo the same 

element y1 E Z/p7/,. llcnce we may choose a subsequence {xt')l of {x�J 

such that 
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Likewise, we may exuac1 from lx�11
} a suhsequence Jxt

2>1such lhat 

x�}) = }'1 mod p-:. and F{.t�2
l) = 0 mod p.1, 

where _\'2 E Z/ p2Z evidently satisfies )'2 = y1 mod p. Continuing in this 

way, we obtain for each k 2: l a subsequence {x�kl j of [x;,t-I l} the 1erms of 

which satisfy the congruences 

rtk/ =YA mod Ji' und F(x;,0) = 0 mod 1/ 

for some Jl E Z/ pkz such 1ha1 

Yk :=y4. 1 mod,-/' 1. 

They, define a p-adic integer y = (yJJAE:"I E ll!!! Z/;iZ = Zp satisfying 

F(y1:) = 0 mod 1l ' 
for all k?:.I. In other words, F(y) = 0. □ 

 

 

10:xerci....e I. fl. p-adic numher a = L�..,a,,p'' E QP is a rational numher if and 

only if the sequence of digils is periodic (possibly with a fini1e siring before 1he first pcrit�.I). 

1 

Hint: Write pma =h+c 1 � p''' O � /1 < p', 0 =:cc< p". 

Exercise 2. A p-adic integer a= a1, + a1 p + a2/l2 + ··· is a unit in the ring Z./1 if 

and only if 011 #- 0 

F.xt:n.:ise 3. Show that the equation x2 = 2 ha'> a solution in Z7. 

Excn:ise 4. Write the numher.- � and - � as 5-adic nurnhcrs. 

t-::urci� S. The field QP of ,,-111Jic numbers has no aulomorphb,ms excepl lhc 

identity. 

Exercise {i. How is the addition, suhtractioo. multiplication and division of rational 

numbers rdlected in the representation by p-adic digits"1 

 
 

 

§ 2. The p-adic Absolute Value 

 
The representation of a p-adk: inlcgcr 

(I) 
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resembles very much the decimal frnction represcmation 

<l{,+a,(I )+a,( I )2 +  , O<:a;<l0, 

of a real number between O and 10, But it does not converge as the 

decimal fraction docs. Nonetheless, the field Qr> of p-adic numbers can 

be constructed from the field Q in the same fashion as the tield of real 

numbers IR. The key to this is to ruplm.:e the ordinary absolute value by 

a new '·p-adic" absolute value I Ip with rcsper..:t to which the series (I) 

converge so rh:H the p-adic numbers appear in the usual manner as limirs 

of Cauchy sequences of rational numbers. This ap11roach was proposed hy 

the Hungarian mathematician J. KORSCffA.K. The p-adic absolute value l Ip is 
defined as follows. 

Let a = i.h, c E Z be a nonzero rational number. We extract from h and 

from c as high a power of the prime number p as possible, 

(2) a=p111!!.:._., (b'c'.p)=l. 

and we put 

lalp=  pm 
Thus the p-adic value no longer measures the siz.e of a number a € N. Instead 

it becomes small if the number is divisible by a high power of p. This 

elahorates on the idea suggested in (1.4) that an integer has to be O if it is 

infinitely divisible by p. In particular, the summands of a p-�dic series 

a0+(11p+a2p2 +· fonn a sequence converging to O wilh respec! to I I,,. 

The exponem m in tOC representation (2) of the number a is denoted 

by l!p(a). am.I one puls fonnally 111,(0) = oo. This gives the funelion 

v1, :Q----+ ZUloo), 

which is easily checked to satisfy 1he propcnics 

I) vp((I) = oo <=>a= 0, 

2) v,,(ah) = v1,(a) + v1,(b), 

3) vp(a + h) :=:: min{vp(a), l'p{h)}, 

where .r + oo = oo, oc + oo = :xi and oo > x, for all x E Z. The funcrion 

vp is called lhc p-adic exponentia,l•aluation of IQ. The p-adic absolute value 

is given by 

I I,, : Q � R, a i-----+ lalp = p •'�<u>. 

In view of I), 2), 3), it satisfies the conditions of a norm on Q: 
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I) lalp=0{=:::}a=0, 

2) labl,, = lal,,lbl,,, 

3) IQ+ hi;,::: max/la I;,- lhlp) .:s lal;, + lhlp- 

One can show that the absolute values I Ip and I I essentially exhaust 

all norms on Q: any further norm is a power I 1; or I I"', for some real 
numbers > 0 (sec (3.7)). The usual absolute value I I is denoted in this 

context by I Ix• The good rea:;;on for this will he explained in due course. ln 

conjunction with the absolute values I /p, it satisfies the following imprn1ant 

product formula: 

 

(2.1) Proposition, For every rntional number a #- 0, one has 

TT/alv = L 
p 

where p varies over all prime number.� as well as the symbol oc. 

 
Proof: In the prime factorization 

a=±  n p"'r 
p./= 

of a, the exponent v,, of pis precisely the exponential valuation v1,(a) and 

the sign equals . The equation therefore reads 

 

a= !! TT !  , 
lal:xi p-1-= lal/J 

so that one has indeed TTI' lalp = I. □ 

 
The notation  for the ordinary absolute value is motivated by the 

analogy of the of rational numbers Q with the rational function field 

k(t) over a finite field k, with which we started our considerations. Instead 

of :Z, we have inside k(t) the polynomial ring k[rJ, the prime ideals p -1- 0 of 

which are given by the monic irreducible polynomials p(t) E k[tl For every 

such p, one defines an absolute value 

11,:k(r)~IF: 

as follows. Let f(t) = ;;;;, g(t),h(t) E k[tl be a nonzero rational function. 

We extract from i?(t) and h(I) thehighes1 po.�sible power of the irreducible 

polynomial p(t), 
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and put 

vµ(f) =m,  lflp =q;;''µl/l, 

where (Jp = q"P, dµ being the degree of the residue das� field of p over k 

and q a fixed real number> I. Furthermore we put vµ(O) = oo and IOIµ = 0, 

and obtain for Vp and I Ip the same conditions I), 2). 3) as for Vp and I Ip 
above. In the case p = (! - a) for a Ek, the valuation vµ( l) is dearly the 

order of the zero, resp. pole, of the function f = f(t) at t = a. 

But for the function field t..(1). there i5 one more exponential valuation 

v,..,_,:k(t)�ZU{oo}. 

namely 

v�( /) � deg(h) - deg(g), 

where f = f -1- 0, t,h  E t..[r]. It describes the order of zero, resp. pole, 

of f(!) at the point at inllnity ex,, i.e., the order of zero, resp. pole, of 

the function f (I/ t) at the point t = 0. ll is associated to the prime ideal 

p = (1/1) of the ring k[l/tj £ /..(f) in the same way as the exponential 

valuations Vµ are associated to the prime ideals p of A.[t]. Putting 
 

the unique factorization in k(t) yields, as in (2.1) above, the fonnula 

 

 

 

where p varie5 over the prime ideals of kit] a� well a� the symbol co, which 

now denote" the point at infinity (sec chap, I, g 14, p. 95). 

In view of the product fonnula (2.1), the above consideration shows that 

the ordinary absolute value I I of Q �hould be thought of as being associated 

to a virtual point at infinity. This point of view justifies the notation I I""' 

obey� our constant leitmotiv to study number" as function°' from a geometric 

per�pective, and it will fulfill the expectations thus raised in an ever growing 

and ama.dng manner. The decisive difference between the absolute value 

I I"" and the ab�olute value I 1-x, of k(t) is, however, that the fom1er 

i� not  from any exponential valuation Vp attached to a prime ideal. 

 

Having introduced the p-adic absolute value I Ip on the field :JJ!, let u� 

now give a new definition of the field of p-adic number�. imitating the 

construction of the field of real numbeVi.  will verify afterwards that thb 

new, analytic construction does agree with Hensel'� definition, which was 

motivated by function theory. 
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A Cauchy sequence with respect to I I,, is by definition a sequence 

{xn) of rational numbcr5 such that for every f > 0, there exists a positive 

integer n0 satir,fying 

lxn-Xmlp <F forall n,m :'::no. 

 

Example: Every formal series 

L a1,p", 0 :Sa,, < p, 
V=O 

provides a Cauchy r,,cquence via its partial sum� 

s-1 

Xn = ,�,avp". 

 

because for n > m one has 

 

A sequence /xn \ in Q is called a nullsequence with respect to I II' if 

lxn If! is a sequence converging to O in the usual sense. 

 
Example: I. p, p2

, p'_ 

 

The Cauchy sequencer, fom1 a ring R, the nullsequenccs fom1 a maximal 

ideal m, and we define afresh the field of p-adic numbers to be the residue 

class field 

Q,, ,�RJm. 

We embed Q in 1Q-i,, by associating to every element a E Q the residue 

class of the constant sequence (a, a, a.  . ). The p-adic absolute value I Ip 

on Q is extended to Q// by giving lhc clement x = lxnl mod m E R/m the 

absolute value 

lxlp := }��lxnlp E IR. 

This limit exists hecause { lx11Ip] is a Cauchy sequence in IR, and it is 

independent of the choice of lhc sequence lxn) within it� cla�s mod m 

because any p-adic nullsequence {_y,,} Em satisfies of course}�� IYn If! = 0. 

 

The p-adic exponential valuation Vp on Q extends to an exponential 

valuation 

vp : Q,, -----+ Z U {oo). 
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In fact, if x E Q/! is the class of the Cauchy sequence /x11) where x11 cl=- 0, 

then 

Vp(.i,,) = -log// lx,,1/! 

either diverges to oo or is a Cauchy sequence in Z which eventually must  

become constant for large n because Z is discrete. We put 
 

Again we find for all x E Qr, that 
 

As for the field of real numbers one proves the 

 

 

(2.2) Proposition. The field Q/J of p-adic numhern is complete with respect 

to the absolute value I Ip• i.e., every Cauchy sequence in QI' converges with 

respect to I Ip• 
 

 

A'> well as the field IR, we thu:; obtain for each prime number p a new 

field QP with equal right<, and standing, so that Q has given rise to the 

infinite family of field:; 
 

An important special property of the p-adic absolute values I Ip lies in 

the fact that they do not only satisfy the usual triangle inequality, but also 

the �tronger version 
 

This yields the following remarkable proposition, which give:; u� a new 

definition of the p-adic mteitn. 

 

 

(2.3) Proposition. The set 
 

is a .�uhring of Q
1

,. It is the clo.�ure with rc�pect to I 11, of the ring Z in the 

field IQ,,. 
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Proof: That Zp ii,, clo5ed under ad<lilion and multiplication follows from 

lx+ylp::Smax{lxl".IYlp}  and 1,-yl1,=lrl1,lyl"- 

If {x,i} is a Cauchy :;,cquence in Z and x = }i�Xn, then I rn Ii' .:'.:: 1 implies 

also lxli' _::: I, hence x E Zp, Conversely, let.\ = /�.n�/n E Zp, for a 

Cauchy sequence {x,,} in IQ. We saw above that one hai,, lxl/J = lx,,I,, _::: I 
for  n :::-_ n0, i.e.. x" = �- with a,,, h,, E Z, (h,,. p) = 1. Choosing for each 

n ==-- n0 a 1solution y11 E :7. of the congruence h,,y11 = an mod p11 yield" 

Ix,, - Ynlp :S?  and hence x = }i�y11, so thal x belongs to the closure 

�Z. □ 

 
The group of units of Zp is obviomly 

 

Every clement x E Ql;, admits a unique representation 

r=pmu  withmEZanduEZ�,- 

For if = m E Z, then 

u = E z;,. Furthermore we 

111
) = 0, hence lxp-mlfl = I, i.e., 

the 

 

(2.4) Proposition. The non7em ideals of the ring Z1, arc the principal idca/.s 

{J"Zp = { x E QI' I vp(X) ::::_ n) , 

with n ::::_ 0, and one ha� 
 

 

Proof: Let a -1- (0) be an ideal of 21, and x = pmu, u E z;,, an element 

of a with smallest possible m (since :S I, one ha� m ::::_ 0). Then 

a = because  =  p"u' E a, E ?,;,, implies n ::::_ m,  hence 

y = The homomorphism 

Z-----+ Zp/p"Zp,  a�  a mod p11Zp, 

 
has kernel p11Z and is surjective. Indeed, for every x E 21,, there exish 

by (2.3) an a E Z such that 
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i.e., vp(X - a) ::: n, therefore x - a E pnzP and hence x = a mod pnzf!. So 

we obtain an iwmorphism 

□ 
 
 
 

We now want to establi�h the link with Henscl's definition of the ring Z1, 

and the field QI' which was given in §I.There we defined the p-adic integers 

as formal serie5 

which we identified with sequences 

."fn = Sn mod pn E Z/pnz. 11 = 1.2, 

wheres,, was the partial 5Um 

These �equences comtitutcd the projective limit 

ll.!!! Z/pnz = { (xn)nE'�, En  Z/p"Z I Xn+I � Xn} 
II 11�1 

 

We viewed the p-adic integers as elements of this ring. Since 
 

\\-e obtain, for every n 2 I, a <,ur:jective homomorphism 

z,,�Z/p"Z. 

It i5 clear that the family of these homomorphism� yields a homomorphi�m 

Zp-----+ �  Z/p
11

Z. 

 

It is now po��ible to identify both definitions given for Zp (and therefore 

also for Qp) via the 

 

(2.5) Proposition, The homomorphism 

Zp-----+ lli!! Z/p11Z 

is an isomorphism. 
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Proof: If x E Zp is mapped lO zero, this means thal x E p"Z,, for all n ::'.". I, 

i.e., lxlp .:S --j;n for all n � I, so that lxlp = 0 and thus x = 0. This shows 

injectivity. 

An element of � Z/ p1�� is given by a sequence of partial sums 

Sn = L a1,Pv.  0 :S av < p. 
V=O 

We saw above that this sequence is a Cauchy sequence in 7.,1,. and thus 

converges to an element 

x = L a,,p" E 7-/!. 
1'=0 

Since 

one ha� x ;c= 511 mod p" for all n, i.e., r is mapped to the element of 

� Z/p"'if, which is defined by the given sequence (sn)ncN· This shows 

surjectivity. □ 

 
We cmpha<;ize that the elemcnh on the right hand side of the isomorphism 

21, ----+ �  Z/ p"Z 

 
are given formally by <;cquences of partial sum,; 

,_, 
s11 = L a.,pv,  fl=  I. 2, . 

•'=0 

On the left, however, these <;equences converge with respect to the absolute 

value and yield the clements of Zr in the familiar way, as convergent infinite 

serie� 

-'- = La1,p
1

'. 

\'=0 

 

Yet another, very elegant method to introduce the p-adic numbers come� 

about a� follows. Let Z[IXI] denote the ring of all fonnal power serie� 

i::;:: a1 X' with integer cocfllcicnts. Then one has the 

 

(2.6) Proposition. There is a canonical i�omorp/Ji.�m 

z,, � Z[[XIJ/(X - p). 
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Proof: Consider the visibly surjcclive homomorphism Z[[ X]] ----+ Zp which 

to every fonnal power series L:=oavXv associates lhc convergent series 

L�=0a,,pv. The principal ideal (X -  p) clearly belongs to the kernel 

of this mapping. In order to show that it is the whole kernel, let 

f(X) = L:=0a,X'' be a power 1,,eries such that /(p) = L�0a,,p"' = 0. 

Since Zp/p"Zp ;::::: Z/p11Z, this mcani,, that 

ao+a1p+··•+an-1Pn-l a=Omodp11 

for all n. We put, for n 2:: I. 

h" 1 = ---,I-;;;(ao +a1p + • 

Then we obtain successively 

ao= -pho, 

a1 = ho - phi, 

+a,,-,p"-'). 

a2 = h1 - ph2, etc. 

But thi5 amounts to the equality 

(u0 +a1X +a2X
2 

+ • ·) = (X - p)(h0 +h1X +h2X
2 

+ • • ). 

i.e., f(X) belongs to the principal ideal (X - p). □ 

 

Exercise 1. Ix - vii' :'.: I 1.rl1, - I.•11, I - �-+- 
1<:xercise 2. Let n he a natural number, n =a11+a1p +···+u,..1p' 1 its p-adic 

expan�ion, with OS 11, < p. and .1 = ao+a1 +·• ·+a,_1. Show that 11
1,(n !) = � 

Exercise 3. The \equcnce I. -ftj.-rtv. TIY, ... does; not converge in QI'. for any p. 

be a p-adic integer, 

 

 
multipl1cative 

Exercise 5. For every a E :f., (u.p) = l, the ,equence {a1'"),,EH converge� m Q1,. 

Exercise 6. The fields Ql , and a:_t, ure not isomorphic. unle\\ p = q. 

Exercise 7, Tl1e algebraic clo�ure of Q\, ha� mlirnte degree. 

Exercise 8. In the rmg :f.1,[[X]] of formal power �cries 

one ha� the following division with remainder. Let 

j(X) =ao+aiX +···such that pla,, for v = 0 ....... , n - 
may wnte in a umquc way 

);=qf+r. 



where q E Z,,IIX]], and IE Z1,[XI is a polynomial of degree� 11- I. 
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Hint: Let r he the operator 

= r(f(X)) 

a polynomial P(X) of degree_:::: 11 - 

I 
q(X)= W) 

 

 

 

 

 

 

">T(g) 

Show that U(X) = 
= pP(X)+X"U(Xl 

1� a well-defined power �enes m Z1,[[X]] such that r(qj) = r(g). 

Exercise 9 (p-adic Weierstrass Preparation Theorem). Every nonzero power �eric� 

f(X) = E Z,,[[X]] 

admits a unique repre�entation 

j(X) =pl'P(X)U(X). 

where U(X) 1� a unit m Zpl[XIJ llnd P(X) E Zr[X] is a monic polynomial 

satisfying P(X) "'= X" mod p. 
 
 

 

§ 3. Valuations 

 
The procedure we petformed in the previous section with the field Ql in 

order to obtain the p-adic numbers can be generalized to arbitrary fields using 

the concept of (multiplicative) valuation.  

 

(3.1) Definition. A valuation of::1 held K is a function 
 

 

enjoying the properties 

(i) Ix I � 0, and Ix I = 0 �  x = 0, 

(ii) lxyl � lxllYI, 

(iii) Ix+ yl :'.:: lxl + I.VI "triangle inequality". 

 
We tacitly exclude in the sequel the case where I I is the trivial valuation 

of K which satisfies Ix I = I for all x -I- 0. Defining the distance betwtx�n 

two points x, y EK by 

d(x.y)� 1,-yl 

makes K into a metric space, and hence in particular a topological space. 

 

(3.2) Definition. Two valuation.� of K are called equivalent if they define 



the same topology on K . 
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(3.3) Proposition. Two valuations I I I and I 12 on K are equivalent if and 

only if there exists a real numbers > 0 such Iha/ one has 

 

 

forallx EK. 

 

Proof: If I I1 = I 11, withs > 0, then I I I  and I 12 are obviomly equivalent. 

For an arbitrary valuation I I on K, the inequality Ix I < I is tantamount to 

the condition that \xn)""'l converges to zero in the topology defined by I I. 

Therefore if I 11 and I 12 are equivalent, one has the implication 
 

Now let  E K be a fixed element satisfying lyl1 > I. Lett EK, x f. 0. 

Then = IYl'i' for �ome a E JR. Let m,/n; be a sequence of rational 

numbers (with  > 0) which converges to a from above. Then we have 

lxl1 = lylf < hence 

I xn, < I ===}  xn, 12< I, 

 

so that lxl2 ::S IYl;',
1111

, and thu� lxl2 ::S IY12- Using a sequence m,/n, 

which converge<, lo a from below(*) tells us that lxl2 :::_ lyl�- So we have 

lxl2 = lyl�. For all x E K, x f. 0, we therefore get 

loglxl1  logl_vl1 

log lxl2= log IYl2 =: s, 

hence l.tl1 = ltl;. But ly11 > I implies IYl2 >!,hences> 0. r:J 

 
The proof shows that the equivalence of I 11 and I 12 is abo equivalent 

to the condition 

We use this for the proof of the following approximation theorem, which 

may be considered a variant of the Chinese remainder theorem. 

 

(3.4) Approximation Theorem. Let I 11, .... I 111 be pairwise inequivalent 

valuations of the field K and Jet a1, ... , an E K be given elemcms. Then 

for every c > 0 there exists an x E K such that 

I\ - a, I; < f  for aJJ i = I, 
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Proof: By the above remark, since I 11 and I 111 are inequivalent, there 

exif>ts a E K such that la I1 < I and la In 2: I. By the same token, there 

exists /3 EK  such that I.Bin< 1 and 1.811?: I. Putting y = /3/a, one tindi'> 

IYl1 > I and IYln < I. 

We now prove by induction on n that there exi&ts z E K such that 

lzl1 > I and 1:11 < I forj=2, 

We have just done this for n = 2. A5.rnme we have found z E K safr,fying 

lzl1>l and lzl,<l for}=2 ....... ,n-1 

If l=ln .:S I. then zm y will do, form large. If however lzl11 > I, the sequence 

Im = z111/(1 + z"') will converge to I with respect to I I1 and I In, and to 0 

with rc�pcct to I 12, ... , I In -1 · Hence, form large. lmY will suffice. 

The sequence zm /(l + zm) converges to I with respect to I 11 and to 0 

with respect to I 12.  , I In- For every i we may construct in this way a z; 

which is very do�e to I with respect to I Ii. and very do�e to O with respect 

to I 1, for j -=fa i. The element 
 

then satisfie� the statement of the approximation theorem. □ 

 
(3.5) Definition. The valuation I I is called nonarchimedean if In I stay<; 

bounded. for all n E N. O1hcrwise it is called archimedean. 

 

(3.6) Proposition. The valuation I I /.<; nonarchimedea11 if and only if it 

sutisfics the strong triangle inequality 

1., + yl "max/ 1,1, IYI}. 

 
Proof: If the strong triangle inequality holds, then one has 

 
 

 

 

 

 

 

hence 

.:SN for all n E .N. Let x.y EK and suppo�e lxl 2:. lyl . 

lxl" for v 2: 0 and one gets 

Ix+ yl" � I: I('.)I lxl''lyl',_,. � N(n + l)lxl", 
1'=0 

 

 

 

Ix+ yl .:S N11"(1 + n)11"1,·I = N11"(1 + n)11" max\ ]xi. lYI), 

and thus Ix+ yl .:S max/1.rl. lyl} by Jelling n--+ oc. lJ 

 



= 
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Remark: The strong triangle inequality immediately implies that 

lxlfclYI 1,+.vl�max/lxl-lYI). 

One may extend the nonan:himedean valuation I I of K to a valuation of 

the function field K (t) in a canonical way by setting, for a polynomial 

f(f)=ao+a1t+   +a11t
11

, 

lfl � max/ la.,I, ... , la,,I) 

The triangle inequality If+ RI :S max{lfl. Li::-1) is immediate. The proof 

that lfgl = I/ IIMI is the same as the proof ofGaur..s's lemma for polynomials 

over factorial rings once we replace the content of f in this lemma by the 

absolute value I/I. 

 

For the field Q, we have the usual absolute value I I"°= I I. thir.. being 

the archimedean valuation, and for each prime number p the nonarchimedean 

valuation I Ip- Ar.. a matter of fact: 

 

(3.7) Proposition. Every valuation of Q is equivalent to one of the valua- 

tiom I 11, or!  I::,.,- 

 
Proof: Let II II be a nonan:himedean valuation of Q. Then llnll = 

111 + • • + 111 .:S I, and there ir.. a prime number p such that IIPII < I because, 

if not, unique prime factorization would imply II \-II = I for all x E Q*. The 

set 
n� I a E Z I IlaII < I) 

ir.. an ideal of Z satisfying p'J', £;; a#- Z, and since pZ is a maximal ideal, 

we have a=  pZ. If now a E Z and a = hpm with pf h, so that hf/. a. then 

11 h 11 = 1 and hence 

 
wheres= - log IIPII/ logp. Comcquently II II is equivalent to I Ip- 

Now let II II be archimedean. Then one has, for every two natural numbcrr.. 

11,m > I, 

llmlll/logm = llnlll/logn 

In fact, we may write 

m =ao+a1n+· •+arn
1 

where a; E {O, I,  , n - I\ and nr _:s m. Hence, observing that 

r .:S logm/logn and lla;II =Ill+ ··+Ill .:Sa, 11111 .:S 11, one gets the 

inequality 

llmll.:SLlla,ll·llnll
1 

.:SL[laill 111111' .:S ( I+ 
logm) 
logn n•llnll 

 
1 
"gm/logn_ 
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Substituting here nl for m, taking k-th roots on both side�, and letting k 

tend to oo, one finally obtains 

llmll .:S llnll10
gm/logn_ or llmll1110gm.:S llnll111

"'\t
1
. 

Swapping m with n gives the identity(*)- Putting c = 1111111
/logn we have 

llnll = c10f'//, and putting c = e'· yields, for every positive rational number 

x =a/b, 
llrll = eslog, = lxl' 

Therefore II II is equivalent to the usual absolute value I I on Q. □ 
 

Let I I be a nonarchimedean valuation of the field K. Putting 

v(x) = - log Ix I for \- i=- 0.  and u(O) = oo, 

we obtain a function 
v:K ------ +RU{oo} 

verifying the properties 

(i) v(_t) = oo {::::::::} \- = 0, 

(ii) v(xy) = v(_t) + v(y), 

(iii) v(x + y) 2:. min{v(x), v(y)}, 

where we fix the following conventions regarding element� a E IR and the 

�ymbol oo: a < oc, a+ oo = x, oo + oo = oo. 

A function v on K with these properties is called an exponential 

valuation of K. We exclude the case of the trivial function t'(x) = 0 

for x f. 0, v(O) = oo. Two exponential valuations v1 and v2 of K are called 

equivalent if v1 = sv2, for some real numbers > 0. For every exponential 

valuation v we obtain a valuation in the sense of (3.1) by putting 

lxl = q-v(\)' 

forsome fixed real number q > I. To dislingui5h it from v, we call I 
an a�sociated multiplicative valuation, or absolute value. Replacing v by 

an equivalent valuation sv (i.e., replacing q by q' = q') changes I I into 

the equivalent multiplicative valuation I I'. The condition� (i), (ii). (iii) 

immediately imply the 

 

(3.8) Proposition. The subset 

o � { x E K I v(x) ce O} � { x E K I 1-' I Cc I} 

is a ring with group of units 

o' � {x EK I v(x) �o} � {x EK I lvl � I} 

and. the unique maximal ideal 

p � {XE  KI V'(x) > o} � {XE  KI I.ti < I} 
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o j:;, an integral domain with field of fractions K and has the property that, 

for every x E K, either i: E o or .c I 
E o. Such a ring is called a valuation 

ring. Its only maximal ideal is p = {x E o I x-1 <f. o). The field o/p is called 

the residue class field of o. A valuation ring is always imegrally closed. For 

if x E K is integral over (), then lhere is an equation 

xn +aix"-1 +··•+a  =0 

with a1 E o and the hypothesis x .j. a, <,o lhat x-1 
E o, would imply lhe 

contradiction x = -a1 - a2x-1 - • - a11(x-1)"-1 E o. 

 
An exponential valuation 1• i5 called discrete if it admits a mrnllest 

positive value .L In this ca�e, one finds 

v(K*) =sZ. 

ll is called normalized if s = I. Dividing by � we 

nonnalized valuation without changing the invariants 

so, an clement 

always pass to a 

Having done 

Jr E o  wch that  v(;r) = 1 

is a prime element, and every element., E K* admits a unique rcprc�entation 

 

with m E Z and u E 

U=lJT-mE 

For if v(x) = m, then v(, JT-m) = 0, hence 

 

(3.9) Proposition. lfv ha di&crete exponential valuation of K, then 

o�/xEKlv(x)2>0} 

is a principal ideal domain, hence a (foc:rete valuation ring (.�cc I, (11.3)). 

Suppose 1• is no1malized. Then the non7ero idcafa of o are given by 

p"=nno=/xEKlv(x):::_n},  n:::_0, 

where rr is a prime element, i.e., i•(n) = 1. One has 

pr1/pn+1 :::::::: a/p. 

 

Proof: Let a #- 0 be an ideal of o and x -/=- 0 an element in a with 

smallest po5sible value v(x) = n. Then x = u nn, u E o*, so that rr" o £ a. 

If y = F JTm E a is arbitrary with F E o•, then m = v(y) 2:. n, hence 

y = (8 n111 ")rr" E rrno, so that a= rr11o. The isomorphism 



pn /pn+I :::::,: o/p 

remits from the correspondence arr" r-+ a mod p. □ 
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In a discretely valued field K the chain 

0 2 p 2 p
2
 2 p

3
 2 

consisting of the ideals of the valuation ring o forms a basis of 

neighbourhoods of the zero element. Indeed, if v is a nomtalized exponential 

valuation and I I=  q-1' (q > I) an associated multiplicative va\ualion, then 

I 
p"�{xEKll,I<�) 

 
As a basi5 of neighbourhoods of the element 1 of K*, we obtain in the 

same way the descending chain 

= u(
0l 2urn2u(2> 2 

of rnbgroups 

 
u(ll)=l+prl={,-EK*lll-xl<�).  n>O, 

qn-1 

 

of o*. (Observe that I +p11i� closed under multiplication and that, if x E U ln), 

then so is x-1 because 11 -x-11 = lxl-1lx -11 =II-xi<q}_1.) u(nJ 

is called then-th higher unit group and u(IJ the group of principal units. 

Regarding the successive quotients of the chain of higher unit group:;., we 

have the 

 

(3.10) Proposition. v•;u(II) - (o/i:n* i:Jlld urni;u(n+l) - o/p, for 

n ::'.: L 

 

Proof: The fir&l isomorphism is induced by the canonical and obviously 

surjective homomorphism 

-----+ (o/p11)*, u i-------+ u mod p". 

the kernel of which is u(nl. The 5econd isomorphism is given, once we 

choo&e a prime element Jr, by the surjective homomorphism 

u(
111=l+rr11o-+o/p.   l+rr"ai ------- +amodp, 

which has kernel u(
11+1l. 0 
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 = JIN,c1IR(z)I is the only valuation of C which 

Exercise 2. What i� the relation between the Chinese remainder theorem and the 
approximation theorem (3.4)? 

Exerci�e 3. Let k be a field and K = k(t) the function field in one variahle. Show that 

the valuation� Vp as�ociated to the prime ideals p = (p(tJ) of k[t], together with the 

degree valuation v.,._,. are lhe only valuations of K. up to eqrnvalenee. What are the 

residue das� field�? 

Exercise 4. Let o he an arbitrary valuat10n rmg with field of fraction� K, 

and let I' = Then r becomes a totally ordered group if we define 
rmodo*:::y o•tomean.x/yEO. 

Write r additively and show that the function 

v:K------'>- I'U{cx:::}, 

v(O) = ex::. v(.t) = x mod o• for x EK', satisfies the conditions 

I) v{x) =ex::-==} x = 0, 

2) v(ry) = v(x) + v(r), 

3) v(r + y) ;=:- min{v(r), v(y)). 

v is called a Krull valuation. 

 
 
 

 

§ 4. Completions 

 
(4.1) Definition. A valued field (K, I I) is called complete if every Cauchy 

.�equencc [a11lnect� in K converges to an element a E K, i.e., 
 

 

Here, as usual. we call {a11}11Er, a Cauchy sequence if for every F > 0 

there exists N E N such that 

la11-aml<F forall  n.m:=:N. 

From any valued field (K, I I) we get a complete valued field (R.1 I) by 

the process of completion. Thi� completion is obtained in the same way as 

the field of real numbers i� com,tructed from the field of rational numbers. 

Take the ring R of all Cauchy sequences of (K, I I), consider therein the 

maximal ideal m of all nulbequem:es with respect to I I, and define 

fi�R/m. 
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One embeds the tield K inlo f by sending every a E K to the class of the 

constant Cauchy sequence (a.a.a, ... ). The valuation I I is extended from 

K to f by giving the clement a E R which is represented by lhc Cauchy 

sequence {an}nEN the absolute value 

lal = }�mx Ian I. 

This limit exisb because I 1a11I - lam 11 .:S la11- am I implies that Ian I is a 
Cauchy sequence of real numbers. As in the case of the field of real numbers, 

one proves that f is complete with respect lo the extended I I, and that each 

a E f is a limit of a sequence {au) in K. Finally one proves the uniqueness 

of the completion cR. I I): if cf'.I n is another complete valued field that 

contains (K, 1 I) a" a dense subfield, then mapping 

 

 

gives a K-isomorphi5m o: R-+ R1 
such that lal = laal' 

 
The fields IR and C are the most familiar examples of complete fields. 

They are complete with rc5pccl to an archimedean valuation. Amazingly enough, 

there are no others of this type. More precisely we have the 

 

(4.2) Theorem (Osrnowm). Let K be a field which i.� complete with respect 

to an an:himcdean valuation I I. Then there is cm isomorphism er from K 

onto lR or C satisfying 

lal = laal' fora/J a EK. 

for some fixed s E (0, I]. 

 

Proof: We may assume without l0'-5 of generality that R <:; K and that the valuat'.on 

I I of K i� an exten�ion of the usual absolute value of IR. In fact, replacing I I 

by I I� 
1 

for a 5UJtable s > 0, we may assume by (3.7) that the 

restriction of I I lo Q is equal to the usual absolute value. Then taking the 

closure Q in K we find that ij is complete with to the restriction 

of I I to ij, in other words, it is a completion of  I I). In  of the 

uniqueness of completions, there is an isomorphi<;m a : IR -+ such that 

lal = l(Jal as required. 

In order to prove that K = IR or = C we 5how that each � E K satisfies 

a quadratic equation over R.. For this, consider the continuous function 

f : C -+ IR defined by 



0 

2n 2n 

+F +E 
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Note here that z + Z, zZ E IR � K. Since :li!1;, /(z) = oo. f"(z) has a 

minimum m. The set 

s�[,ECIJ<,J�m) 

i� therefore nonempty, bounded, and closed, and there b a z ES �uch that 

lzol 2: 1:1 for all z ES. It suffices to show that m = 0, because then one has 

the equation e - (zo + Zo)� + zoZn = 0. 

Assume m > 0. Consider the real polynomial 

g-(x) = x2 - (z + Zo).i + :o.Zo + c:, 

where O < 1-; < m, with the roots 

hence lz1 I > lzol and thus 

EC. We have ::121 = z0Zn+F, 

/(zi) > m. 

For fixed n E N. consider on the other hand the real polynomial 

G(x) � [s(x) -sr - (-el"� TT<x -a,)� TT<x - o,) 
1--cl !=I 

with roots a
1

. , a211 E C.  It follows that Ci(zi) = O; �ay, :
1 
= a

1
. We 

may substitute � E K into the polynomial 

2" 

G(x)
2 ,=I](x2 

-(a1 +CX,)x +a,ii,) 

 

and get 

 

 

IG<s>l'�D'",r<a,):C l(a,)m2"-'- 

 
From this and the inequality 

IG(�)I .:S 1�
2 

- (zo +Zn)� +zoZol" + 1-cln = j(zol'1  11 = m11 11
• 

it follow� that .f(ai)m211
• 

1 _:s (m" + rn)2 and hence 

-/ ( 0-1) <( !+( F )-")'. 
m- m 

For n ➔ oo we have .f(a1) =::: m, which contradicts the inequality /(a1) > m 

proved before. D 

 

In view of 0.\·11ww\·K1's theorem, we will henceforth restrict attention to 

the ca�e of nonarchimedean valuations. In this ca�c it b usually expedient - 

hoth with regard to the �ubstance and to practical technique - 10 work with 

0 



the exponential valuations l' rather than the multiplicative valuation5. So let v 
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be an exponenlial valuation of the field K. It is canonically continued to an 

exponential valuation fi of the completion R by setting 

f•(a) = }��v(a11), 

 

where a = }��a11 E R, a11 E K. Observe here that the sequence v(a11) 

has to become stationary (provided a -=/=- 0) becauc;e, for n 2'.: no, one 

has V(a - an)> f,(a), so that it follow& from the remark on p. 119 

v(a11) = f)(an - a+ a)= min{ D(a,, - a), V(a)I = il(a). 

Therefore it follows that 

 

and if v is discrete and normalized, then so is the extem,ion D. ln the 

nonarchimedean case, for a sequence {a11}11'=H to he a Cauchy sequence, 

it suffices that a11 t-1 - an be a nullsequence. In fact, L1(ar1 - 2: 

min,,,,-1<.11{v(a1+1 - a1)\. By the same token an infinite serie� 

convc�ges in R if and only if the �cquence of its lCnns av is a nuilsequence. 

The following proposition is proved exactly as its analogue, propo:,,ition (2.4), 

in the special case (Q, vp)- 

 

(4.3) Proposition. Ifo £ K, resp. 3 £ f, i:,, the valuation ring oft,, re.�p. 

ofV, and p, re.�p. p, is the nrnximal idea/, then one h:1:,, 

3/p"" o/p 

and. if v is discrete, 011e has furthermore 

 

 
Generalizing the p-adic expansion to the case of an arbitrary discrete 

valuation v of the field K, we have the 

 

(4.4) Proposition. Let R s; C"! be a system of representatives for K = of£ 

such that OE R, ,wd let n E o be a prime element, Then every x -=fa 0 in K 

admits a unique representation as a convergent series 

x = nm(an +a1n +a:(n:
2 + • •) 

where a1 ER, a0 -I=- 0, rn E Z. 
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Proof: Let x = n111u with u E 3* Since 3/P ;:: c,/p, the class u mod P 
has a unique representative a0 ER, a0 -=f=. 0. We thm have u = a0 + nh1, 

for some h1 E 3. Assume now that a0.  ,an-I E R have been found, 

safo,fying 

u=ao+a1rr+   +an_,rrn·-1+n"hn 

for some h11 E 3, and that the a, are uniquely detennined by this equation. 

Then the representative an E R of hn mod rrO E ;:: 

uniquely detennined by u and we have hn = E 3. 

Hence 

u =ao+a1rr+  +an-J.iTn-l +ann11 +n11+1h,,+1 

In this way we find an infinite series L�o a•.rr� which is uniquely detennined 

by u. It converges to u because the remainder tenn _;rn+I bn+I tends to zero. □ 
 

 

In the case of the field of rational numbers Q and the p-adic valuation vi' 

with its completion Qp, the numbers 0, I.  .. p - I fonn a sy5tem of 

repre�entatives R for the residue class field Z/ pZ of the valuation, and 

we gel back the representation of p-adic numbers which has already been 

discussed in §2: 

X = p
111

(ao +a1p +a2p
2 

+ ••), 

where O :S ai < p and m E Z. 

In the case of the rational function field k(t) and the valuation l'p attached 

to a prime ideal p = (t - a) of kltJ (see S2), we may take as a system of 

representatives R the field of coefficients A itself. The completion then turns 

out to be the field of formal power series k((x)), x = t - a, consisting of 

all fonnal Laurent 5crics 
 

with a; E k and m E Z. The motivating analogy of the beginning of thi� chapter, 

between power serie� and p-adic numbers. thus appears as two 

�pccial instances of the same concrete mathematical situation. 

In§ I we identified the ring z,, of p-adic integers as being the projective 

limit �  Z/ p"Z. We obtain a similar result in the general setting of 

valuation theory. To explain thi�, let K be complete with respect to a discrete 

valuation. Let o be the valuation ring with the maximal ideal p. We then 

have for every n 2:. I the canonical homomorphisms 

o-----+ o/pn 
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and 

o/p �  o/p
2
 � o/p' � 

This gives us a homomorphism 

o------+ � o/p11 

 

into the projective limit 

� o/p
11= { (.l,,) E fl o/p

11I A11(X,,11) =x11). 

n n=I 

Considering the rings o/))11 as topological for the tfocretc topology, 

gives us the product topology on n�-i  and the projective limit 

�  v/pn become� a lOpological ring in a canonical way. being a closed 

subset of the product (see chap. IV, S 2). 

 

(4.5) Proposition. The canonical mapping 

0------+ �  o/p 

 

is an i.�omorpliism and a homeomorphism. The s;:1me is true for the mapping 

a* -  �  o•;u(n)_ 

 

 

Proof: The map is injective since its kernel is n�=I pll = (0). To prove 

surjectivity, let p = no and let R � o, R 3 0, be a system of rcprcscmativc5 
of o/p. We saw in the proof of (4.4) (and in fact already in ( 1.2)) that the 

elemenl� a mod µn E v/pn can be given uniquely in the fonn 

a= ao + a11T + ··· + an-11Tn-l mod pn, 

:�:�::1 ER. Each elements E �  o/p
11

is therefore given by a sequence 

 

with fixed coefficients a, E R, and il i� lhu� the image of the clement 

x = }i�s,, = L;=o a,.rr'' E o. 

The sets Pn = flv�•n o/pv fonn a basis of neighbourhoods of the zero 

element of TI;"."=1 o/pv. Under lhe bijection 

11 



11 
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the basis of neighbourhoods of zero in o is mapped onto the ba5i5 of 

neighbourhoods P11 n � of zero in �  o/pv. Thus lhe bijection is 

a homeomorphism. It induces an isomorphism and homeomorphi:;.m on the 

group of unit5 

o* � ( 1i..!!! 0/))11)* � � (0/):lll)* � 1i..!!! t1•;u(nJ. □ 
 

 

One of our chief concerns will be to study the finite extensions LI K of a 

complete valued field K. This means that we have to tum to the question of 

factoring algebraic equations 

f(x)=a11\"+an 1X
11

-
1
+  +ao=O 

over complete valued Jicld&. For this, Hensel's seminal "lemma" i� of 

fundamental importance. Let K again be a field which is complete with 

respect to a nonarchimedean valuation I I- Let Cl be the corresponding 

valuation ring with maximal ideal p and re:;.idue class field K = o/p. 

We call a polynomial f"(x) = a0 + a1.i + • • • + a x
11 

E o[x] primitive 
if f(r) =ft. 0 mod p, i.e., if 

 

 

(4.6) Hensel's Lemma. If a primitive polynomial f(\) E o[xl admit.� 

modulo p a factoriLation 

f(x) =R(x)h(x) mod p 

into relatively prime polynomia/8 g. h E k"[_i ], then f"(x) admih a factoriza­ 

tion 

/(>) � g(x)h(x) 

into polynomials g, h E ofxl .\uch that deg(g) = dcg(g") and 

g(x) =,if(,) mod p and  h(x) = h(x) mod p. 

 
Proof: Let d = deg(/), m = deg(,if), hence d - m :::_ deg(h). Let go, 

ho E o[x J he polynomials such that  mod p, ho = h mod p and 

dcg(i;ro) = m, deg(h0) .:S d - m. Since = I, there exist polynomials 
a(x), h(x) E o[x] satisfying ag0 + hh0 = 1 mod p. Among the coefficients 

of the two polynomials l - g0h0 and ag0 + hh0 - 1 E p[xJ we pick one with 

minimum value and call it rr. 
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Lel m, look for the polynomials g and h in the following fonn: 

g=go+p1n+p2n
2

+  

h = ho +q1n +t12n
2 + · 

where p1, q, E o[x] are polynomials of degree < m. resp. :'.::: d - m. We then 

determine successively the polynomials 

!?n-1 =Ro+ P1JT + ··· + Pn 1Jfn-l, 

hn-1 =ho+ q1n +··· + q,,_1nn-l, 

in such a way that one has 
 

Passing lo the limit as n --+ oo, we will finally obtain the identity f = gh. 

For n = 1 the congruence is satisfied in view of our choice of ;r. Lel us 

aswme thal it is already e�tablished for some n � I. Then, in view of the relation 

 

lhe condition on g,,. h11reduces to 
 

Dividing by n", this meam 
 

where j� = Jf-llu -  ffo-1hn- i) E oLxJ. Since goa + hoh = I mod Jr, 

has 

Roaf�+ hoh/11 = fn mod IT. 

At this point we would like lo put qn = af;, and p11= hf;,, but the degrees 

might be too big. For this reason, we write 

h(x)fn(.r) = q(.,),:o(x) + P11(x), 

where deg(p11) < deg(i;:-0) = m. Since  = 8 mod p and deg(Ro) = deg(!{), 

the highest cocfllcient of ,:0 i� a unit: q(r) E o[x] and we obtain the 

congruence 

go(afn + hoq) + hoJJ11 = !11 mod Jf. 

Omitting now from the polynomial af11+ h0q all coefficients divisible by :rr, 

we get a polynomial q11such that g0q11+ h0p11= f,, mod ;r and which, in view 

of deg(.f�) :'.::: d, deg(g
0

) = m and deg(h
0
p

11
) < (d - m) + m = d, has degree :'.::: 

d - m as required. □ 
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Example: The polynomial xP-1-1 E Z,,lx] splits over the residue class field 

z,,JpZp = IF,, into distincl linear faclors. Applying (repeatedly) Hensel's 

lemma, we see that it also splits into linear factors over z,,. We thus obtain the 

astonishing result that the field !Qr> of p-adic numbers contains the (p- 1)-th 

roots of unity. These, together with 0, even form a system of representatives 

for the residue class field. which is clo5ed under multiplication. 

 
(4.7) Corollary. Let the field K be complete with respect to the nonar­ 

chimcdcan valuation I- Then, for every irreducible polynomial f(x) = 
ao + a1x + •· E Klx] .\uch that a0a" -=I=- 0, one ha.� 

lfl � max/ laol- la,,I) - 

ln particufar, an = 1 ,md a0 E o imply that f E o[x ]. 

 

Proof: After mulliplying by a suitable element of K we may a%ume that 

/ E o[x j and I/ I = I. Let a, be the first one among the coefficients 

ao, ... , an 5uch that la, I = I. In other words, we have 
 

 
If one had max{la01,la11I] < I, then O < r < n and the congruence would 

contradict Hensel's lemma. □ 

 
From this corollary we can now deduce the following theorem on 

extensions of valuations. 

 

(4.8) Theorem. Let K be complete with respect to the valuation I I. 
Then I I may be extended in a unique way to a valuation of any given 

algebraic extension LIK. Thi!! extension is given by the fo1mula 
 

when LI K hi:IS finite degree n. In thi.� case L i.� :.igain complete. 

 

 
Proof: If the valuation I I is archimedean, then by Ostrowski's theorem, 

K = I� or C. We have = zZ = lzl2 and the theorem is part 

of cla55ica1 analysis. So let I be nonarchimedean. Since every algebraic 
extension LIK is the union  its finite subextensions, we may assume that 

the degree n = [L : K j is finite. 
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Existence of the extended valuation: let o be the valualion ring of K and('.) 

its integral closure in L. Then one has 

The implication a E O ⇒ N1.w(a) E o is evident (see chap. I,§ 2, p. 12). 

Conversely, lela EL*and NLw(a) E o. Let 

f'(x) = xd +a,1_ 1xd-l + • • • +ao  E Kfxl 

be the minimal polynomial of a over K. Then N1 

laol::: I, i.e., a0 E tJ. By (4.7) thi:;. gives f(x) E 

= ±ari1 E o, so that 

a E CJ. 

For the function lal = VINL1K(a)I, the conditions lal = 0 {=cc> a= 0 

and la/3 I = la 11/3 I are obvious. The 5trong triangle inequality 

la+ #I:' max{ lal, l�I} 

reduces, after dividing by a or fJ, to the implication 

lal::: I� la+ II::: I, 

and then, by (*). to a E O ⇒ a+ I E 0, which i5 trivially true. Thus 

the fonnula lal = VINL1da)I does define a valuation of Land, restricted 

to K, it clearly gives back the given valuation. Equally obviously it has ('.) 

as its valuation ring. 

Uniqueness of the extended valuation: let I I' be another extension with 

valuation ring CJ' Let�, resp.�', be the maximal ideal of 0, resp. O' We 

show that () c; ()'. Let a E (), ('.)' and let 

f(x) = t" +a1x"-1 +-  +ad 

be the minimal polynomial of a over K. Then one has a1,  , a,1 E o and 

a-1 E �', hence I = -a1a-1 - --- - a,1(a-1)J E �', a contradiction. 

This shows the inclusion O c;: ('.)'. In other word5, we have that 

lal ::: I ⇒ lal' ::: I and thi:;. implies that the valuations I I and I I' 

are equivalent. For if they were not, then the approximation theorem (3.4) 

would allow us to find an a EL such that lal:;: I ⇒ lal' > I. Thu5 I I and I 

I' are equal because they agree on K . 

The fact that L is again complete with respect to the extended valuation 

is deduced from the following general result. C 

 

(4.9) Proposition. Let K be complete with respect to the valuation I and 

Jet V be an n -dimemional normed vector space over K. Then, for any 

, v,, of V the maximum norm 
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is equivalent to the given norm on \I. In parlicufar, \I is complete and the 

i.mmorp/Jism 
 

is a homeomorphism. 

 

 
Proof: Let v1.  . Vn be a basi5 and II II be the corre�ponding maximum 

norm on \I. It suffices to show that, for every nonn I I on V, there exist 

constants p, p' > 0 such that 

 

Pllxll :':: lxl :':: p'llxll  for all .t EV. 

 
Then the norm I I defines the same topology on V m, the norm II II. 

and we obtain the topological isomorphism K11 
➔ V, (x1, .... Xn)r--?' 

x1v1 +· ·+x11vn. In fact. II II b transformed intotbemaximum norm on Kn. 

For p' we may obviously take lv11 + •·· + lv,,I. The existence of pis 

proved by induction on n. For n = l we may take p = Iv11- Suppose that 

everything is proved for (n - [)-dimensional vector spaces. Let 

 

V1=Kv1+  +Kv,_1+Kv1r1+  +Kv,,. 

 
so that V = V1 + Kv,. Then V, i5 complete with respect to the restriction 

of I I by induction, hence it is clo�cd in V. Thus V, + v, is also closed. 

Since Of/. LJ�=l (\/; + 1•1), there exists a neighbourhood of O which is disjoint 

from u;1
=lW1 + V1), i.e., there exbb p > 0 such that 

Ill.'1 + v, I 2:. p for all  w, E V;  and all i = 1. 

For x = x1v1 +  • +.1,,v,, -=I- 0 and Ix, I= max{lx11}, one finds 

+v, + 2:. p. 

�o that one has lxl 2:. pix, I= Pllxll. □ 
 

 

The fact that an exponential valuation v on K a%ociatcd with I I extends 

uniquely to L is a trivial consequence of theorem (4.8). The extension w is 

given by the formula 

ifn = [L: Kl< oc. 
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Exercise 1. An infinite algebrail'. cxtcn�ion of a complete field K is never complete. 

number and 0. Show that there exist 

polynomial� ... I �uch that 

W"(Sn.S1,  )=W,,(Xo.X, ..  J+Wn(Yo,Y1 ...... ). 

W/)(Po, P1, ... ) = Wn(Xu,X1 ....) W,,(Yo. Y1,. 

Exerci�e 3. Let A he a commutative ring. For a= (a0,a1•. ........ ). h=(h0.h1•.• ), 

a,,h,EA,put 

a+ h = (S0(a, h). 81(a,h), ... ) ,  a· h = (Po(a, h). P1(a.h), ........ ) . 

Show that with the\e operation\ the vectors a = (a0, ll1, form a commutat1ve 

ring W (A) with I. It is rnllcd the ring of Witt vectors over 

Exercise 4. Assume pA = 0. For every Will vector a= (a0,a1, ... ) E W(A) 

consider the "gho�t component�" 

a1
"
1 = W,,(a) =a{+ pa(·'+ ··+ p/)a" 

a� well as the mapping\ \/.F: W(A)----+ W(A) defined hy 

Va= (0,an,l/1, ... ) and Fu= (u(;.u(' ....... ), 

called re�pectively "trnm,fer" (''Ver�chiebung" in German) and "Frobeniu5" Show 
that 

(Va/"'= pa'"-11 and a'"1 = (Fa)'"1 + p"a • 

Exercise 5. Let A be a field of charactcristJC p. Then V 1� a homomorphism of the 
additive group of W(A) ;-iml Fis ;-iring homomorphism, and one ha\ 

\!Fa= F\la = pa. 

Exercise 6. If A 1� a perfect field of charactens11c p, then W(k) 1� a complete 

1.facrelc valuat10n ring with residue cla�� field L 
 
 

 

§ 5. Local Fields 

 
Among all complete (nonarchimedean) valued field5, tho�e arising as 

completions of a global field, i.e., of a finite extension of either IQ or l�'p(t), 

have the most eminent relevance for number theory. The valuation on rnch 

a completion is discrete and has a finite residue da�� field, as we shall see 

�hortly. In contrast to the global field5. all field� which are complete with 

respect to a discrete valuation and have a finite residue cla�� field are called 

local fields. For such a local field. the normalized exponential valuation is 

denoted by l'p, and I Ip denote� the absolute value normalized by 

\X\p = (/-l'µh) _ 

where q is the cardinality of the residue class field. 
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(5.1) Proposition. A local field K is locally comp,1ct. Its valuation ring o 
is compacl. 

 

Proof: By (4.5) we have o ;:;:::: � v/j:)11
, both algebraically and topo­ 

logically. Since j:lv /p''+1 ;:;:::: o/p  (see (3.9)), the rings o/p" arc finite, 

hence compact. Being a clo<;ed subscl of the compact product 1 o/p11
, 

it follows that the projective limit � o/p11
, and thu:;. o, i:;. also compact. 

For every a E K, the set a + CJ is an open, and at the same time compacl 

neighbourhood, so that K is locally compact  □ 

 
In happy concord with the definition of global fields a<; the finite extension:;. 

of Q and IF p(t), we now obtain the following characterization of local field<;. 

 

(5.2) Proposition. The local fields are precisely 1hc Jinite extensions of tl1e 

fields QP and IFp((t)). 

 

Proof: A finite extension K of k = Q,, or k = F,,((t)) is again complete. 

by (4.8). with respect to the extended valualion lal = JINK1da)I, 

which itself i<; obviously again discrete. Since K lk is of finite degree, 

so is the residue cla<;s field extension for if X 1, ... , X11 E K 

arc linearly independent, then any choice  prcimagc<; x1,  , x11 E K 
is linearly independent over k. Indeed, dividing any nontrivial k-lincar 

relation A1X1 +  + A11x11= 0, A1 Ek, by the coefficient A1 with biggest 

ab<;olute value, yields a linear combination with cocflicients in the valuation 

ring of k with I a:;. i -lh coefficient, from which we obtain a nontrivial relation 

I1X1 +  + I11X11= 0 by reducing lO K. Therefore K is a local field. 

Conver:;.ely, let K be a local field, v its discrete exponential valuation. 

and p the charactcrislic of its residue class field K. If K has charactcri�tit 0, 

then the restriction of 11 to IQ i<; Ctjuivalent to the p-adic valuation Vp of Q 

becau:;.c v(p) > 0. In view of the completeness of K, the closure of Q in K 

is the completion of Q with respect to vp, in other words Q1, <; K. The 

fact that K IQp i:;. of finite degree results from the local compactness of the 

vector '-pace K, by a general theorem of topological linear algebra (�ee I 181, 

chap. I, *2, 11° 4. th. 3), but it abo follows from (6.8) below. If on the other 

hand the characteristic of K is not equal to Lero, then it has to equal p. 

In this ca:;.c we find K = K((t)), for a prime element t of K (see p.127), 

hence IB'p((t)) <; K. In fact, if K = IFp(a) and p(X) E 18'1,[XJ <; K[X] i:;. 

the minimal polynomial of a over Ff!, then, by Hensel'� lemma, p(X) splits 

over K into linear factor�. We may therefore view K a� a �ublicld of K. and 

then the elements of K Lum out to be, by (4.4), the Laurent series in I with 

coefficients in K. □ 
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Remark: One can show that a field K which is locally compact with respect 

to a nondiscrete topology i!> isomorphic either to R or tC. or lo a finile 

extension ofQf' orlE'p((t)), i.e., to a local field (see [1371, chap. I, §3). 

 

We have ju5t seen that the local fields of characteri5tic p are the power 

series fields Fq((t)). with q =pf. The local fields of characteristic 0, i.e., 

the finite extensions K IQ\) of the fields of p-adic numbers Q1)' are called 

p-adic number fields. For them one has an exponential function and a 

logarithm function. In contrast to the real and complex case, however, the 

fonner is not defined on all of K, whereas the latter is given on the whole 

multiplicative group K •. for the definition of the logarithm we make use of 

the following fact. 

 

(5.3) Proposition. The multiplicative group of a local field K admit!> the 

decomposition 

K* = (Jf) X /.-lq 1 X 1/\ll. 

 

Here n i1, a prime clement, (n) = /;r� I/.. E Z\. q = #K is lhc number of 

clements in the residue class field K = o/p, and u(IJ = I+ p is the group 

of principal units. 

 

Proof: For every a E K�, one has a unique representation a = rrnu with 

n E Z, u E  so that K* = (rr) x tJ*. Since the polynomial Xq-l - I splib 

into linear factors over K by Hensel's lemma, o* contains the group /.Lq-l of 

(q - !)-th roots of unity. The homomorphism  ---+ K*, u f---7, u mod p, has 

kernel U\IJ and maps /.-lq-l bijectively onto K*. Hence  = /Lq-l x U(ll_ □ 
 

 
(5.4) Proposition. For a p-adic number field K there is a uniquely 

de/e1mincd continuous homomorphism 

log: K*--,,. K 

1,uch that log p = 0 which on principal uni ls ( 1 + 1) E Ur 11 is given by the 

 
\"2  Xl 

log(l + x) = r - 2 +)  - • 

 
Proof: By §4, we can think of lhe p-adie valualion Vp of Qr> a1> exlcnded 

to K. Observing that v1,(x) > 0, so that c = p''l'1'l > I, and p''P1'') _:s v, 
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giving vp(v) ,:S � (with the w,ual logarithm), we compute the valuation of 

the tenm, x''/v of the series, 

x1') Inc  Inv  ln(c''/v) 

Vp ( -;  = VVp(X)- 1!,,(v) � V Inp  -  � = lnp. 
 

This show<, that xv /v is a nullsequcnce, i.e., the logarithm series converges. 

It defines a homomorphi�m because 

log((! +x)(l + y)) � log(! +x)+log(l +y) 

is an identity of fonnal power series and all serie� in it converge provided 

l+x,l+yEU(ll_ 

For every a E K*, choo,;ing a prime element TC, we have a unique 

representation 

a= TC1'p(a)w(a)(O!), 

where Vp = evf' is the nonnalized valuation of K. w(a) E /1--q-l, (a) E u(IJ. 

As sugge�ted by the equation p = TCew(p)(p), we define log TC = -} log (p) 

and thus obtain the homomorphism log: K* --+ K by 

log a= Vp(U') log TC+ log (a). 

Il is obviously continuous and has the property that log p = 0. If A: K* ---+ K 

is any continuation of log : ij(ll --+ K such that A(p) = 0, then we 

find that A(s") = �A(t" 1) = 0 for each t E /.L11_1. It follows that 

0 = eA(TC) + A((p)) = eA(TC) + log(p), so that A(TC) = log TC, and thus 

A(a) = vp(a)A(TC) +A({a)) = 1Jp(a) log TC+ log {a) = \oga, for all a E K*. 

log is therefore uniquely detennined and independent of the choice of TC. 

LJ 

 

(5.5) Proposition. Let K IQ1, be a p-adic number field with valuation ring 

o and maximal ide:il p, and let po= i-,". Then the power .�eries 
 

x2 .\ 

exp(x)= l+x+-+- +··,md 
2! 3! 

 

�2  '7 

log(!+,)�,-"-+"- - 
2  3 

yield, for n > -,;-=:-T, two mutually inverse isomorphi.�ms (and homeomor­ 

phisms) 

 

 



We prepare the proof by the following elementary lemma. 
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(5.6) Lemma. Let v = L'.�o a, p', 0 .:Sa, < p, be the p-adic expansion of 

the natural number v E N. Then 

1  , 
vp(v!) = -- La;(p' - I). 

P - I 1=0 

 

 

Proof: Let [c] signify the biggest integer _:s c. Then we have 

Lv/p] = a1+a2p+··•+a,[/ 1
, 

fv/p
2l = a2 +  +arp'-

2
, 

 

a, 

Now we count how many number� I, 2, ... , v are divisible by p, and then 

by p2, elc. We find 

Vp(v1.)=[v/pl+  +Lv/p,.]=a1+(p+l)a2+ ··+(pr-I+ ··+l)a, 

and hence 

(p-  l)vp(v!) = (p-  l)a1+(p2 
- l}a2 + ··+ (p' - l)a,. = t a1(p1- I). 

i-0 

lJ 

 
Proof of (5.5): We again think of lhe p-adic valuation ul' of  as being extended 

to K. Then up = eu,, is the normalized valualion of K.  every natural 

number v > I, one has the estimate 

Up(l!) <-1-· 
v- I- p- I 

foirf v = pav0, with (v0. p) = I and a> 0, then 

vp(v) =   a_< _a_� _l  < _1_. 

v -   I p"vo - I- p" - I p - Ipa-  I++p + I-  p -  I 
 

 

 

For Vp(:) > �.: #- 0, i.e.. l'p(z) > p �I,  thi� yields 

rl'(�)- u ,(z) = (v-  l)vp(z) -vp(v) > (v - 1)(-
1

- - �)  �O, 

L' 1 p- I  11 - I 

and thus l'p(log(I + z)) = vp(:). For n  >   !:._, log therefore map1> uM 

into p11. "- 
1 

For the exponential serie� L� 1  we compute the valuation� 

Vp(.1 '' /v   !) as follow!,. Writing, for v  > U, 

v = ao +a1p + • +a,.p', U _:::: a, < p, 



vi'(�)= = 

§ 5. Local Field� 139 

we gel from (5.6) lhat 

1 1 
vp(v!) = - - ±a,(p1 - I)= - -(v-(uo+a1 + •+a,)). 

p- I ,=o p-  I 

Putting sv = a0 + • • + a, thi5 becomes 

vvp(x) - � v(vp(x) - -
1

-) +-'-"- 
v! p-I p-1 p-1 

For vp(x) > ;=-T, i.e., Vp(r) > �' lhis implies the convergence of the 

exponential series. lf furthermore x -/=- 0 and v > 1, then one has 

x") v - I  .'11, - 1  S1, - I 
v,,(� -v,,(.,)=(v-l)vp(x)-�+p-=-T'>p--=--T2':.0. 

Therefore vp(exp(x)- I) = vp(X), i.e., for n > 7, exp maps lhe group p11 

into u(nJ. Furlhennore, one has for vp(x), > P � 
1 

that 

explog(l+z)=l+z  and  logexpx=.t, 

forthese are identiticf. of formal power series and all of the 5crics converge. 

This prove,;, the proposition. □ 

 
For an arbitrary local field K, the group of principal unitf> u(ll is a Zp- 

module (where p = char(K)) in a canonical way, for every I +x  E U(IJ 

and every z E Zr,, one haf. the power (I + x): E This is a con�equence 

of the fact that u(ll/ U("�I)has order q" for all n (where q = #o/p - the 

reason for this is that u(IJ ;u(i+I) � o/p, by (3.10), so that u(I}/ u{ll+I) 

is a Z/q"Z-module) and of the fonnulas 

{/(I)= �  U11J/U\11
+ll  and Zp = � Z/q11Z. 

 

This obviously extendf. lhe Z-modulc structure of u(IJ_ The funclion 

f(,) � (I +x)' 

is continuous becau1>e the congruence z = z' mod t,'1Zp implies (I + xf 

(I+ x(  mod lJ(n+IJ, �o that the neighbourhood:+ qnzl' of z b mapped 

to the neighbourhood ( I + xf U(
11�11 of/(::.). In particular, (I + xf may be 

expressed as the limit 

(I +xf = i��_<J +xf
1 

of ordinary powcr1> (I + xf1
, z,E Z, if z = �� z,. 

1 

 

After this discussion we can now determine explicitly the structure of the 

locally compact multiplicative group K * of a local field K. 



I 
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(5.7) Proposition. Let K be a local field and q = pf the number of 

elements in the residue clas.� field. Then the following hold. 

(i) lf K has characteristic 0, then one has (both algebraically and 

topologically) 

K* � ZffiZ/(q- l)ZffiZ/p"ZEBZ;�. 

where a 2: 0 and d = [K: Q1,]. 

(ii) If K has characteristic p, then one has (both algebraicaJJy and 

topologically) 

K� �ZffiZ/(q-l)ZffiZ�. 

 
Proof: By (5.3) we have (both algebraically and topologically) 

K* = (rr) X µq-1 X u(I) � Zffi Z/(q - l)Z ff) u{l_l 

Thi5 reduces us to the computation of the Zp-module LJ(ll_ 

(i) Assume char(K) = 0. For n sufficiently big, (5.5) gives us the 

i�omorphism 

log: u(nl---+ p" = rr"n � o. 

Since log, exp, and .f(z) = (I + xf are continuou5, this is a topological 

isomorphism of Zp-modulcs. By chap.I. (2.9), o admits an integral ba�is 

a1, ... , ad over Zp. i.e., o = Zpa1 EB  EB 'ilpaJ � Therefore 

U(n\ � zi. Since the index (U(ll : LJ("l) is finite and is a finitely 

generated Zp-module of rank d, so is uni. The torsion subgroup of U(ll is 

the group µf!u of roots of unity in K of p-power order. By the main theorem 

on modules over principal ideal domains, there exists in U111 a free, finitely 

generated, and therefore closed, Z1,-submodulc \/ of rank d such that 

u(I) = /Lpa X \/ � Z/paz ff) z;�' 

both algebraically and topologically. 

(ii) If char(K) = p, we have K � 1Fq((t)) (seep. 127) and 

ur11 
= 1 +P = 1 +tIF,1[ltJJ. 

The following argument i� taken from the book [79] of K. faAs,1w11. 

Let w1, .... w1 be a ba�i5 of IWq llF1,. For every natural number II relatively 

prime to p we consider the continuom, homomorphism 

 g,,(a1, •••• llf) =no +u);f
11t' 

l=I 



1 

 

 

 

This function has the following properties. If m = np'·, .1 ?. 0, then 
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(1) u(m=! 

and, fora= (a1, .............. a1E)z{i, 

(2) 

gn(p·'Z{i)U(m i 11 

Indeed, for w = L,,'� h,c.v, E IFq, h; E Z. h, = a1 mod p, we have 

Rn(a)= fio+c.v,tn}1', = l+wtn modp,,11 

and hence, since we arc in characteristic p, 

ifo(p'a) = gn(a)1'
1 

= 1 + c.vl'' fm mod µm+I. 

As a varies overthe elements of z{i,w, and thm also wl'', varies over the clc­ 

mcnh of !Fq, and we get (l ). f'urthermore one has 1:n (P'a) = I modpm+l {=:::} 

w = 0 {=:::} h, = 0 mod p, for i = I, ... , f' {=:::} a, =0 mod p, for 

i = I,  , f {=:::} a E p?.,{,, and this amounts to (2). 

We now consider the continuous homomorphism of z,,-modules 

g = n gn: A=  n z{---,,. U(I), 

(n.p)=I (n.p)=I 

where the product TT(n.pJ=I z{i is taken over all n?. I rnch that (n. p) =I, 

each factor being a copy of zfi. Observe that the product g(�) = ng11(a11) 

converges because gn(a11) E U("l. Let m = 11p8, with (n, p) = I, be any 

natural number. A5 lfo(Z;) £:;" 1-:(A), it follow� from (I) that each coset 

of u(ml / u(m+IJ i� represemed by an element of g(A). This means that g(A) 

is dense in U( 11. Since A i'> compact and g is continuous, g is actually 

surjective. 

On the other hand, let� = ( ,.. a.11, .) E A,� #- 0, i.e., a,. #- 0 for 

some n. Such an a11 is of the fom1 a11 = p·'f,,, withs = .1·(a,,) :::_ 0, and 

/311E z/, -..... pZ{,. It now follows from (2) that 

f.:,,(a,,) E U(m},  g11(a11) ,f_ U{m+l)  for m = m(a,1) = flfJ'1 

Since then are prime top, all the m(an) have to be distinct, for all o:11 #- 0. 

Let n be the natural number, prime to p and such that an #- 0, which 

satisfies m(a11) < m(an,), for all n' #- n such thal a,,,#- 0. Then one has, for 

all 11' #- 11, that 

g11,(a11,) E u(m+ll  where m = m(a,,) < m(a,,·). 

Con5cquently 
g(�) ==' Nn(a,,) ¢ I mod U\m+ll, 



and so g(�) #-I.This �how� the injectivity of g. Since A= z;;, this proves 

the claim (ii). D 



= 
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(5.8) Corollary. If the natural number n is not divisible by the characteristic 

of K. then one finds the following indices for the subgroup.� of n-th 

power.� K*" and un in the multiplicative group K* and in the unit group U: 

(K*: K*11
) = n(U: U11

) =   !!  #;111(K). 

lnl, 

Proof: The first equality is a consequence of K* = (rr) x U. By (5.7), we 

have 

U ;;::: fl(K) X z1,, resp. U � 11(K) x z�, 

when char (K) = 0, resp. p > 0. From the exact sequence 

I------+ 1111(K)-+  µ(K) �  µ(K)------+ µ(K)/µ(K)'1------+ I, 

one has #µ11(K) = #µ(K)/µ(K)11
. When char(K) = 0, this gives: 

(U: 1/11
) = #ft,,(K)#(Z,,/nZp/ = #11,1(K)pd,·,,(u) = #µn(K)/lnlp, 

and when char(K) =pone gets simply (U : 1/11
) = #µ11(K) = #µ11(K)/lnlp 

becau'>c (n. p) = l, i.e., nZp = z,,. n 
 

 
Exercise 1. The logarithm function can he continued to a continuou� homomorphi�m 

log : ij;, --+ �  and the exponential f��c11on to a cuntmuous ho.momorphism 
1 

exp: p-.------;; ➔ Q\,, where p-.------;; E Qr I vp(A) > 2-r} and vi' I\ the umque 

extenq1on of the normalized valuation on Qr. 

Exercise 2, Let K IQ,, be a p-adJC number field. For I+ ,1 E U\i1 and : E 21, one 

ha� 

(I +xf  = 

 

The .\erie\ converges even for ,1 EK �uch that vp(x) > �­ 

Exercise 3. Under the ahove hypothe�e� one has 

(I +x)' =exp(zlog(l +1)) and  log(l +.d =z log(!+ r). 

Exercise 4. For a p-adic number field K, every �uhgroup ot finite index in K* is 

both open and dosed. 

Exercise 5. If K 1� a p-adJC number field, then the groupq Ky", for n EN, form a 

ba�is of neighbourhood� of I in K*. 

Exercise 6. Let K be a p-adic number field, Vp the normalized exponential valuation 

of dt the Haar measure on the locally compact additive group K, �calcd �o 

that  d,1 = I. Then one haq Vp(u) = ,/�CJ dx. Furthermore. 

!(fl� 
dx 

K'-101 

i� a Haar mea�ure on the locally compact group K* 
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§ 6. Henselian Fields 

 
Mo1-t results on complete valued fields can be derived from Hensel's 

lemma alone, without the full strength of completene�s. This lemma is valid 

in a much bigger class of nonarchimedean valued fields than the com_rlete 

ones. For example, let (K, v) be a nonarchimedean valued field and (K, f,) 

its completion. Leto, resp. 3, be the valuation rings of K, resp. K. We then 

consider the separable closure K,, of K in K, and the valuation ring o,, £ K1, 

with maximal ideal p1,. which is as<,ociated to the restriction of fj to Ki,, 

K£Kv£f<,  o<;ov<;O. 

Then Hensel\ lemma hold5 in the ring ol'  as well as in the ring 3 even 

though Ki, will not, as a rule, be complete. When Kv is algebraically closed 

in R - hence in particular char(K) = 0 - this it. immediately obvious 

(otherwise it follows from (6.6) and §6, exerci5e 3 below). Indeed, by (4.3) 

we have 

o/p = o,,/p,, = o;p, 

and if a primitive polynomial f(x) E Oi-[x] splil1- over o,.jp,, into 

relatively prime factors ]I(.:i).h(t), then we have by Hensel's lemma (4.6) a  

factorization in 3 

/(x) � g(x)h(x) 

such that x = g" modp', h = 1i modp', deg(g) = deg(!{). But thi� factori?ation 

already takei,, place over o,, once the highest coefficient of,-; is chosen to be 

in o:,. because the coefficients off, and therefore also those of g and h are 

algebraic over K. 

 
The valued field K,, is called the henselization of the field K with re�pect 

to v. It enjoys all the relevant algebraic properties of the completion R, but 

offer<, the advantage of being itself an algebraic extension of K which can 

also be obtained in a purely algebraic manner, without the analytic recourse 

to the completion (see §9. exercise 4). The consequence is that taking the  

henselization of an infini1e algebraic extension LI K is possible within the 

category of algebraic exten1-ions. Let us define in general: 

 

 

(6.1) Definition. A henselian field i.� a field with a 1101wrchimedcan 

valua1ion v whose wilu:-1.tion ring o sati.,lic1, Hensel 's lemma in the sense 

of (4.6). One also calls the valuation v or the wllu,1tion ring o henselian. 
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(6.2) Theorem. Let K he a henselian field with re.�pec/ lo the valua­ 

tion I 1- Then I I admits one and only one extension to any given algebraic 

extemion L I K. lt is given by 
 

if/,I K has finite degree n. In any case, the valuation ring of the ex/ended 

valuation is the integral closure of the v:iluation ring of K in L. 

 

 

The proof of this theorem is verhmim the same as in the case of a 

complete field (see (4.8)). What is remarkable about our current setting is 

that, convcr:-cly, the unique extendability also characterize� hcn"elian fields. 

In order to prove this, we appeal to a method which allows us to express 

the valuations of the roots of a polynomial in terms of the valuatiom of 

the coetticients. It relies on the notion of Newton polygon, which ari1>es as 

follows. 

 

Lel v be an arbitrary exponential valuation of the field K and let 

j(x) =ao +a1x + ··· +a,,x11 E K[xj 

he a polynomial satisfying a0a,, -1- 0. To each term a;x1 we a,;�ociate a point 

(i, L'(a,)) E R2. ignoring however the point (i.oo) if a,= 0. We now take 

the lower convex envelope of the set of points 

\ (0, v(a0)), ( 1, v(a1 )), ... , (n, v(a11)))• 

Thi1, produce& a polygonal chain which is called the Newton polygon of 

((x). 

 

 

 
 

(.1.1·(0,J) 
 

 

The polygon consists of a "equence of line �egmcnt& S1, S'2, whose 

�lope& arc strictly increa�ing, and which are subject to the following 



1 

1 11 1 1 

2 
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(6.3) Proposition. Lei f (x) = a0 + a1x + + anx". a0a,, -/=- 0, be a 

polynomial over the field K, v an exponential valwition of K, and w an 

extension lo the splitting field L of .f. 

It (r, v(a, )) ++ (s, v(a,}) is a line segmem of slope -m occurring in the 

Newlon polygon off, then .f (.t) has precisely s - r roob a1. . . , a,_, of 

value 

w(a1) = • •· = w(a,_,) = m. 

Proof: Dividing by a,, only shifo, lhe polygon up or down. Thus we may 

assume that an = I. We number the roots a1, . . , a,, E L of f in such a 

way that 

w(a1) = 

w(a_,1 cd = 

= w(a.11) = m1. 

= w(a82) = m2, 

 

w(a,,+1) =  

where m1 < m2 <  • < m1+i- Viewing the coefficients a, as elementary 

symmc1ric function5 of the roots a1• we immediately find 

v(a11) = v(l) = 0. 

v(a,,_1) 2: �in\ w(a,)} = m1, 

r(a,,_2) 2: �i,n{ w(a;a1)j = 2m1, 

 

1•(a11 , ) = min I w(a  .a,, )) = s m1, 

11. ,,[ 

the latter because the value of the term a ... a, is smaller than that of all 
1 

the others, 
 

 

v(a11 .12) =  min \w(a,1 .a,, )} =.11m1+(s2-s1)m2, 
.1,2 

 

and so on. From this result one concludes that the verticc'> of the Newton 

polygon, from right to left, are given by 
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The slope of the extreme right-hand line segment is 

O-i;1m1 
----=-m1. 
n-(n-.1·1) 

and, proceeding further lo the left, 

(s1m1 + ··· + (.,, - S1-1)m.1) - c�1rn1 +  + (s,+1 - s,)m,+d 

----�-�(,-,--�.,,�1-_-(�n--�.,-,+-,-
1
-�-��� = -m1+1 

LJ 
 

 

We emphasize that, according to the preceding propo�ition, the Newton 

polygon consist� of precisely one segment if and only if the roots a1, ... , <:111 

off  all have the same value. In general, f(x) factors into a product according 

to the slopes -mr < • • • < -m 1, 

f(x) �a, n t;(x), 

/=l 

where 
f,(x) � n (., -a,). 

u•{a,)=m1 

Herc the factor fj correspond5 to the (r - j + 1)-th �cgment of the Newton 

polygon, whose �lope equals minus the value of the roots of f1. 

 

(6.4) Proposition. If the valuation v admit.� a unique extension w to the 

.splitting field L off, then the factoriz:1tion 

/(x) � a, n J;(x) 
/=I 

is defined a/ready over K, i.e., .f;(x) = TTu,(a,l=m, (_t -ct,) E K[x]. 

 
Proof: We may clearly assume that a11 = I. The '>tatement is obviou'> when 

f(x) i1> irreducible because then one has r.x, = o,a1 for some u, E G(LIK), 

and 1,inee, for any extension w of v, 11· o01 is anolher one, the uniquene1>s 

implie1> that w(a;) = u•(a1ai) = m1, hence /'i(x) = f(r). 

The general case follows by induction on n. For n = I there is nothing to 

show. Let p(.\) be the minimal polynomial of a1 and g(x) = 
Klxl. Since all roots of have the same value m1. p(x)  a 

of f1(x). Let g1(,) = The factorization of g(,) according to 

the slopes is 

g(r) = g1(x) n f,(.x). 
/=2 

Since deg(!;) < deg({), it follows that Jj(x) E Kf ,·I for all j = I, . , r. L' 
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If the polynomial f is irreducible, then, hy the above factori.wtion result,  

there is only one slope, i.e., the Newton polygon consists of a single segment. 

The values of all coefficients lie on or above this line segment and we get the 

 
(6.S) Corollary. Let j(x) = a0+a1x+- •+ant.ti E K[x) be,m irreducible 

polynomial with an i- 0. Then, if I I i.� a nonan:himedean valu:ition of K 

with a unique extension to the splilling field, one has 

111 � max{ la.,I, la,I}, 

 
In (4.7) we deduced thi<s rc�ult for complete fields from Hensel's lemma 

and thus obtained the uniqueness of the extended valuation. Here we oblain 

it, by contrast, as a consequence of the uniqueness of the extended valuation. 

We now proceed to deduce Heme!'� lemma from the unique extendability. 

 

(6.6) Theorem. A nonarchimedean valued field (K, I I) is hensc/ian if and 

only if the valuation I I can be uniquely extended to any illgebr.iic extension. 

 

Proof: The fact that a henselian valuation I I extend& uniquely wa� dealt 

with in (6.2). Let us assume conversely that I I admih one and only one extension 

to any given algebraic extension. We first show: 

Let f(x) = a0 +a1t + +anrn E v[x] be a primitive, irreducible 

polynomial such that a0an i- 0, and let J(x) = f(x) mod p E K[x]. Then 

we have deg(!) = 0 or deg(J) = deg(f), and we find 

J(x) =Gip(x)"', 

for�ome irreducible polynomial ip(x) E K[..t] and a comtant a. 

As f i� irreducible, the Newton polygon is a ,_jngle line segment and thu& 

lfl = max{luol, lanl\. We may assume that an is a unit, becau�e othemi"e 

the Newton polygon is a �egment which does not lie on the x-axi& and this 

means that .f (,) = Go. 

Let L IK be the splitting field of f(x) over K and O the valuation ring 

of the unique extension I I to L, with maximal ideal �- For an arbitrary 

K-automorphism a E G = G(LIK), we have lrral = lal for all a EL, 

because I I and the composite I I o a extend the same valuation. This shows 

that aO = 0, a�=�- If a is a zero off(;,.) and 11. ih multiplicity. then 

aa E O for all a E c. Indeed, if a'¢ ('J, then n()" laal1' =In()" aal1' > I 

would imply that the constant coefficient a0 could not belong to o. Thu& 

every a E G induces a K-automorphi&m a of 0/\l]. and the ;,eroc:-. i.'fa = rici 
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of f(x) are all conjugate over K. It follows that .f(x) = 
the minimal polynomial of ii over K. Since a,, E we 

that deg(]) � deg( f). 

 

if 'rp(x) is 

furthermore 

Let now f(x) E olx] be an arbitrary primitive polynomial, and let 

f(x) � .f,(x) • /; (x) 

be it5 factorization into irreduciblcs over K. Since I = lfl = n IJ;I, 

multiplying the /1 by suitable constants yields If; I = 1. The J; (x) are 
therefore primitive, irreducible polynomials in o[x]. It follows that 

]tx) � 1,(x) - • • 1,(x), 

where deg(_f,) = 0 or deg({1) = deg(/;), and .11 is, up lo a constant factor. 

the power of an irreducible polynomial. If T = g h is a factorization into 

relatively prime polynomiab "ji,h E K[x], then we must have 

g �a [1 ], . h � h [1 11 

iEcl /E./ 

 

where tl,h EK and {I, .... r\ = I U J and deg(J,) = deg(J;) for i E /. 

We now put 

g�a[1_/;. h�hf1fi- 
rEI JEcJ 

for a. h E  such that a= (I, h = h mod p and .f = gh. [J 

 

 

We have introduced henselian flelds by a condition of which the reader 

will find weaker versions in the literature, restricted to monic polvnomials 

only. Both are equivalent as is shown by the following 

 

 
(6.7) Proposition. A nonarchimedean field (K. v) is hensc/ian if any manic 

polynomial /"(x) E o[x] which split.� over the residue cfa.�.� field K = o/p as 

fCt) = j(:i)li(x) mod p 

with relatively prime manic factors"ji(_\ ), Ti(x) E Klx ], admits itself a .�plitling 

f(x) � g(x)h(x) 

into manic factors g(x),h(x) E o[xJ 8uch 1hat 



g(,t) = j(x) modp and h(x) =Ti(x) mod p. 
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Proof (H. NART): We have just seen that the property of K to be henselian 

follows from the condition that the Newton polygon of every irreducible 

polynomial f (x) = a0 + a1 \" +  + a11x11 E K [x] is a 5ingle line segment. 

It i5 therefore sufficient to �how this. We may assume that an = I. Let LI K 

he the &plitting field off. Then there is always an extension w of v to L. 

It is obtained for example by taking the completion R of K, extending the 

valuation of R in a unique way to a valuation V of the algebraic closure K 
of R, embedding L into K, and restricting V to L It is also pm,sible to get 

the extension w directly, without passing through the completion. For this 

we refer to [93], chap. XII, §4, th. I. 

Assume now that the Newton polygon of f consist:- of more than one 

segment: 

 
 

Let the last segment be given by the points (m, e) and (n, 0). If e = 0, we 

immediately have a contradiction. Becau5c then we have v(a,) :=: 0, so that 

E Cl[x], and a0 =  = am-I = 0 mod p, am "I- 0 mod p. Therefore 

= (Xo-m + • • • + an,)X"' mod p, with m > 0 because there i� more 

than one segment. In view of the condition of the proposition this contradict� 

the irreducibility of f. 
We will now reduce to e = 0 by a tran�formation. Let a E L be a root 

of f(x) of minimum value w(a) and let a E K such that v(a) = e. We 

consider the charncteristic polynomial i(x) of o-1cl EK (a), r = n - m. 

If = n'.1
=l (x - a;), then M(X) = n:1

=] (x - a;"a-1 Propo�ition (6.3) 

that the Newlon polygon of i(x) also has more than one segment the 

last one of slope 

-w(a 1a') = v(a) - rw(a) = e - rf = 0. 

Since i(x) i5 a power of the minimal polynomial of a-1a', hence of an 

irreducible polynomial, this produces the same contradiction as before.  D 

 

Let K be a field which is hemelian with respect to the exponential 

valuation v. If LI K is a finite extension of degree n, then 1• extends uniquely 

to an exponential valuation w of L, namely 

w(a) = lv(NL1K(a)) 



1 1 

150 Chapter II. The Theory of Valuation� 
 

 

This follows from (6.2) by taking the logarithm. For the value groups and 

residue cla<;<; fields of v and w, one gets the inclusions 

v(K*) � w(L"') and K <;;; A. 

The index 

e � e(w Iv)� (w(L"): v(K')) 

is called the ramification index of the exten<;ion LI K and the degree 
 

is called the inertia degree. If v, and hence w = ¼v o NLIK, is discrete 

and if o. )J, rr, resp. 0, i3, n, are the valuation ring, the maximal ideal and a 

prime element of K, resp. L, then one has 

e � ( w(ll)Z: v(n:JZ), 

so that v(rr) = cw(TT), and we find 

rr =t:n(", 

forsome unit e E O*. From this one deduces the familiar U,ce chap. 1) 

interpretation of the ramification index: p O = rr O = [1"0 = i3", or 

 

 

 
(6.8) Proposition. One has ll : KI :::_ ef  and the fundamental identity 

[L: KJ � ef. 

if v is discrete and LI K is separable. 

 

Proof: Let w1, ... , Wf be repre�cntatives of a basi� of AIK and let 

rrn, ... , rr,,_1 E L* be element<; the value<; of which represent the variom 

cosets in w(L*)/t'(K*) (the llniteness of e will be a con�equence of what 

follows). If vi� discrete, we may choose for instance rr1 = n1
• We show that 

the clements 

u)1rr,. J=I, .,f, i=0 ......... e-1, 

arc linearly independent over K, and in the discrete ca�e fonn even a ba<;i5 

of LIK. Let 
e-1 I 

LL a,1cvJn1 = 0 
l=Oj�I 

with a,1 E K. Assume that not all a11 = 0. Then there exi�t nonzero wms 

�1 = L/= a,Jw , and each time that s
1 

-1- 0 we find w(s
1
)  E v(K�). In 
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fact, dividing s, by the coefficient a,� of minimum value, we get a linear 

combination of the w1, ... , c.vr with coefficients in the valuation ring o _c; K 

one of which equab I. This linear combination is¢ 0 mod 1}, hence a unit, 

so that w(s1) = E v(K*). 

In the sum two nonzero summands must have the same value, 

i -/=- because otherwi:;.c it could not be zero 

=} = min{u•(x). w(y))). It follows that 

u•(rr,) = U'(n1) + w(sj) � w(s;) == w(nJ) mod v(K*). 

a contradiction. This shows the linear independence of the (JJJJf,. In particular, 

wehaveef-::::[L:KJ. 

Assume now that v, and thus also w, b discrete and let n be a prime 

element in the valuation ring O of w. We consider the o-module 

e-1 J 

M = L Low1rr, 
1=0;=1 

where 771 = TT' and show that M = 0, i.e., {w n1) i1- even an integral basis 

of O over o. We put j 

N = Low,, 
/=I 

sothat M = N + n N +··· + n''-1 N. We find that 

because. for a E 0, we have a == a1w1 + • •+  a1wr mod no, a1 E o. This 

implies 

0= N + n(N + TTO) = - =N  + TTN +···+ TT''-1N + nec:J, 

so that O = M + 13e = M + pO. Since LIK is separable, 0 is a finitely 

generated o-modulc (1-ee chap. L (2.11)). and we conclude O = M from 

Nakayama\ lemma (chap. I, S 11, exercise 7). □ 
 

Remark: We had already proved the idemity f L : K J = cf in a somewhat 

different way in chap. I, (8.2), also in the case where 1• wa1- discrete and 

LIK separable. Both hypotheses are actually needed. But, strangely enough, 

the separability condition can be dropped once K is complete with respect 

to the discrete valuation. In this case, one deduces the equality O = M in 

the above proof from O = M + pO, not by means of Nakayama's lemma, 

but rather like this: asp' M s; M, we get successively 

o� M +p(M+pO) � M +p'o�  �M +p''O 

for all v 2: 1, and since {pvO}�EN is a basis of neighbourhoods of Lero in CJ, 
Mis dense in 0. Since o i� closed in K, (4.9) implies that Mis closed m 0, 

so that M = 0. 
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Exercise l. In a hcn�elian field the zeroes ot a polynomial are continuou� functions 

of its cocffo.:1ents. More preci�cly, one ha">: let f(x) E: K\x] be a monic polynomial 

of degree n <-ind 

f(x) = lbl(A -air 

ild\ecompO\ition into linear factor�, with  ::-_ I, a,#- a1 for 1 #- 

polynomial J;( t) of degree 11 has all sufficiently dose to 

then it has r roots fi1, .•• /J, which approximate the a1, 

given prec1s1on. 

Exercise 2 (Krasner's l,emma). Let a E K be \eparahlc over K and let a = 
a1, ..., a" be it� conJugate� over K. If fl E K i� �uch that 

la-/JI < la-a,I for i =2 ...  ,n, 

then one ha\ K(a) � K(/J). 

Exercise 3. A field which 1� 

scp<1rably clo�ed (Theorem 

with re�pect lo two inc4uivalcnt valuations i� 

Exercise 4. A �eparably closed lield K J\ hen�clian v.ith re�pect to any 
nonarchimedean valuation. 

More generally, valu<1t1on of K admit� a unique cxten�mn to any purely 

in�cparable extension 

Hint: If a1' = a EK, one is forced lo put w(a) = fiv(a). 

Exercise 5. Lc1 K  a nonan.:himedean valued field, o the valuation ring, 
and K is hensehan if and only if every polynomial 

= x" + ··· + a0 E ci[x I such that a0 E p and a1 1. p ha\ a 

Lero u E p. 

Hint: The Newton polygon. 

Remark: A local rmg o with maximal ideal pis called hemelian if Hen\el's lemma 

in the sense of (6.7) hold� for it. A characterization of these rmg\ which i.\ important 

in algebraic geometry i"' the tollowing: 
A local ring tl i� hensclian 1f and only if every finite commutative o-algcbra A 

spliN into a direct product A= n'._1 A, of local rings J\1• 

The proof i� not straightforv.ard, we refer to [ltn], chap. I, �4, th. 4.2. 

 

 

§ 7. Unramified and Tamely Ramified Extensions 

 
In this section we fix a base field K which is hcn'ielian with respect to 

a nonarchimedcan valuation v or I 1- As before, we denote the valuation 

ring, the maximal ideal and the residue class field by o. p, K, re:c.pectively. 

if LI K is an algebraic extcn�ion, then the corresponding invariants are 

labelled w, 0, q:3, A, respectively. An especially important r6lc among these 



extensions is played by the unramificd extensions, which are defined as 

follows. 
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(7.1) Definition. A finite extension LIK  is called unramified if the 

extension ;._IK of the residue class field is separable and one has 
 

An arbitnuy algebraic cxtemion LI K i.� called unramified if it is a union o/' 

finite unramified subextcnsions. 

 
Remark: This de!inition does not require K to he hen,;clian; it applie5 in 

all case<, where v extend:;, uniquely to L. 

 
(7.2) Proposition. Let LIK and K'IK be two extensions imide an algebraic 

closure i<IK and let L' = LK'. Then one has 

LIK unramified ===;> L'IK' unramified. 

Each subexremion of an unrnmified extension is unramified. 

Proof: The notatiom, 1 1 1 0,\,}3,A; 0',\,}3,A' arc self­ 

explanatory. We may a:,,sume that LIK is finite. Then /,IK is also finite 

and, being :,,eparable, is therefore generated by a primitive element ii, 

A= K(a"). Let a E () be a lifting, f (x) E oLx j the minimal polynomial of a 

and J(x) = f(x) mod p E K[x ]. Since 

[),, Ki 'S deg({) �deg(/)� [K(a), Kl 'S [L, K[ � [A "l­ 

one has L = K (a) and J(x) is the minimal polynomial of ii over K. 

We thm have L' = K'(u). In order to prove that L'IK' is unramified. 

let g(,) E be the minimal polynomial of a over K' and ]?(x) = 
i?(x) mod p' E  Being a factor of f(x), g(x) is �cparable and hence 

irreducible , hecau<,c otherwise g(x) i5 reducible by Hensel's lemma. 

We obtain 
 

Thi:,, implies Lf,': K') = [A': 
1
], i.e., L'IK' is unramilicd. 

If LIK is a rnbcxlcm.ion of the unramified extension L' I K, then it follow:,, 

from what we have ju:,,t proved that L'IL i:,, unratnified. Hence so is LI K, by 

the formula for the degree. D 

 

(7.3) Corollary. The composite of two unramificd extensions of K is ugain 

unramified. 

o,p,K; 0 ,p ,K ; 
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Proof': It suffices to show this for two finite extensions L[K and L'IK, 

LIK is unramified, hence soi" LL'IL', by (7.2). This implie� that LL'IK i'> 

unramified as well becau:-e separability is tran:-itive and the degree:- of field 

(and residue field) extensions are multiplicative. LJ 

 

(7.4) Definition. Let L IK he an algebraic extension. Then the composite 

TI K of all unramilicd rnbextensions is called the maximal unramitied 

subextension of LI K. 

 

(7.5) Proposition. The residue class field of T is the sep,irab/e c/w,urc A, 

of K in the residue clm,s field extemion AIK of LIK, whereas the value 

group of T equal.'> thal of K. 

 

Proof: Let ).,0 be the residue class field of T and assume ii E A i:­ 

separahle over K. We have to show that ii E Ao. Let f(x) E K\xj he the 

minimal polynomial of ii and .f(x) E o[xj a monic polynomial such that 

J = f mod ).J. Then f(r) is irreducible and hy Hcnse\'s lemma has a root a 

in L wch that ci = a mod q}, i.e., LK (a) : K] = [K(ci) : K J. This implies 

that K(a)IK is unramified, so that K(a) s; T, and thu:-. ii E J...0. 

In order to prove w(T*) = v(K*) we may suppo:-e LIK to be finite. The 

claim then follows from 

[Tc Kl 2' (w(T') c v(K'))J1'o c K] � (w(T') c v(K'))IT c KJ. □ 

 

The composite of all unramified extensions inside the algebraic closure K 
of K is simply called the maximal unramified extension K ni IK of K 

(nr = 'non ramifiee'). lt5 residue class field is the separable closure K,.!1c 

K nr contains all roob of unity of order m not divisible by the characteristic 

of K because the 5eparable polynomial x"' - I splits over K., and hence also 

over K111, by Hensel's lemma. If K is a finite field, then the extension Km IK 

is even generated by these roots of unity because they generate K, IK. 

If the ch;uacterl5tic p = char(K) of the residue class field is po�itive. then 

one ha5 the following weaker notion accompanying that of an unramified 

extension. 

 

(7.6) Definition. An algebraic extension LIK i.� called tamely ramified 

if the extern.ion AIK of the residue clas., fields i.'> separable and one has 

(lL : T]. p) = I. In the infinite ca.�e thi� latter condition is taken to mean 

that the degree of each finite subextension of LIT is prime lop. 
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A� before, in this definition Kneed not be henselian. We apply it whenever 

lhe valuation t' of K has a unique extension to L. When the fundamental 

identity ef = [L : Kl holds and AIK is separable, to say that the extension 

is unramified, resp. tamely ramified, simply amounts to saying that e = I, 

resp. (c,p) = I. 

 

(7.7) Proposition. A finite extemion LIK is tamely rnmified if and only if 

the extemion LIT is generated by radicals 

L = T(mFi.  . "Va,) 

such that (m,, p) =I.In this case the fundamental identity always holds: 

IL, K] �ef. 

 

Proof: We may as:,,ume that K = T because LI K is obviously tamely 

ramilied if and only if LIT is tamely ramified, and if thi� is Lhe case, then 

l'/ : Kl=[).. : K] = f. Let LIK be tamely ramified, so that K = A and 

([L : K j, p) = I. We fir:,,t show that e = 1 implie� L = K. Let a E L " K. 

Writing a = a1,  . am for the conjugates and a = Tr(a) = L;1
� a,, 

the clement = a - ¾a E /. '-.K has trace Tr(/J) = L;� /J, = 0. Since 

1•(K*) = we may choo�e ah EK* such that v(h) = w(fJ) and obtain 

a unit c = fJ!h E L"K.�it? t�ace L;'�1 t:; = 0. But the conju��tc: £, ha�e 

the same rc:,,1due classes£, m A, because A= K. Hence O = Li=l 1?1 = mt:, 

and thus m = 0 mod p, which contradicts pf [L: K] and ml[L: K]. 

, Wr E w(L*) be a system of representatives for the 

and m, the order of w1 mod v(K*). Since 

� ¾v(K*), where 11 = !L: K], we have m;ln, so 

Let y, EL• be an element such that 111(ri) = w;. Then 
= v(q), with t·, EK, �o thal Y,m, = (1t1 for some unit£, in L. 

= K we may write c, = h;u;, where b, E K and u, is a unit in L 

which tends to I m A. By Hensel':,, lemma the equation xm, - u, = 0 has a 

solution /J, E L. Putting a, = y,fJ 1 
E L, we find w(a,) = w and 

1 1 

where a, = c,h, E K, i.e., we have K('\;'LJi, ... , "'F,) £ L. By 

construction, both fields have the same value group and the same rci>idue 

class field. So, by what we proved first, we have 

L � K("'�,. . "':ja;). 

The inequality [L  Kl _::: e and thu:,,, in view of (6.8), the equality 

[L : Kj = e, now follows by induction on r. If L1 = K("'�), then 
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w1 E w(Lj) yields 

e(L1IK) = (w(L;): v(K*)) 2: m1 2: [L1: Kl. 

Aboe(/,lli) 2: [L: Lil, because w(L*)/w(Lj) is generated by the residue 

dai'>f>e<, of t1>2, . , Wr. Thus 

e � e(LIL,)c(L,IK) 2' [L, L, Ill,, Kl�[L,K\. 

In order to prove lhat an extem,ion /, = K ("'.y;Ti, . if> tamely 

ramified, it <;uftices to look at the caf>e r = 1, i.e.,  = K ('';fa), 

where (m, p) = I. The general case then follows hy induclion. We may 
assume without loss of generality that 1< if> separahly dosed. This is seen 

by passing to the maximal unramified extension K1 = K,,,., which haf> the 

separable closure 1<1 = K 1• of k as ih residue class held. We obtain the 

following diagram 
L--L, 

 

K--K,, 

where L n K1 = T = K and L1 = K1(✓G). If now L1IK1 is tamely 

ramified, then ,\111<1 is separable; hence A1 = 1<1 and pf [L1 : Kil= 

[L:K]= jl: TJ, i.e., LIK i<; also tamely ramified. 

Let a = 7/a. We may assume that [L : Kl = [K(✓G) : Kl = m. 

In fact. if d if> the greatest divisor of m such that a = ard for <;ome 

a' EK*, and if m' = m/d, then a= "'j":;i and [K(,(/2): K] = m'. Now 

let n = ord(w(a) mod v(K*)). Since mw(ct) = v(a) E v(K*), we have 

m = dn. Consequently w(a") = 1•(h), h E K�, and v(h") = w(ctm) = v(a); 

thus am= a= Eh11for some unit f' in K. A<; (d.p) = 1, the equation 

xd - c = 0 splits over the <;cparably dm,ed residue field 1< into distinct linear 

factors, hence also over K by Henf>el '<; lemma. Therefore am = Ii = a 

for some new h E K *. Since xm - a is irreducible, we have d = 1, and 

hence m = n. Thus 

e 2: n = I I, : Kl 2: el 2: e, 

in other words j = I, and so A= 1< and pf n = e. This shows that LIK i� 

tamely ramified. D 

 
(7.8) Corollary. Let LIK and K'IK be two extemiom imidc the algebraic 

closure i<IK, and L' = LK'. Then we have: 

f,IK tamely ramified===} L'IK' tamely ramified. 

Every suhextew,ion of a tamely ramified exten.�ion is tamely ramified. 
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Proof: We may assume without loss of generality that LI K is finite and 

con<;klcr the diagram 

L--L' 

I I 

T--T' 

I I 

K--K'. 

 

The inclusion T s; T' follows from (7.2). If LI K is tamely ramified, 

then L = .. ,"':,/a:), (m,,p) = I; hence L' = LK' =LT'= 
T'("'Fi.  �o that L'IK' is also tamely ramified. by (7.7). 

The claim conccmmg the subextemions follows exactly as in the 

unramified case. □ 

 
(7.9) Corollary. The composite of tamely ramified extensions is tamely 

ramified. 

 
Proof: This follows from (7.8), exactly a!, (7.3) followed from (7.2) in the  

unramified case. n 

 

(7.10) Definition. Lei LI K be an algebraic extension. Then the compos­ 

ite VIK of all tamely ramified subextemions is called the maximal tamely 

ramified 1,ubextension of LI K. 

 
Let w(L*)11'\ denote the subgroup of all clements w E w(L*) such 

that mw E v(K*) for some m sati!,fying (m. p) = I. The quotient group 

11'(/.*)(l'l /v(K*) then consists of all elements of w(L *)/v(K�) whose order 

is prime top. 

 
(7.11) Proposition. The maximal tamely rnmified subextension VIK of 

L IK h;.is value group w(\/�) = w(L */Pl and re.\id11e da.�s field equal lO the 

separable closure A., ofK in AIK. 

 

Proof: We may restrict to the case of a finite extension LI K. By 

passing from K to the maximal unramified subextension. we may assume 

by (7.5) that A, = k. As pf e(\/IK) = we certainly 
Conversely we find. a!, in  proof of (7.7), for 

w E a radical o: = ?:./a EL such that a EK. (m, p) = I and 

= w, so that one has o: EV, and w E w(V*). □ 
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The results obtained in this section may be summari7ed in the following 

picture: 

 
 

 

 

 

If LIK is finite and e = e'pa where (e',p) = I, then [V: T] = e'. The 

extension L IK is called totally (or purely) ramified if T = K, and wildly 

ramified if it is not tamely ramified, i.e., if V #- L. 

 

Important Example: Consider the extension Qp(()IQp for a primitive 

n-th root of unity (. In the two cases (n, p) = I and n = p', this extension 

behaves completely diffcrcmly. Let us lin,t look at the case (n. p) = I and choose 

as our base field, instead any dii,,cretely valued complete field 

K with finite residue class field K =  with q = p'. 

 

(7.12) Proposition. Let L = K((), and let Ojo, resp. AIK, be lhe extension 

of valuation ringi,,, rei,,p. residue dw,s fields, ofL IK. Suppose that (n, p) = I. 

Then one has: 

(i) The extension LIK ii,, unrnmified of degree f, where f is the smallest 

natural number such that q f = 1 mod n. 

(ii) The Galoii,, group G(LIK) i.� canonically isomorphic to G(AIK) and is 

generated by the automorphism <p : ( i----+ (". 

(iii) o = o[(I. 

 
Proof: (i) If ¢(X) is the minimal polynomial of ( over K, then the 

reduction ¢(X) is the minimal polynomial of ( = ( mod 13 over K. 

Indeed, being a divisor of xn - T, ¢(X) is separable and by Hcn<,cl's 

lemma cannot split into factors. ¢ and J; have the same degree, so that 

[L : K] = [K((): K] = [,\: K] =: .f. LIK is therefore unramified. The 

polynomial X" - I splits over O and thm, (because (n, p) = I) over,\ into 

distinct linear factors, so that,\= IF"r comaim, the group µ11 of n-th roob 

of unity and is generated hy it. Consequently f is the <,tnallc:-l number 1,,uch 

thatµ,, � IF;1, i.e., such that n I q I - I. This shows (i). (ii) rc:-ulti,, trivially 

from thb. 

(iii) Since LIK is unramified, we have pO = 1}, and since I.(  , 1;t-1 

reprc5cnt� a ba5l'> of AIK, we have O = o[(] + i.,O. and O = o[(j by 

Nakayama's lemma. [j 

V c;  L 
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(7.13) Proposition. Let ( be a primitive pm -th root of unity. Then one has: 

(i) Qp(()IQpistotallyramificdofdegreerp(pm)=(p-l)pm 1 

(ii) G((),,(01(),,) ;a (Z/pmZ)'. 

(iii) Zpl(I isthe valuation ring ofQp(l;). 

(iv) 1 - ( is a prime element ofZp[( J with norm p. 

 

Proof: I;= (f!m i� a primitive p-th root of unity, i.e., 

l;"-1
+i;P 

2+  +1=0. hence 

({p-l)pm-1+ ((f>-2){>"' I+  + 1= 0. 

Denoting by ¢ the polynomial on the left. ( - I i� a rout of the equation 

¢(X +I)= U. But this is irreducible because it satisfies Eisenstein's criterion: 

¢(]) = p and ¢(X) =(XI'"' - 1)/(XP"' 
1 

-  I)=  (X -1)1'
111 1 

11 mod 

It follow& that [Qp(() : Q/!] = rp(pm). The canonical 

---+ (Z/p111Z)*, a 1----c>- n(a), where er(= (11(,n, is therefore 

both groups have order rp(pm). Thus 

NG,,(O"\.,;l'(I -l;) = 1)0 - al;)= ¢(1) = p. 

Writing w for the exlCnsion of the nonnali.wd valuation v1, of we find 

furthermore that rp(pm)ll'(( - l) = vp(p) = I. i.e., IQ\,(OIQp totally 

ramified and ( - I is a prime element of QI'((). A& in the proof of (6.8), 

it follows that Zpf( - l] = Zp[(] is the valuation ring of QI'((). This 

c.:oncludes the proof. □ 

 
If (n is a primitive n -th root of unity and n = n' p,,,, with (n , p) = I, 

then propm,itiom (7.12) and (7.13) yield the following result for the maximal 

unramified and the maximal tamely ramified exten�ion: 

 

Exercise I. The maximal unrnm1fied exten�ion ot  1� obtained hy adjoining ;ill 

roots of unity or order prime to p. 

Exercise 2. Let K he hensehan and K,,, IK the maximal unramified extension. 

Show that the subexten\iom or KIi/ IK corre�pond 1-1 to the �uhextension� or the 

�eparable do\urc K,11<. 

Exercise 3. Let LIK he totally and lamely ram1tied, and let ,1, re�p. r, he the value 

group of L. re\p. K. Show that the 1ntenned1alc field� of LIK corre\pond 1-1 to 

I 



the suhgrour� of d / /' 
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§ 8. Extensions of Valuations 

 
Having seen that the henselian valuations extend uniquely to algebraic  

extensions we will now study lhe que<;tion of how a valuation 11 of a 

field K extends to an algebraic extem,ion in general. So let v be an arbitrary 

archimedean or nonarchimedean valuation. There is a little di�crepancy in 

notation here, because archimedean valuations manifest themselves only as 

absolute values while the letter u has hitherto been used for nonarchimedean 

exponential valuation�. In �pite of this, it will prove advantageous. and agrees 

with current usage, to employ the letter 1J simultaneou�ly for both types of 

valuations, to denote the corre<;ponding multiplicative valuation in both case� 

by I Iv and the completion by K�-· Where confusion lurks, we will supply 

clarifying remarks. 

 

For every valuation v of K we consider the completion Kv and an 

algebraic clornre K1, of K,,. The canonical extension of 1• to Kr i<; again 

denoted by 1· and the unique cxlemion of this latter valualion to K1, by V. 

Let LI K be an algebraic cxten"ion. Choosing a K -embedding 
 

we obtain by restriction of V to r L an exten�ion 

W = 1/oT 

 

of the valuation 1• to L In other words. if v, re�p. V, are given by the absolute 

values I I,,. re�p. I Iv, on K, Kv, resp. K,., where I Iv extends precisely the 

absolute value I I,, of K1,, then we obtain on L the multiplicative valuation 
 

The mapping r : L --+ K, is obviously continuous with respect to thi<; 

valuation. It extends in a unique way to a continuous K -embedding 

T : Lw ---+ f<,,. 

where, in the case of an infinite extension LI K, L.,, does not mean the 

completion of L with respect to w, but the union Lu, = LJ, L11r of the 
completion<; /.1,;, of all finite subexten<;ion<; L,IK of LJK. This union 

will be henceforth called the localization of /. with respect to w. When 

fl: Kl< co. r is given by the rule 
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where is aw-Cauchy sequence in L, and hence {rx,1}nEH a ii-Cauchy 

�cquence m Note here that the ,;equcnec T\11 converges in the finite 

complete extension rL Kv of K1,. We consider the diagram of fields 

L -------------- L,., 

I 

The canonical exten�ion of the valuation w from L to Lu, j._ precisely the unique 

extension of the valuation v from K,, to the extension L11,IK". We have 

Lw=LKv, 

because if LIK is finite, then the field LK,, � L,,. is complete hy (4.8). 

contains the field Land therefore ha,; to be it� completion. If L,,.[K1, has 

degree n < oo, then, by (4.8), the ab,;olute values corresponding to v and w 

satisfy the relation 

The !ield diagram(*) is of central importance for algebraic number theory. It  

show5 the pa,;,,;age from the "global extension" LI K to the "local extension" 

L11, I K1, and thm represent� one of the most important method,; of algebraic 

number theory, the so-called local-to-global principle. This tenninology 

arises from the case of a function lleld K, for example K = :C(!), where the 

elemenb of the extension L arc algebraic function� on a Riemann surface, 

hence on a ?,lohal object, whereas pasf>ing to Kv and L.,, �ignifies looking at 

power series expansions, i.e., the local study of functions. The diagram (*) 

thus cxprc,;scs in an abstract manner our original goal. to provide methods 

of function theory for use in the theory of numbers by mean� of valuation�. 

 

We saw that every K -embedding r : L ---+ K1, gave u� an extcn�ion 

w =Vo r of v. For every automorphi�m a E G(i<1 IK1,) of Kv over K v, we 

obtain with the composite 
 

 

a new K -embedding r' = a or of L. It will be f>aid to be 

m·cr Ku• The following result gives us a complete description 

exten5ions of v to L. 

to T 

pos�ible 

 

(8.1) Extension Theorem. Lei LI K be an algebraic field extension and v a 

valuation of K. Then one has: 
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(i) Every extension 111 of the valuation v arise� as 1hc compo�ite w = V C) T 

for some K -embedding T : L --+ K,.. 

(ii) Two extensions Vo r and V" r' are equ,il if and only if r and r' are 

conjug1.J1e over Kv. 

 

Proof: (i) Let w he an extension of l' to L and L,p the localization of 

the canonical valuation, which is again denoted hy w. This is the unique 

extension of the valuation v from Ku to Lw. Choosing any K,.-cmbcdding 

r : Lw ➔ Kv, Lhc valuation Vo r has to coincide with w. The restriction 

of r to L is therefore a K -emhedding r : L --+ K ,, such thal w = V o r. 

(ii) Let rand a er, with a E G(Kv IK1,), be two embedding:. of L conjuga1c 

over Kv. Since Vis the only extemion of the valuation v from K,, to Kv, 

one has V = Voa, and thus Vor = l'o(aor). The extensions induced to L 

by T and by a o T arc therefore the same. 

Conversely, let T.T'  L ➔ Kv be two K-embedding� such that 

Vo T =Vo T1
• Let a : TL➔ T'L be the K-isomorphism a= T1 o 1 

We can extend a lo a Kv-isomorphism 

a: TL·  K,,-➔ T
1

L • Kv- 

 

Indeed, TL is dense in TL• K, .. so every clement x E TL K,, can be written 

as a limit 

for some sequence x,, which belongs to a finite subextension of L. A<i:, 

Vo T =Vo T
1

, the�equencc T'x11 = aTX11 converges to an elemenl 

 

in T
1L - K 1,. Clearly the correspondence x i---+ ax doc5 not depend on the 

choice of a sequence {.x,,J, and yields an i5omorphism TL• K,,  !? ,,. T
1

L • K, 
which leaves Kv fixed. ExlCnding a to a K1,-automorphism a E G(i<,,IKv) 

gives T1 = a o T, so that T and T
1 

are indeed conjugate over K ,,. � 

 

Those who prefer to be given an extension LI K by an algebraic equation 

f(X) = 0 will appreciate the following concrete variant of the above 

exten'i;ion theorem. 

Let L = K(a) be generated by the zero a of an irreducible polynomial 

f"(X) E K[X] and let 
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be the decomposition off (X) into irreducible factors f1(X ), .... f; (X) over 

the completion Kr. Of course, the m1 are one if f i<; separable. The K - 

em�ddings r: L----+ K,, are then given by the zeroes /3 of f(X) which lie 

in K �-: 
r:L------,.f<i,, r(a)=fl. 

Two embeddings r and r' are conjugate over K1, if and only if the zeroef, r(a) 

and r'(a) are conjugate over K,., i.e., if they are zeroes of the same irreducible 

factor [1• With (8.1), thif> gives the 

 

(8.2) Proposition. Suppo.�e the extension LI K i<; generated by the zero a 

of the iireducib/e polynomial f(X) E K[X]. 

Then the valuations w1.  , w, extending 1' to L corre.�pond 1-1 ro Ilic 

irreducible factors /1, .... 1; in the decompo8ition 

off  over the completion K, .. 

 

The extended valuation w, i5 cxplici1ly obtained from the factor 1; as 

followf,: let a, E f<v be a zero off; and let 

r,: L----+ K,,, a f-+ a,, 

be the corresponding K -embedding of L into K,,. Then one has 

w, = V0r,. 

T1 extends to an i<;omorphism 

r, :L,,., �Kr(a;) 

on the completion Lv-, of/. with re<;pect lo u•,. 

 

Let LIK be again an arbitrary finite extension. We will write wlv to 

indicate that w is an extension of the valuation v of K lo L. The inclusionf, 

L c......+ L,,, induce homomorphisms L 0K K v ----+ /,11, via a 0 h 1--1- ah, and 

hence a canonical homomorphism 

r.p: L®K Kv------,. n Lv'· 

1/'I" 

To begin with, the tensor product is taken in the scn<;e of vector �paces, i.e. the 

K -vector space Lis liti:ed to a Kv-vectorspace L®K K v• This latter, however, 

if> in fact a Kv -algebra, with the multiplication (a0 h)(a'0 h') = aa'0 hh', 

and r.p is a homomorphism of Kv -algebral',. This homomorphism is the subject 

of the 
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(8.3) Proposition. lfLIK is �cparable. then L ®K K" :::;:::: TTu-ii, Lu'· 

 

Proof: Lela be a primitive element for LIK, so that L = K(a), and let 

f(X) E K!X I be its minimal polynomial. To every wlv, there corre�ponds an 

irreducible factor /11,(X) E K,-IXJ of f(X), and in view of the separability, 

we have f(X) = TT,,,11' /;,,(X). Consider all the L,i, as embedded into an 

algebraic closure Kv of K1, and denote by a,,, the image of a under L --,,. L11,. 

Then we find L,1, = K1,(aw) and f;,,(X) i� the minimal polynomial of au, 

over K,,. We now get a commutative diagram 

K,,[X]/(f) -.-+ n K,,[XJ/(f;,) 

1 1 
L ®K Kv nL,,,, 

 

where the top arrow is an isomorphism by the Chinese remainder theorem. 

The arrow on the left i<; induced by X 1----+ a® I and is an isomorphism because 

KfXl/(f) � K(a) = L. The arrow on the right is induced by Xi----+ a,,, 
and is an i5omorphism because KvlXJ/(/1,,) � K,,(a,r) = L1,,. Hence the 

boltom arrow is an i;,omorphism as well. D 

 

(8.4) Corollary. If LI K is separnbJe, then one has 
 

 

and 

NL1K(ct) = n N1,.,1K, (a),  TrL1K<a) = LTrL.,,IK, (a). 
wl•' 11·1 �- 

 

Proof: The fin,t equation results from (8.3) since [L : Kl = dimK(L) = 
dimK, (L ®K Ku)- On both sides of the isomorphism 

L ®K K,, ;,:: TT Lu 
u,1,, 

let us consider the endomorphi&m: multiplication by a. The characteri5tic 

polynomial of a on the K,.-vector space L ®K K,, is the same a� that on the 

K -vector 5pace L. Therefore 

char. polynomial1.'K(a) = n char. po\ynomiall,,,IK,,(a). 
wlv 

 

This implie� immediately the identitie:- for the norm and the trace. D 
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If v is a nonarchimedean valuation, then we define. as in the hensclian 

case, the ramification index of an extension wIv by 

e,,, � ( w(L'): v(K'J) 

and the inertia degree by 
 

where Au_,. resp. K. if> the re�idue class field of w, rei'>p. v. From (8.4) 

and (6.8). we obtain the fundamental identity of valuation theory: 

 

(8.5) Proposition. lfv is discrete and LIK separn.ble, then 

L ewf,, � IL : KI 
mil' 

 

This proposition repeat" what we have already seen in chap. I, (8.2).  

working with the prime decomposition. If K is the field of fractiom of a 

Dedekind domain o, then to every nonzero prime ideal p of o is associated 

the p-adic valuation l'p of K' defined by = Vµ, where (a) = np p1'r 

(see chap. I.§ 11, p. 67). The valuation ring is the localization Op. If0 

is the integral closure of o in L and if 
 

is the prime decomposition of p in L, then the valuations w1 = f I\p,. 

i = I, .... r. are precisely the extensions of v = L'p to L, e, arc the 

corresponding ramification indice5 and f, = [0/�1  o/p] the inertia 

degrees. The fundamental identity 

 

te,J; �[L: K[ 
1=] 

 

has thus been established in two different ways. The raison d' efre of valuation 

theory, however, is not to refonnulate ideal-theoretic knowledge, but rather, 

as haf> been �tressed earlier, to provide the po�sibility of passing from 

the extension LIK to the various completions Lu-lKv where much simpler 

arithmetic law5 apply. Let us also emphasize once more that completions 

may always be replaced with hem.elizations. 

 
Exercise 1. Up lo equivalence, the valuations of 1he lid<l QJ( ./5) arc given as 

follow�. 

I)  +hv'Sl1 = la +hv'SI and la +h-/512 = la -h,,/sl are the archimc<lcan 
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2) If p = 2 or 5 or a prime numher cf=. 2. 5 �uch that ( {f) = -1, then 1herc is 

exactly one exten�ion of I 11, to Q(.}s), namely - 

la+ hv'51P = la2  
5//l;/2. 

3) Ir p i� a prime number cf- 2. 5 �uch that ( -ff) = 1. then there arc two 

extensions of I I" to (Q(v's), namely - 

la+hv'51�1=la+hyl1,.  resp.  la+h-J5lp1=la-hyl,,. 

where y i� a �olulion of J. 
2 

·- 5 = 0 in 

Exercise 2. Dctcrmrne the valuation� of the field Ql(i) of the Gaussian number�. 

Exercise 3. How many cxtcn�ion� to Q,(:1/2) does the archimedean ahsolute value I 

ofQ admit? 

Exercise 4. Let LI K be a finite separable exten�ion, o the valuation nng of a 

di\crelc valuation v its integral closure in L. If wlv varie\ over the cxtcn�ions 

of v to Land 0,, re�p.  arc the valuation rings of the completion� K,, resp. L.,. 
then one has 

0®o3, � no,., 
a,1,, 

Exercise 5. How doc� proposition (8.2) relate to Dedekind'� propo�llion. 
chap. I, (8.3)? 

Exercise 6. Let !, I K be a finite field extension, v a nonan:h1mcdcan exponential 
valuation, and w an cxtcn�ion to L. If O i¾ the integral closure of the valua110n rmg o 
of r in L, then the localization 0-ii of O al the pnme ideal ip = ja E: 0 I w(o:) > OJ 

is the valuation ring of w. 

 
 

 

§ 9. Galois Theory of Valuations 

 
We now consider Galois extension� LI K and study the effect of the Galois 

action on the extended valuations wIv. This lead� to a direct generalization of 

"Hilbert's ramification theory" - see chap. I, §9, where we studied, instead 

of valuations v. the prime ideal& p and their decomposition p =�\·1
• • • ��• in 

Galoi� extensions of algebraic number fields. The arguments slay the �ame, 

so we may be rather brief here. However, we formulate and prove all result� 

for extension<, that are not necessarily finite, using infinite Galois theory. The 

reader who happen� not to know this theory ,;houkl feel free to assume all  

extensions in thi� ,;ection to be finite. On the other hand, we treat infinite Galois 

theory also in chap. IV, § I below. Its main result can be put in a nut�hell like 

this: 

In the case of a Oaloi� exten�ion LI K of infinite degree. the main theorem 

of ordinary Galois theory, concerning the 1-1 correspondence between 
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the intermediate fields of LI K and the subgroup'> of the Galois group G(LIK) 

ceases to hold; there are more subgroups than intermediate fields. The 

corre�pondence can be salvaged, however, by considering a canonical 

topology on the group G(LIK), the Krull topology. It is given by defining, 

for every a E G(L IK), as a basis of neighbourhoods the cosets aG(L IM), 

where MIK varies over the finite Galois subextensions of LIK. G(LIK) is 

thus turned into a compact, Hausdorff topological group. The main theorem 

of Galois theory then has to be modified in the infinite case by the condition 

that the intermediate fields of LIK corre�pond 1-1 to the closed subgroups 

of G (I, I K ). Otherwise, everything goes through as in the finite case. So one 

tacitly restricts attention to dosed subgroups, and accordingly to continuous 

homomorphisms of G(L IK ). 

So let LI K be an arbitrary, finite or infinite, Galois extension with Galois 

group G = G(LIK). If vis an (archimcdcan or nonarchimcdean) valuation 

of K and w an extension to L, then, for every a E G, w o a also extends v, 

so that the group G acts on the set of extensions wlv. 

 

(9.1) Proposition. The group G acts tramitively on the ·"et of exten­ 

siom wlv, i.e., every two extensiom <JJ"e conjugate. 

 

Proof: Let 11' and w' he two extensions of v to L. Suppo�e LIK is finite. 

If w and w' are not conjugate, then the �et� 

{wocricrEG}  and  {w'ocricrEG} 

would he disjoint. By the approximation theorem (3.4), we would be able to 

find an _t E L such that 

laxl11, < I  and  lcrtl11,i > 1 

for all a E G. Then one would have for the nonn a = Nr1K (x) = TTrr-=G a_t 

that la I1, = TTrr la\ I.,, < I and likewise la I,, > I, a contradiction. 

If LI K is infinite, then we let MI K vary over all finite Galois subexten­ 

sions and consider the �et� XM = {er E Cl wocrl1i1 = w'IM). They arc 

nonempty, as we have juf.t seen, and also closed because, for a E G "- X M, 

the whole open neighbourhood aG(LIM) lies in the complement of XM. 

We have nM X M # 0. because otherwi�e the compactness of G would yield 

a relation n;"""1 X M, = 0 with finitely many M,, and this j5 a comradiction 

bccau<,c if M = M1  M,., then XM = n:=l XM,• □ 
 

(9.2) Definition. The decomposition group of an extension w o( v to L is 

defined by 

Gw = G11,(LIK) =\a E G{LIK) I wna  = w} 
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If v is a nonarchimedean valuation, then the decomposition group contains 

two further canonical subgroups 

Gw2fw2Ru,, 

which are defined as follow<;. Let 0, resp. 0, be the valuation ring, p, 

resp. '13, the maximal ideal, and let K = o/p. resp.).= 0/'l], be the rc<;idue 

clas1- field of v, resp. w. 

 
(9.3) Definition. The inertia group ofwlv is defined by 

fu,=11!,(LIK)={aEGwlax=xmodq]  fora/I  xEO) 

and the ramification group by 

R,,, = Ru,(LIK) = {a E Gu, I f!.f = l mod V for all x EL*). 

 
Observe in this definition that, fora E Gu,, the identity woo= w implic<; 

that one always ha<; rrO =0 and ax/x E ('.J, for all x EL*. 

The "ubgroups Gu,,lw,R11, of G = G(LIK), and in fact all canonical 

subgroups we will encounter in the sequel, are all closed in the Krull 

topology. The proof of thi� ir, routine in all case�. Let us just illu�trate the 

model of the argument for the example of the decomposition group. 

Let a E G = G(LIK) be an element which belongs to the do�urc of G0,. 

Thi� means that. in every neighbourhood aG(LIM), there is some element 

aM of G.,,. Herc MIK varies over all finite Galob subcxtcnsions of LIK. 

Since aM E aG(LIM), we have aMIM = alM, and woaM = w implies 

that w oal111 = w oa111IM = wlM- A� Lis the union of all the M, we get 

111 o a = w, so that a E G0,. This shows that the subgroup G,,, is do�cd 

inG. 

 

The groups Gw. lw, Ru- carry very significant information about the 

behaviour of the valuation v of K as it is extended to /,. But before going 

into this, we will treat the functorial propertie� of the groups G,,,. I,,, R,,. 

 

Consider two Galois extension� LIK and /,'IK' and a commutative 

diagram 

T T 
K � K' 
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with homomorphisms r which will typically be inclusions. They induce a 

homomorphism 

T*: G(L'IK')----+ G(LIK),  T*(a') = T-
1a'T. 

Observe here that. LIK being nonnal, the same is true of TLITK, and thus 

one has a
1

TL £;; TL, 50 that composing with T-
1 makc5 sense. 

Now let w' be a valuation of L', v' = w'IK' and w = w' or, v = wlK• 

Then we have the 

 

(9.4) Proposition. r*: G(L'IK')-+ G(LIK) induces homom01phisms 

Gw,(L'IK') -  G.,,(LIK). 

1,,.,(1.'IK')- I,,,(LIK). 

Rw,(L'IK') -  Rw(LIK). 

In the latter two eci.�e.�, v i� assumed to be nonarchimedean. 

 

Proof: Let a' E Gu,,(L'IK') and a= r*(a'). lf.t EL. then one has 

lxlu,,o = laxlw = Ir 1a1Txlw = la'rxlu•' = lrxlu" = lxl,,,. 

so that a E Gw(LIK). If a' E /.,,,(L'IK') and x E 0, then 

w(ax - x) = w(r-1(a'rx -Tx)} = w'(o'(rx) - (rx)} > 0, 

and a E I,i,(LIK). If a' E Rw,(L'IK') and x EL�, then 

w(� - 1) = w(r 1(a;:x_ 1)) = w'(a;:.x_ 1) > o, 

�o that a E Ru-(LIK). □ 
 

If the two homomorphisms r L -+ L' and r K -+ K' are 

isomorphisms, then the homomorphisms (9.4) are of course isomorphisms. 

In particular, in the case K = K'. L = L'. we find for each r E G(L IK): 

GwAr=r-1G r, lw,,=r-1fuT,  R ,.,=r-1R.,,T, 

i.e., the decomposition, inertia, and ramification groups of conjugate 

valuations are conjugate. 

Another �pecial case arises from an intermediate field M of LI K by the 

diagram 

L L 

 

Kc ,,. M. 

r* then becomes the indm,ion G(LIM) "------c>- G(LIK), and we trivially get the 



!70 Chapter IL The Theory of Valuation� 

 

(9.5) Proposition. For the extension.� K <; M <; L, one has 

G,,,(LIMJ � G,,,(LIK) n G(LIMJ, 

!,,,(LIM)� l,,,(LIK) n G(LIML 

R,,,(LIM) � R,,,(l,IKJnG(LIM). 

 

A particularly important special ca�c of (9.4) occurs with the diagram 

 

l. L,,, 

I 
I(, 

I( 

which can be as�ociated to any exten:-ion of valuations w Iv of LI K. If LI K is 

infinite, then Lw has to be read a� the localization in the sen:-c of SR. p. 160. 

(This distinction is rendered superfluous ifwe consider, a:- we may perfectly well 

do, the hcn:-clization of LIK.) Since in the local extension L.,,IK,. the exten:-ion 

of the valuation is unique, we denote the decomposition, inertia, and 

ramification groups simply by G(L11,IK,), l(L11 IKv), R(Lu,IK1,). In this 

case, the homomorphism r� is the restriction map 

G(L,,,IK,)----> G(LIKJ,  a----> a IL, 

and we have the 

 

(9.6) Proposition.  G11 (LIK) ;=c: G(LwlKrl. 

l,,,(LIK);; l(L,,,IK,,). 

R,, (LIK) ;; R(l.",IK,,). 

 
Proof: The proposition derives from the fact that the decomposition group 

Gu,(LIK) consi:-l:- prcci�cly of those automorphism:- a E G(LIK) which 

are continuou:- with respect to the valuation U'. Indeed, the continuity of the 

a E c;.,,(/, IK) is clear. For an arbitrary continuous automorphi:-m a, one has 

lxlo, < I  � laxl,,, = I, 111 ,a<  I. 

becau:-c  < 1 means that x11 and hence al1,o a 1.,1 is a u•-nullsequcncc, 

i.e., < I. By S 3, p. 117, thi1> implies that w and w u a arc equivalent. 

and hence in fact equal bceau5e WIK = w o a IK, so that a E G1,,(L IK ). 

Since L is dense in L.,,, every a E G.,,(LIK) extend� uniquely to a 

continuou1> K,,-automorphism O of L,,. and it i� clear that OE l(L.,,IK,.), 

re:-p. /J E R(L1,,IKi,), ifa E l.,,(LIK), re�p. a E R,,,(LIK). Thi� prove� the 

hijectivity of the mappings in question in all three ca<;c�. LJ 
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The above propo�ition reduce,; the problem� concerning a single valuation 

of K to the local �ituation. We identify the decomposition group G,, (LIK) 

with the Galois group of L w IKI and write 

G.,,(LIK) � G(L,,,IK,,), 

and similarly /,,.(LIK) = /(L,,,IK,,) and R,,.(LIK) = R(L11,IKv). 

 
We now explain the concrete meaning of the �ubgroups G,,,, /11• R,,. of 

G = G (LI K) for the field extension LI K. 

The decomposition group Gw consists - as was shown in the proof 

of (9.6) - of all automorphisms a E G that are continuous with respecl 

to the valuation w. It controls the extension of v to L in a group-theoretic manner. 

Denoting by Gu,\G the set of all right cosets G,, a, by W" the ,;ct of 

exten<,ion� of v to Land choosing a fixed extension w, we obtain a bijection 
 

 

In particular, the number #Wv of extensions equals the index (G: G,,,). As 

mentioned already in chap. I, *9 - and left for the reader to verify - the 

decomposition group also describes the way a valuation 1• extends to an 

arbitrary separable extension LIK. For this. we embed LIK into a Galois 

extension NIK, choose an cxtemion U' of 1• to N, and put G = G(NIK). 
H = G(NIL), G,,, = G,,,(NIK), to get a bijection 

G,,.\G/H.....:::,,. W0••  Gu,aH f-------+ woalr 

 
(9.7) Definition. The fixed field of G 11 , 

211, = Zu,(LIK) = {x EL I ax =X  for,Jll a E G,,,), 

i� called the decomposition field of w over K. 

 

The r6le of the decomposition llcld in the extension LI K is described by 

the following proposition. 

 

(9.8) Proposition. 

(i) The restriction WL ofw to Zw extends uniquely to L. 

(ii) If 1• j,\ nonarc/Jimedean, 1117 /Jas the same residue das� lic/d and the 

�ame value group as 1•. 

(iii) Z.,, = L n K,, (1/Jc inicr�ccrion i� wken imide L.,,). 
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Proof: (i) An arbitrary extem,ion w' of wz to L is conjugate tow over Zu-; 

thw;. w' = w o a, for some a E G(LIZ11.) = Gu,, i.e., w' = w. 

(iii) The identity Zu, = L n Kv follows immediately from Gu-(LIK) � 

G(L,,,IK,), 

(ii) Since Kv has the i,,ame residue class field and the 5ame value group as K, 

the same holds true for Zw = L n K,,. lJ 

 

The inertia group I,,, is defined only if w is a nonarchimedean valuation 

of L. It i5 the kernel of a canonical homomorphism of G.,,. For if O is 

the valuation ring of w and ',l3 the maximal ideal, then. since aO = CJ and 

aq] = 1], every a E G11, induces a K-automorphism 

0: CJ/',13------+ 0/1}, x mod ',l3 i-------+ ax mod 1}, 

of the residue c\a55 field A, and we obtain a homomorphi<,m 
 

with kernel I.,,. 

 

(9.9) Proposition. The residue class field extension AIK is nonnal, and we 

/Jave an exact �equence 
 

 

Proof: l11 the case of a finite Galois extension, we have proved thii,, already 

in chap. I, (9.4). In the infinite cai,,e AIK is normal 5ince LIK, and hence 

also A IK, is the union of the finite nonnal subexten5ions. In order to prove 

the i,,urjectivity off: Gw----+ G(AIK) all one ha5 to show ii,, that f(G.,,) is 

dense in G(AIK) because j (Gw), being the continuous image of a compact 

set, is compact and hence do&ed. Let cf E G(AIK) and OG(AIµ) be a 

neighbourhood of 0, where µIK is a finite Galois subextension of AIK. We 

have to show that this neighbourhood contains an element of the image f (r), 
r E G1,,. Since Zu, has the re5idue class llcld K, there exi�ts a finite Galois 

rnbextension MIZw of LIZa, whose residue class field M containi,, the field 

tL As G(MIZ0,)----+G(MIK) is surjective. the composite 
 

is abo &urjective. and if r E G.,, ii,, mapped to011,, then f(r) E irG(AltL), 

--� □ 
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(9.10) Definition. The fixed field of /11,, 

Tw = T,,.(LIK) = \x EL I (J.I = \ foraJJ (J E /.,,), 

i,s called the inertia field of w over K. 

 
For the inertia field, (9.9) gives u:,. the isomorphism 

 

It ha:,. the following significance for the extension LI K. 

 

(9.11) Proposition. T,,, IZ..,, is the maxinrn/ unramilicd �ubexrension of LIZ,,,. 

 

Proof: By (9.6), we may asmme that K = Z,,, is henselian. Let TIK be the 

maximal unramilied :,.uhextension of LIK. It i5 Galois, since the conjugate 

extensions are also unramified. Hy (7.5). T has the residue clas<: field A,, and 

we have an isomorphism 
 

 

Surjectivity follows from (9.9) and the injectivity from 1he fact that Ti K 

is unramillcd: every finite Galois suhexten:;.ion has the <:ame degree as its 

residue class field extension. An element (J E G(LIK) therefore induces the 

identity on A,. i.e.. on A, if and only if it belong:,. to G(L IT). Consequently, 

G(LIT) = Iv-, hence T = T11,. □ 

 

If in particular K is a henselian field and K, IK its separable closure, then 

the inertia field of this exten:;.ion is the maximal unramified exten:,.ion TI K 

and has the separable closure K., IK a:,. it:,. residue clas:,. field. The isomorphism 

G('/'IK) � G(K,IK) 

:,.hows that the unramified exten&ions of K correspond 1-1 to the :,.eparable 

extensions of K. 

 
Like the inertia group, the ramification group R,,, is the kernel of a canonical 

homomorphbm 
 

where 

x(I.IK) = Hom(Ll/r.r). 
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where Ll = w(L*), and r = v(K*). If a E /,,,, then the associated 

homomorphism 

Xa: !J/I' ➔ A* 

as follows: for K = 0 mod r E iJ/I', choo:;,c an x EL* such that 

= 8 and put 
- a,· 

Xa(O)= �  modq.3. 

Thi� definition is independent of the choice of the representative 8 E 8 and of 

x E L *. for if x' E L * is an element such that w(x') = w(x) mod r, 
then w(x') = w(xa), a E K*. Then .t' = xau, u E 0*, and since 

au/u = 1 mod 11] (bccau:;.c u E /,:p), one gets ax
1

/x
1 = ax/x mod l.p. 

One sees immediately that mapping a i--+ x,, is a homomorphism 

111, ➔ x(LIK) with kernel Rw. 

 

(9.12) Proposition. R,,, is the unique p-Sylow subgroup of /11,. 

 

Remark: If LI K is a linite cxtcm,ion, then it is clear what this means. In the 

infinite ca<,c it ha,; to be understood in the sense of profinite groups, i.e., all 

finite quotient groups of R,,., resp. /,,,/ R11., by dosed nonnal -;ubgroup:-. have 

p-power order, resp. an order prime top. In order to under�tand this better, 

we refer the reader to chap. IV, § 2. exercise 3-5. 

Proof of (9.12): By (9.6), we may a�sumc that K is hen�elian. We restrict to 

the case where LI K j5 a finite extension. The infinite case of the proposition 

follows fonnally from this. 

If Ru, were not a p-group. then we would find an element a E R,,, of 

prime order £ -=/=- p. Let K' he the fixed field of a and K' its residue class 

field. We show that K' =A.Since Ru, £;; fu,, we have that T i; K'. Thus 

A, i; K
1

, so that AIK' is purely inseparable and of p-power degree. On the 

other hand, the degree has to be a power of£, for if ii EA and if O' EL is 

a lifting of ii, and f"Cl) E K'[xl b the minimal polynomial of a over K', 

then _f(x) = }{(xr, where }{(x) E K
1

lx] is the minimal polynomial of ii 

over K
1

• which has degree either I or £, as this is so for f(x). Thus we 

have indeed K' =A.so that LIK' is tamely ramified, and by (7.7) is of the 

form L = K'(a) with a = !/a, a E K'. It follows that m.x =(a.with a 

primitive {-th root of unity ( E K 
1

• Since a E R11,. we have on the other hand 
aa/a = I; =a I mod l_p, a contradiction. Thi� proves that R11, is a p-group. 

Since p = char(A), the elements in have order prime to p, provided 

they are of finite order. The group x(LIK) = Hom(Ll/I',A*) therefore has 

order prime top. Thi� abo applie� to the group l,r/Ru, i; x(LIK), sothat 

R11• is indeed the unique p-Sylow subgroup. LJ 
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(9.13) Definition. The fixed field of R,,,, 

Vu,= V,,.(LIK) = {x EL I ax =X for all a E Ru,}, 

is ca/Jed the ramification field of w over K. 

 

(9.14) Proposition. VwlZw is the maximal tamely ramified subextemion 

ofLIZu,. 

 

Proof: By (9.6) and the fact that the value group and residue class field do 

not change, we may a<,5ume that K = Zu, is henselian. Let V,r be the fixed 

field of R,l'- Since Rw is the p-Sylow subgroup of/,,,, Vu, is the union of 

all finite Galois subextension5 of LIT of degree prime to p. Therefore V.,, 

contains the maximal tamely ramified extension V of T (and thm of Z,p). 

Since the degree of each finite subextension MI V of V.,,IV is not divi5iblc 

by p, the residue field extension of MI V is separable (see the argument in 

the proof of (9.12)). Therefore Vwl V is tamely ramified, and V.,, = V. n 

 

(9.15) Corollary. We have the exact sequence 

I--+ R.,,--+ fw--+ x(LIK)--+ I. 

 
Proof: By (9.6) we may as5ume, as we have already done several times 

before, that K is hense\ian. We restrict to considering the case of a llnite extension 

LI K. In the infinite case the proof follow:- as in (9.9). We have already seen 

that R,, i� the kernel of the arrow on the right. It therefore suffices to show 

that 
 

As TwlK is the maximal unramificd �ubextension of V11,IK, V,,,l'l�, has 

inertia degree I. Thus, by (7.7), 

[V,,. c T.,,] �#(w(V;)fw(T,;)) 

Furthermore, by (7.5), we 

L1 = w(L *), we �ec that 

consisting of all element:- 

= v(K*) =: r, and putting 

the subgroup .::1u,i;r of !J.Jr 
prime top, where p = char(K). Thus 

 

 

Since A* ha� no clements of order divisible by p, we have on the other hand 

that 
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But (7.7) impliei,, that A* contains them-th roob of unity whenever ,1.(f'J / r 
contains an element of order m, because then there is a Galoi� extension 

generated by radicals T,,,(n:./a)ll'w of degree m. This showi,, that x(LIK) i� the 

Pontryagin dual of the group 6.1f!) / I' so that indeed 

□ 
 
 

 
Exercise 1. Let K be a hen�clian !ield, LI K a ramitied Galm.\ exten�1on, 

c; = G{LIK), f = l(LIK) and r = G/1 = I is ahehan and become� 

aI'-modu!ebylettmgi.r=aiEI'operatcon Tf---'+ara 1. 

Show that there i� a canonical isomorphi�m I � x(LIK) ot I'-modulc�. Show 
furthermore that tamely ramified extension can he embedded into a tamely 

ramified extcmion  �uch that G j\ the �cmi-direct product of x (l IK) with 
G(AIK): G � >1 G(AIK). 

Hint: Use (7.7). 

Exercise 2. The maximal tamdy ramified ahclian exten�ion \/ of Q\, i� finite over 

the maximal unram1!ied abelian extemion T of Q1,. 

Exercise 3. Show that the maximal 

K = is given by T = IF\((t)), 

the 

 

i� the 

Im E 

�cries field 

of 1?'1,. and 

Exercise 4. Let v be a nonarch1rnedean valuallon of the field K and let i; he an 

cxtcn�ion to the separable clo�ure K of K. Then the dccornpo�it1on held Z1 of r 

over K i� isomorphic to the hcn�eli7at1on of K with respect to L". m the �en�e of §6. 

p. 143. 

 

 

 

§ 10. Higher Ramification Groups 

 
The inertia group and the ramification group inside the Galois group of  

valued fields are only the first term� in a whole seric<, of �ubgroups that we 

arc now going to study. We assume that LIK b a finite Galob extension 

and that VK is a discrete nonnalized valuation of K, with po�itivc residue 

field characteristic p, which admits a unique extension w to L. We denote 

by vr = cw the associated nonnalized valuation of L. 

 

(10.1) Definition. For every re,J/ number s � - I we define lhc s-th 

ramification group of LI K by 



G, = G,(l,IK) = { a E GI vL(aa - a):_::: s + I for::J// a E 0} 
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Clearly, G_1 = G, C0 is the inertia group/ = /(LIK). and G1 the 

ramification group R = R(LIK) which have already been defined in (9.3). 

As 

v,.(r-1ara - a)= vL(r-1(ara - ra)) = vL(a(ra) - ra) 

and rO = 0, the ramification groups form a chain 

G = G 1 2 Gn 2 C 1 2 G2 2 

of normal subgroups of G. The quotients of this chain �atisfy the 

 

(10.2) Proposition. Let IfL E CJ be a prime element of L. For every integer 

s 2-. 0, the mapping 

is an injective homomorphism which is independent of the prime element n,. 

Here ui'l denotes the s-th group of princip,il units of L, i.e., u{°i = 0* 

andUj_'
1 

= I +n{O, for,1 2: I. 

 

 
We leave the elementary proof to the reader. Observe that one has 

uJ_
01;ul.'1 � A* and uL'1/Vl'+

11 
� A. fors 2: I. The factors G.dG., 1-1 are 

therefore abelian group� of exponent p, for ,1 2: 1, and of order prime to p, 

for s = 0. In particular. we find again that the ramification group R =GI i� 

the unique p-Sylow subgroup in the inertia group / = G0. 

We now study the behaviour of the higher ramification group" under 

change of fields. If only the base field K is changed, then we get directly 

from the definition of the ramification group� the following generalization 

of (9.5). 

 

(10.3) Proposition. Jf K' is an intermedia1c held of L jK, then one has, for 
all� 2-. -1. that 

G.,(LIK') � G,(LIK) n G(LIK'). 

 

Matter� become much more complicated when we pa% from LI K to a 

Galois subextcnsion L' IK. It is true rhat the ramillcation group� of LI K arc 

mapped under C(LIK) ➔ C(L'IK) into the ramilkation groups of L'IK. 

hut the indexing changes. For lhe preei�c description of the situation we 

need some preparation. We will a�'>ume for the sequel that the residue lield 

extension ).IK of LIK is separable. 
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(10.4) Lemma. The ring extension O of o is monogenous, i.e., there exists 

an x E Osuch that O = o[r]. 

 

Proof': As lhc residue field extension AIK is separable by assumption, it 

admib a primitive element .\. Let f(X) E o\X] be a lifting uf the minimal 

polynomial j(X) of.\. Then there is a representative x E O of X such that 

n = f (x) is a prime element of 0. Indeed, if r is an arbitrary representative, 

then we certainly have vL(f(x)) ::::_ I because f(X) = 0. If x itself is not as 

required, i.e., if VL(f(x)) 2: 2, the reprc�entative .t + 1TL will do. In fact, 

from Taylor's formula 

f(x+rrt.)=f(x)+f'(x)n1.+lmf,  hEO. 

we obtain l'L (f(x + rrL)) = I since f'(x) E o•, because .f'(X) =fa 0. In the 

proof of (6.8), we saw that the 

x1n' =xif(x)', )=0, .. , f-1, i=0, ... ,e-1. 

fonn an integral basis of O over o. Hence indeed O = o[x ]. 0 

 

Por every a E G we now put 

iL1d(J) = vi (ax -x), 

where CJ = o[\ ]. This definition does not depend on the choice of the 

generator x and we may write 

G,(LIK) � la E GI iL,da) 0,, +1) 

Passing to a Galois subextension L'IK of LIK, the numbers iLiK(a) obey 

the following rule. 

 

(10.5) Proposition. Ifc' = eLIL' is the ramification index ofL IL . then 

i1.'1K(a') iL K(a). 

 

Proof: For a' = I both sides are infinite. Let a' -=f=. 1, and let O = o[x] aml 

(J' = o[y l, with 01 the valuation ring of L 
1 

By definition, we have 

c1iu1K(a1
) = Vt (a'y- y), 11.1K(a) = t'L(ax - \). 

We chom,e a fixed a EC= G(LIK) �uch that rrlu = a' The other 

elements of G with image a' in G' = G(L'IK) are then given by ar. 

TE H = G(LIL'). It therefore suffices to show that the clement� 

a= ay - y and h = TT (av: - x) 
ncll 

generate the �ame ideal in (J. 
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Let /(X) E O'[X] be the minimal polynomial of x over L' Then 

f(X) = fln=ll(X - rx). Letting a act on the coefficients off, we get the 

polynomial (er f)(X) = flrE// (X - arx). The coefficient� of rrf - f are all 

divisihle by a= ay - y. Hence a divides (a.f)(x) - f(x) = ±h. 

To show that conversely his a divi5or of a, we write ya:-, a polynomial 

in x with coefficients in CJ, y = g(t). A& x is a zero of the polynomial 

g(X) - y E (TfXl, we have 

s(X) - y � f(X)h(X).  h(X) E O'[XJ. 

Letting a operate on the coefficients of both sides and then :-,ubstituting 

X = x yield:-, y - ay = (af)(x)(ah)(x) = ±h(ah)(x), i.e., h divide:-, a. □ 

 
We now want to :-,how that the ramification group G,(LIK) is mapped 

onto the ramification group G1(L'IK) by the projection 

G(L[K) -  G(L°IK). 

where r is given by the function 111.iK : (-1. :xi)----+ f-1, oo), 

t = 'IL1K(s) = j' _,_h  

0 (Go: G1) 

Here (Go  Gt) is meant to denote the inverse (G,  G0)-
1 when 

-1 :==x :::0, i.e.,:-,imply I, if-I<.,::: 0.For0 < m :== s :== m+  l.m  EN, 

we have explicitly 

 

1JL1K(S) = _!_Ct:1 +K2 +···+gm+(.\' -m)gnH 1) - g; =#G,. 
Ro 

The function 1JLIK can be expre%cd in terms of lhe numbers ILiK(a) as 

follows: 

 

(10.6) Proposition. 'ILIK (�) = :Ju LrrEG min\ iL K (a), s + t j - I. 

 

Proof: Let (;l(s) be the function on the right-hand side. It i:-, continuous and 

piecewi:-,e linear. One ha& H(O) = 1JLiK (0) = 0, and if m 2: -1 is an integer 

andm <s <m+ ],then 
 

Hence O = 1}t IK· 'J 
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(10.7) Theorem (flERlJRANO). Let L'IK be a Galois subexten.�ion of LIK 

and H = G(LIL'). Then one has 

G,(LIK)H/H = G1(L'IK) where t = 1/Lic(s). 

 

Proof: Let G = G(LIK). G' = G(L'IK). For every a' E G', we choose an 

preimage a E G of maximal value it iK (a) and show that 
 

Let m = iL1K(a). If r E fl belongs to Hm-l = G111_1(LIL'), then 

it 1dr) 2: m. and iL1dar) 2: m. so that iL,dar) = m. If r � llm 1. 

then iLIK(r) < m and iL K(ar) = iL1dr). In both cases we therefore 
find that i1, K(ar) = min{i,. K(T).m\. Applying (10.5). this gives 

1 1 

 

iu1K(a
1

) = � L min{iL1K(r),m). 
e nclf 

Since iLiK(T) = it ,u(r) and e' = e,.1c = #Ho. (10.6) gives the formula(*). 

which in turn yield� 

a' E G,H/f/ {=:> i1.1K(a)- I::::: 1 {=:> 1/LicCiL K(a)- I)::::: 'ILIL'(s) 

{=:> iu1K(a') - I 2: 1/L:c(s) 

{=:> 0
1 

EGr(L'IK). t = 1/LIL1(s). [] 

 

 

The function 1/LIK is hy definition strictly increasing. Let the inverse 

function be i/JLIK : l-1.oo)---+ 1-1, oo). One defines the upper numbering 

of the ramification groups by 

The functions 1/LiK and i/JLiK satisfy the following tram,itivity condition: 

 

(10.8) Proposition. 1f L' IK is a Galois .�ubexlcnsion of LI K, then 

1)/.IK = 1/L' K o rn1u  and 1/li.1K = i/lL1L' o 1/lt.11K 

 

Proof: For the ramification indices of the extensions LIK, L'IK. LIL' 

we have  = eu Ket.II.'• From (10.7). we obtain G,/11, = (G/11)1, 

I= thus 

I I I 
-#G, �-#(G/11),-#H,. 
Cf.lK <'L'IK CL L' 



. 
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This equation is equivalent to 

1Jlw(s) = 1JL,1K(t)1JL1L'(s) = (1/L':K o IJL1c)'(s). 

 
A�/}{ w(O) = (!)L'IK O IJLIL')(O), it follows that r/l.lK = r}L'IK O IJLIL' and 

the formula for V, follows. n 

 

The advantage of the upper numbering of the ramification group� is that 

it is invariant when passing from LI K to a Galois subextemion. 

 

(10.9) Proposition. Let L'IK be a Galois �ubextension of LIK  ,md 

H = G(LIL'). Then one has 

G'(LIK)H/H �G'(I. iKJ. 

 

Pr-oof: We puts= i/lL'IK(I), G' = G(L'jK). apply (10.7) and (10.8). and 

get 

c1
H/H = GrJriiK(11H/H = c� _ L'(V,LiKUlJ = G'11 _ ,(v, _ ,1.,)) 

=G'., =G
11 

LJ 

 
Exercise 1. Let K 

Show that the 

and K11 = K(n, where (ha pnmit1vc p' -th root ot unity. 

group� of K,,IK arc given as follow�: 

(;, = G(K,,jK) for .1 = 0, 

c;,=(;(K11IK1) forl::::.1:::::p-l. 

G,=G(K,,IK2) forp:::::.1:::::p2
-J, 

 
G, = I for p"-1 ::ss. 

Exercise 2. Let K' he an intermediate field of LIK. Describe the relation between 

the ramification group� of LI K and of LI K' in the upper numbering. 



Chapter Ill 

Riemann-Roch Theory 

 
§ 1. Primes 

 
Having set up lhe general theory of valued fields, we now return to 

algebraic number fields. We want to develop their basic theory from the 

valuation-theoretic point of view. This approach ha� two prominent advantages 

compared to the ideal-theoretic treatment given in the first chapter. The 

first one results from the possibility of pa��ing to completions, thereby 

enacting the important "local-to-global principle". Thi� will he done in chapter 

VI. The other advantage lies in the fact that the archimedean valuations bring 

into the picture the points at infinity, which were hitherto lacking, as the "primes 

at inlinity" In this way a perfect analogy with the function fields is achieved. 

This is the task to which we now tum. 

 

(I.I) Definition. A prime (or place) p of an algebraic number field K is a 

cfas.� of equivalent valuation� of K. The nonarchimcdcan equivalence c/a.�ses 

arc rnlled finite prime.� and the an:himedean ones infinite prime�. 

 

The infinite primes pare obtained, according to chap. II, (8.1), from the 

embeddings T : K ➔ C. There arc two sorts of these: the real primes, 

which arc given by embedding5 T : K ➔ R., and tbe complex primes. 

which arc induced by the pairs of complex conjugate non-real embcdding1i 

K ➔ C. p i1s real or complex depending whether the completion KP is 

isomorphic to IR or to C. The infinite primes will be referred to by the formal 

notation p I oc, the finite ones by p 1cc. 

 

In the case of a finite prime, the letter p ha1i a multiple meaning: ii also 

stand<; for the prime ideal of the ring CJ of integers of K. or for the maximal 

ideal of the associated valuation ring, or even for the maximal ideal of 

the completion. However, thi5 will nowhere create any risk of confusion. 

We write PIP if pis the characteri�tic of the re1iidue field K():l) of the Jinile 

prime p. For an infinite prime we adopt the convention that the completion KP 

also serve� as its own '·residue field." i.e., we put 

K(p) := Kp,  when pix. 
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To each prime p of K we now associate a canonical homomorphi:,.m 

Vp:K* ----- +R 

from the multiplicative group K* of K. If p is finite, then is the p-adic 

exponenlial valuation which is nonnalized by the condition = Z. If p 

is infinite. then Vp i5 given by 

vp(a) = - log 1ml, where 

r : K ----+  is an embedding which define& p. 

For an arbitrary prime PIP (p prime number or p = oo) we put 

furlhermore 

fp � [<(p) C K(p)], 

so that Ji,= [Kp: !P/.l if Ploo, and 

pip 

'.l1(p) � efe .• 

ifp f 00, 

if p I oo. 

This convention suggests that we consider e a5 being an infinite prime 

number, and the extension as being unramified with inertia degree 2. 

We define the absolute value  IP : K ➔ H by 

lalp= IJ1(p)-�·p(al 

for a -I=- 0 and !Olp = 0. If pis the infinite prime as:,.ociated to the embedding 

r : K :,.  then one find� 

lalµ = lral, re:-p. lalµ = [ral
2

, 

if p is real, resp. complex. 

If LI K is a llnite extension of K, then we denote the primes of L by V­ 
and write V-IP to signify that the valuations in lhe class V,, when restricted 

to K, give those of p. In the ca1,e of an infinite prime �. we define the 

inertia degree, rc�p. the ramification index, by 

f<+JIP = [L,,p: Kp], re:-p. c'lJIP = I 

For arbitrary primes � IP we then have the 

 
(1.2) Proposition. (i) L,,p1pe'lJlpf"<+JIP = L'lJlp[L,:µ: KµJ = [L:  K], 

(ii) 91(,j}) = 91(p)l•,i,, 

(iii) t\p(a) = e'+J'pvµ(a) fora EK*, 

(iv) vµ(N1.'llw"(a)) = J,:p1pv,:p(a) fora EL*, 



(v) lal'lJ = INL,ll'Kp(a)lp fora EL. 



31. Primes 185 

 

The normali.Led valuations I IP satisfy the following product formula, 

which demonstrates how important it i5 to include the infinite primes. 

 

(1.3) Proposition. Given any a E K*. one hw; lalp = I for almost all p, 

and 

nlal,� I 
p 

 

Proof: We have vp(a) = 0 and therefore lti111= I for all which do not 

occur in the prime decomposition of the principal ideal (a)  chap. I,* 11. 
p. 69). This therefore holds for almm,l all p. From ( 1.2) and formula (8.4) 

of chap. II, 

NK1,z;(a) = TT NKvlu.J./a) 

Pl// 

(which includes the case p = :xi, = R), we obtain the product formula 

for K from the product formula  Q, which was proved already in 

chap. II, (2.1): 

n1a1,�nn1a1,� □ 
P flPli> 

 

We denote by ./ (o) the group of fractional ideals of K, by P(o) the 

subgroup of fractional principal ideals, and by 

Pic(o) = J(o)/P(o) 

the ideal class group C/ K of K. 

 

Let ui,. now extend the notion of fractional ideal of K by taking into 

account abo the infinite primes. 

 

(1.4) Definition. A replete ideal of K is ,m element of the group 

1(0):=/(o)x nR*1. 

Pl•X 

where R: denotes the multiplicative group of positive real numbers. 

 

In order to unify notation, we put, for any infinite prime p and any real 

number tJ E I�. 
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Given a �ystem of real numbers \Jp, Ploo, let TTPl""-·p"'" always denote lhe 

vector 
n p"' � c .. ,", ...  )E nw,;. 

plex, pie;,., 

and not the product of the quantities e''P in IR. Then every replete ideal 
a E 1(8) admits the unique product representation 

U � n p'', X n p''e �c np'',. 
Ptoc pl,x, P 

where tJp E :Z for pf oo, and vp E IR for 1-1100. Put 

Oj = TT p11
P and Ucx, = n PIJ"' 

Pi"" ploc 

<;O that a = ar x a:x,. a1 b a fractional ideal of K, and a'XJ is an elemenl of 

TIPI= JR�. At the same time, we view ctr, resp. a-x,, as replete ideab 

Ot x fl I.  resp. (I) x Ur,;:_,. 

Pl� 

Thus for all elements of 1(6) the decomposition 

 
applies. To a EK* we associate the replete principal ideal 

[a]= [lpVp(a) = (a) X n PVp(a)_ 

p P'"" 

These replete ideals form a subgroup P(l?) of ./(0). The factor group 

Pic(O) = ./(0)/P(o) 

is called the replete ideal class group, or replete Picard group. 

 

(1.5) Definition. The absolute norm ota replete ide;J/ a= nP Pv" is defined 

to be the positive real number 

91(a) � n 91(p)''. 
p 

 

The abt,olute norm b multiplicative and induces a surjective homomor­ 

phism 

 

The ab�olute nonn of a replete principal ideal [a] j5 equal to I in view of the 

product formula ( 1.3). 

91([a]) � n91(p)""'"1� n lal,' � I 
p p 

We therefore ohtain a surjcctive homomorphism 

')1 : Pic(6) ➔ R: 

on the replete Picard group. 
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The relations between the replete ideals of a number field K and tho�c of 

an extension field L are afforded by the two homomorphisms 

which are defined by 

 

ILIK 

l(EJK)�J(Qt.), 
NLIK 

 

 

;,w(TTP"") �n n 'll""''"", 
µ µ•+31µ 

N, dTT'll'''') �n n ph,,,,,,_ 
'-J.l P'l31µ 

Herc the various product signs have to be read according to our convention. 

These homomorphisms satisfy the 

 

(1.6) Proposition. 

(i) for a chain of fields K s; L <; M, one has NMIK = N1.1K o NMIL and 

i1vt1K = iMIL o iLiK· 

(ii) Nr1K(iL Ka)= aI1·KI fora E .!(6K)­ 

(iii) l)1(N1.1K('2l)) = 1)1(21.) forQl E J(OL). 

(iv) If LIK is Galois with Galois group G. then for every prime ideal V 

ofol, one ha� NL1K(V)o1. = n.,,.c:G av. 

(v) For any replete principal ideal fa] of K, resp. L, one ha� 

iL1d[al) = fa], resp. NL1K<la]) = INLw(a)]. 

(vi) NLw(211) = NL1K(21)r i.� the ide..il of K generated by the nom1s 

NL1K(a) of all a E 211. 

 

Proof: (i) is ha1>ed on lhc transitivity of inertia degree and ramification 

index. (ii) follow1> from ( 1.2) in view of the fundamental identity 

L,.pP f'-J.llp<''-J.llP = IL : Kl. (iii) holds for any replete "prime ideal" V 

of L, hy (1.2): 

'll(NL1Kf'lJ)) � 'l1(p1·"") � 'l1(p)1'•'1" � 'll('l)). 

and lhcrcfore for all replete ideals of L. 

(iv) The prime ideal plying below V decomposes in the ring O of integers 

of Las p = (V1 • VrY, with prime ideals V, = a,V, a, E G/G,ii, which 

arc conjugates of V and thus have the <,amc inertia degree f. Therefore 

N,,Kf'l))O�p10� TT'll'.1 � h n o,r'lJ� n o'l). 
!=I 1=1 rEG,p ,rEG 
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(v) For any element a E K*, ( 1.2) implies that v,:p(a) = e,:µ1pvp(a). Hence 

it,1KClaJ) = it.1K(TTP'',,(ll)) = nn ',J}"'"!Jlpl'p(a) = TT',J}V•ii(u) = [al. 

p P'+llP '+l 

If, on the other hand, a E L*, then (1.2) and chap. II, (8.4) imply that 

vµ(NLIK(a)) = L'+lipf:P1pV<,p(a). Hence 

NL1K<La]) = NL1K(n

�
',J}�'l)(<I)) = = [NvK(a)]. 

(vi) Let a1 be the ideal of K which is generated by all NL1K(a), with a E mr. 

If 2l1 is a principal ideal (a). then a1 = (NLw(a)) = Nt IK(Qli). by (v). 

But the argument which yielded (v) applies equally well to the localizationi,. 

Op IOp of the exten1-ion CJio of maximal order!> of L IK. Op has only a finite 

number of prime ideals, and i:;. therefore a principal ideal domain (1,,ee chap. I, 

§3, exercisc4). We thus get 

(ai)p = NL1K((2ldp) = N1,1d2lr)p 

for all prime ideals p of o, and consequently a1 = NL1d2li). LJ 

 
Since the homomorphisms iLiK and Nt,iK map replete principal ideab lO 

replete principal ideals, they induce homomorphism� of the replete Picard 

groups of K and l,, and we obtain the 

 

(1.7) Proposition. For every finite extcn.�ion LjK, the following two 

dfagrnms are commutative: 

Pic(OL) � IR� 

 

 

Let us now tran�late the notiom we have introduced into the function­ 

theoretic language of divisor5. In chap. I, § 12, we defined the divisor group 

Div(o) to consi�t of all fonnal sums 

D=Lvpp, 
,t� 

where  E Z, and l!p = 0 for almost all p. Contained in this group i� the 

group of principal divisor� div(f) = LPh vp(/)p, which allowed w, 

to define the divisor dw, group 

CH1(o) = /Ji1'(0)/'P(o). 
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It follow5 from the main theorem of ideal theory, chap. I, (3.9), that this 

group is isomorphic to the ideal class group Cl K, which i1- a finite group (see 

chap.I, (12.14)). We now extend the5c conceph as followi,. 

 

 

(1.8) Definition. A replete divisor (or Arakelov divisor) of K is :1 formal 
 
 

 

where Vp E Z forp f oo, Vp E IR forploo, and vp =0 fora/most a// p. 

 

The replete diviwrs fonn a group, which is denoted by Dil·(O). It admits 

a decomposition 

Div(8) � /Jiv(o) x EB IR.p. 
pix 

On the right-hand �ide, the second factor is endowed with the canonical 

topology, the !1r1-t one with the di1-crete topology. On the product we have the 

product topology, which makes Dir(O) into a locally compact topological 

group. 

We now study the canonical homomorphism 

div: K* -----+ Div(O),  div(/) = L vp( f)p. 
p 

 

The clements of the fonn div(/) are called replete principal divisors. 

 

 

Remark: The compo'>ite of the mapping div : K* ----j- Dil'(O) with the 

mapping 

Div(O)-----+ n!R.,  Lvppi -------+(vp/i,)pi,-x_,, 
Pl= P 

is equal, up to 1-ign, to the logarithm map 

i.,K'- [1IF<.  i.(/l�( ... loglflp-- .). 
pl� 

of Minkowski theory (see chap. I,* 7, and chap. Ill.* 3, p. 211). 

chap. I. (7.3), it map" the unit group  onto a complete lattice r = 
in trace-zero space H = {(.rp) E nPi'.XJ IR I Lplcx, lp = 0}. 

 

( 1.9) Proposition. The kernel of div : K* ----j- !)iv(O) i� 1he group µ,(K) o( 

mars of unity in K, and its image P((J) is a discrete suhgroup of !)iv(O). 
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Proof: By the above remark, the composite of div with the map Dil'(8) ➔ 

nPl'X R, LP l!pp f--+ (vpfp)p1-x:.. yicld'i, up to sign, the homomorphism 

A: K* ➔ nplx R. By chap. I, (7.1), the latter fits into the exact �equence 

1 ------+ µ(K) -----+ o* �  r ------+ o, 

where I' ls a complete lattice in trace-zero space H s; TTwx. IR. 

Therefore fl(K) is the kernel of div. Since I' is a lallicc, there 

exists a neighbourhood U of O in TTplx R which contain� no element 

of I' except 0. Comidering the isomorphism a : nploc IR ➔ EBPl'Xl Rp, 

(vp)pl,x. r---+ LPl'Xl  p, the &ct {0) x a U C /Jfv(o) x ffip':xi Rp = Div(8) 

is a neighbourhood ofO in /Jiv(O) which contains no replete principal divisor 

except 0. This shows that P(O) = div(K*) lies discretely in Div(8). D 

 

(1.10) Definition. The factor group 

CH1(0) = Div(O)/P(O) 

is called the replete divisor class group (or Arakelov class group) of K. 

 

As P(O) i� discrete in Div(O), and is therefore in particular clo5ed, 

CH 1 (0) becomes a locally compact Hausdorff topological group with respect 

to the quotient topology. It is the correct analogue of the divif.or class group 

of a function field (�ee chap. I, S 14). Por the latter we introduced the degree 

map onto the group Z; for C/11(E5) we obtain a degree map onto the 

group IR. It is induced by the continuous homomorphism 

deg: Div(O)------+ R 

which sends a replete divisor D = LP l!pp to the real number 

deg(D) � I>e log 'l1(p) � log(TI 'l1(p)"''). 
p p 

From the product formula ( 1.3), we find for any replete principal divi<;or 

div(f) E P(O) that 

deg(div(f)) �I:log'l1(p)'',Ul�1og(Tilfl,') �o. 
p p 

Thus we obtain a well-defined continuous homomorphism 

deg: CH1(0) -------+r�. 

The kernel C//1(<?)0 of this map is made up from the unit group  and the 

ideal das� group C!K ;:: CH1(o) of K as follows. 
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(1.11) Proposition. Let I' = 
trace-zero space II = {(xp) E 

.�equence 

 

denote the complete lattice of units in 

I Lvirx Xp = 0). There is an exact 

 

 
 

 

Proof: Let Div(o)0 be the kernel of deg: Div(O) --+ IR. Consider the exact 

sequence 

0-----+ TT � Div(O) -----+ /Jir(o) -----+ 0, 

Pl= 

where a((vp)) = LP :x, "7! IJ. Restricting to Dii·(i5)0 yields the exact 

commutative diagram 

0 -----+ A(o*) � P((J) --------c>- P(o) --+ 0 

l l 
0------+ H � Div(0)0 ------+ Div(a) -----+ 0. 

 

Via the snake lemma (�ce [23], chap. III, *3· (3.3)), thi� gives ri�e to the 

exact sequence 
 

 

 

The two fundamental facts of algebraic number theory, the finiteness of 

the class number and Dirichlet\: unit theorem, now merge into (and are 

in fact equivalent to) the simple statemem that the kernel CH1(8)0 of the 

degree map deg: CH1(i5)--+ IR b compact. 

 

(1.12) Theorem. The group CH 1 (8 )0 is compact. 

 

 

Proof: This follows immediately from the exact sequence 
 

As I' is a complete lattice in the IR-vector space H, the quotient H / r is a 

compact torus. In view of the finiteness of Cl/1(o), we obtain CH1(c""0)0 as 

the union of the finitely many compact cosel� of If/ I' in CH1([i)0. Thus 



CH1((""0)0 itself is compact. □ 
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The corre5pondence between replete ideals and replete divisors is given 

by the two mutually inverse mappings 

div: J (8) ------+ Div(l75), 

 

!Jiv(O) ----- + ./(8), 

div(TT p1
"P) = L-vµP, 

p p 

L l'pP f--------'J, TT p-Vp. 

p p 

These are topological isomorphisms once we equip 

J(O) = J(o) X ,n,�JR� 

with the product topology of the discrete topology on .l(o) and the canonical 

topology on npl:,.., IR:. The image of a divisor D = LP VpP is also written 

o(D) = n p-l'p. 

p 

The minus sign here is motivated by classical usage in function theory. 

Replete principal ideals correspond to replete principal divi�ors in �uch 

a way that P(O) becomes a discrete subgroup of 1(8) by (1.9). and 

Pic(O) = .l(i:5)/P(O) is a locally compact llau�dorff topological group. 

We obtain the following extension of chap. I, (12.14). 

 

(1.13) Proposition. The mapping div  J (8) �  Dii·(O) induces a 

topological isomorphism 

div: Pic(O) �  CH1(i.5). 

 

 

On the group 1(8) we have the homomorphism IJt: ./(i.5)---+ R�. and 

on the group Di1'(i.5) there is the degree map deg: Div(i.5)---+ IR. They are 

obviously related by the formula 

deg(div(a)) � -log<J1(a). 

and we get a commutative diagram 

 
 

with exact rows. (1.12) now yields the 

0 --------;, Pit(0)0-----,,.  Pic(O) � 
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(1.14) Corollary. The group 

PHoJ° �{ lal E Pic(/0) I <Jl(a) �I\ 

is rnmpacl. 

 
The preceding isomorphism result ( I. 13) invites a philosophical reflection. 

Throughout the historical development of algebraic number theory, a controversy 

persisted between the followers of Dedekind's ideal-theoretic approach, and the 

divisor-theoretic method of building up the theory from the valuation-

theoretic notion of prime._, Both theories are equivalent in the scn<,c of the 

above isomorphism result, but they arc also fundamentally different in nature. 

The controversy has finally given way to the realization that neither approach 

i5 dominant, that each one instead emanate1i from it5 own proper world, and 

that the relation between these world1i b expressed by an important 

mathematical principle. However, all this becomes evident only in higher 

dimensional arithmetic algebraic geometry. There, on an algebraic Z-&cheme 

X, one 1itudie1i on the one hand the totality of all vector hundfcs, and on the 

other, that of all irredul"ihlc suhschcme:, of X. From the first, one com,tructs a 

series of groups K, (X) which comtitute the subject of algebraic K-theory. 

From the second is constructed a series of groups CH' (X), the subject 

of Chow theory. Vector bundle1i arc by definition locally free 

ox-module1i. In the special case X = Spec(o) this include1i the fractional 

ideab. The irreducible subschemes and their formal linear combinations, 

i.e., the cycles of X, are to be considered as generalization& of the primes 

and divisors. The isomorphism between divisor cla5� group and ideal cla1i& 

group extends lo the general setting as a homomorphic relation between the  

group1i Cll' (X) and K1 (X). Thus the inilial controversy ha1i been resolved 

into a seminal mathematical theory (for further reading, see [ I 3 ]). 

 
Exerci,;e 1 (Strong Approximation Theorem), Let S be a finite �et of prime� and 

le1 p11 be another prime of K winch doe� not belong to S. Let (./p E K be given 
numbers, for p ES. Then for every c > 0, there exists an t c K �uch that 

Ix - ap Ip < c for p E S, and Ix IP � I for p r/:. Su {Pnl. 

Exercise 2. Le1 K he totally real, i.e., Kp = Ilk for all Pl=- Let T bed proper 
nonempty sub�et of Hom(K. H:). Then there ex1�\s a unit r of K �ati�fymg Tl > ! 
for, ES and O < u < l for, r/. S. 

Exercise 3. Show that the ab�olute nonn 91: Pil'(Z) ➔ JR� i� an isomorplmm. 

Exercise 4. Let K and L be number field�, and let, : K ➔ I. he a homomorphi�m. 

Given any replete divi�or D = L'-J.l v-;p'-l] of L. define a replete div1�or of K by 

therule 

,.wi = l.J L v,:µ/"'l]1p) P, 
P 'lllP 
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where i� the inertia degree of ,P over r K and 'PIP �igni!ie� rp = 'Pl,x. Show 

that r,  a homomorphism 

r,: CH1((71) ------- ,. CH1(i"!;,.)_. 

Exercise 5. Given any replete div1�or D = LP VµP of K. define a replete div1�or of 
L hy the rule 

r�{DJ =LL Vµ<''-!Jip'P, 
P 'VP 

\\-here e,:p,p denote� the ram1ticat1on mdex of ,P over K. Show that r* induce� a 

homomorphi�m 

 

Exercise 6. Show that •r 

r*: CH1(i''lx:)------,.CH1(tJL). 

= IL : KI and that 

deg(r,D) =deg(D).  deg(r*D) = [L: Kldcg(D). 

 
 
 

 

§ 2. Different and Discriminant 

 
It is our intention to develop a framework for the theory of algebraic 

number fields which shows the complete analogy with the theory of function 

fields. This goal leads us naturally to the notions of different and discriminant, 

a� we shall explain in § 3 and § 7. They control the ramification behaviour of 

an extension of valued fields. 

 

Let LI K be a finite separable field extension, CJ � K a Dedekind domain 

with field of fractions K, and let O � L be iti,, integral closure in L. Throughout 

this section we assume syi,,tematically that the residue field extensions AIK of 

Ola arc separable. The theory of the different originates from the fact that we 

arc given a canonical nondegenerate symmetric bilinear fonn on the K -vector 

space L, 1·iz., the trace form 

T(.t,y) = Tr(.ty) 

(see chap. I, § 2). It allows us to associate to every fractional ideal Ql of L 

the dual CJ-module 

'2( � / x E L / Tc(x 'll) <;; v). 

 
It is again a fractional ideal. For if a1.  .a11 E CJ is a basis of LIK 

and d = det(Tr(a1a1)) it� discriminant, then ad*21. � CJ for every nonzero 

a E Qln o. Indeed, if x = x1a1 +- - - +x11a,, E *21., with \; E K, then the a,1 

satisfy the system of linear equations L7=1 aJ., Tr(a,aJ) = Tr(,·ua1) E CJ. 

This implies dax; E o and thus dax E 0. 
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The notion of duality is justified by the isomorphism 

�Q(--=:.... Hom0(Qt, o),  ti-------+ (y 1-+ Tr(xy)). 

 

Indeed. �ince o-homomorphi,;m /" : Q( ---+ o extends uniquely to a 

K -homomorphism : L ---+ K in view of Q(K = L, we may consider 

Hom,?(Qt, CJ) as a submodule of HomK (/., K), namely, the image of *Q( with 

re�pcct to L ---+ HomK (L, K), x 1-+ (y 1-+ Tr(xy)). The module dual to CJ, 
 

will obviously occupy a distingui�hcd place in thi� theory. 

 

(2.1) Definition. The fractional ideal 

�010 � 'O � / x E L I Tc(xOJ c; o) 

i.� called Dedekind's complementary module, or the inverse different. Its 

inverse, 

i� called /he different of Ola. 

 

As ittllo 2 0. theideal :Tiq0 s; CJ is actually an integral ideal of L. We 

will frequently denote it by l) 1 iK. provided the intended �ubring� a, CJ arc 

evident from the context. In the �ame way, we write i[LiK imtcad of ito10. 

The different behaves in the following manner under change of rings o 
and 0. 

 

(2.2) Proposition. 

(i) For a tower of field.� K s; L s; M, one ha� '.DMIK = '.DM1L'.DL1K. 

(ii) For any multiplicative subset S of o, one has :TI5-101s-10 = s-1
'.Do10- 

(iii) Ifq]lp arc prime ideals of CJ. resp. o. and 0,:µlo� are the a.�sociated 

completiom, 1hen 

 

Proof: (i) Let A = o s; K, and let B s; L, C s; M be the imcgral clo�urc 

of o in L, resp. M. It then suffices to show that 
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The inclmion 2 follows from 

Trtw K(l£ciRitR1AC) = TrLIK TrM1d(fc:RitR1AC) 

= TrL K( if RIA TrM1dltc1BC)) <;A. 

In view of BC = C, the inclusion<; is derived as follows: 

TrMIK (lfciAC) = TrL1K ( B TrM1dltc AC)) <; A, 

so that TrM1ditc14C) <; ([RIA, and thus 

TrM t (itf:1:Ae:CiAC) = itB:A TrM11.(l!ci,1C) £;; B. 

 

This does indeed imply Q.'fl1A![CiA £;; l!c1H, and so itc1A £;; Q.'ciH<!'RIA· 

(ii) i� trivial. 

(iii) By (ii) we assume that o b a discrete valuation ring. We show that 

l!o1,_�is dense in  In order to do thi,;. we use the fonnula 

TrLIK = L TrL,vlKp 

'+llP 

(5ee chap. II, (8.4)), Let x E it010 and y E CJ,,p. The approximation theorem 

allows u� to tin<l an T/ in L which is dose to _v with respect to v13, and clo�e 

to O with respect to V'-J.l', for !,p'lp. !,p'-=/= !,p. The left-hand side of the equation 

TrL1K(XT}) = Trl.'VIKp(XT}) +,+l;'"J,..1TrL,vlKp(xr1) 

 

 since Tr1.1K(n1) E o <; Op, hut the same is true of the 

elements hecau�e they arc close to zero with re�pect to Vp. 

E Op. Thb show5 that ito10 £;; 1:!:o.i,,'")"• 

hand x E ([O-+,io", and if� E L is sufticienlly close 

to x with respect to  and sufficiently close to O with re-;pcct to 1!•:p'. 

for l,p'-=/= l,p, then� E In fact. if y E C'J, then TrL,vlKp(�y) E Op, 

E Op for !,p'l!,p, because 

n K = o. i.e.. 

S E other word8. 

□ 
 

If we put :1J = and :1J,:µ = '.DL,plKp, and consider '.D<:p at the same 

time as an ideal of CJ  as the ideal CJ n ::U,,p), then (2.2), (iii) gives us the 

 

(2.3) Corollary. '.D = fl13'.D;;p. 



I 
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The name '"different" is explained by the following explicit description,  

which wa� Dedekind's original way to define it. Let a E O and let 

f(X) E v[XJ be the minimal polynomial of a. We define the different 

of the element a by 

J'(a) if L � K(a), 

Or.ida) = 0 if L i- K (a). 

In the �pecial case where O = o[al we then obtain: 

 

(2.4) Proposition. IfO = ofal, then the different is the principal ideal 

T!L K � (8L1da)) 

 

Proof: Let f(X) = ao +a1 X + • • + a11X" be the minimal polynomial of a 

and 

 

The dual ba'>i� of I, r.x, ... , a" 1 with respect to Tr(xy) is then given by 

ho h11--1 

f'(a)'• f'(a) 

For if a1, ... , a11are the roots off, then one has 
 

as the difference of the two sides is a polynomial of degree ::: n - I with 

roots a1.  . an, rn is identically zero. We may write this equation in the 

fonn 

'fr[l.<!l.-"'-]�x' 

Considering now the coefficient of each of the power5 of X. we obtain 

T,·(a1

 /"(!a!_)J )�8,, 

and the claim follows. 

As O = o + oa + • • • + oa11-1, we get 

C!:010 = f'(a)-
1
(oho+  +nhn-d­ 

Fmm the recursive fonnulas 
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it follows that 

so that oh0 + • • + oh11_1 = o[a] = O; then e'.010 = f(a) 10, and 

thus 'DL1K = (_f'(a.)). [l 

 

The proof shows that the module *o[a] = /x EL I Tr,.1K(xo[aj) � v), 

which is the dual of the o-modulc ola]. always admits the v-basis a' /f'(a), 

i = 0, , n - I. We exploit this for the following charactcrit:ation of the 

different in the general ca:;e where O need not be monogenous. 

 

(2.5) Theorem. The different '.DLIK i!, the ideal generated by all differents 

ofelements!iLiK(a) fora E 0. 

 

Proof: Let a E O such that L = K(a), and let f(X) bethe minimal 

polynomial of a. In order to show that f'(a) E '.DLIK• we consider the 

"conductor'' f =  = \x E LI tO 5:;:; o[a]) of ofal (see chap. I, § 12, 

p. 79). On putting = f'(a), we have for x EL: 

t E f <===} xO £; ofal  

<===} Tr(h x0)£;;o-¢=} h xE'.DL K {::::::::} xEh:'D£. K. 

Therefore (f'(a)) = fo1"1'.DL1K, so in particular. f'(a) E'.Dt,1K• 

3J,. K thus divides all the differents of clement� 8, IK (a). In order to prove 

that '.DLIK is in fact the greatest common divi�or of all 81 IK(a), it �uffices 

to �how that, for every prime ideal l.p. there cxbt� an a E (') such that 

L = K(a) and v,:p(l)LIK) = V-+.1(f'(a)). 

We think of L as embedded into the separable closure Kp of K p in 5uch 

a way that the absolute value I I of KP delines the prime �. 

By chap. II, (10.4), we lind an element f3 in the valuation ring0'+-1 of the 

completion LqJ satisfying O,:p = Op[/31. and the proof foe. cit. shows that. 

for every clement a E 0'13 which b suf'liciently close to {3, one also has 

O,:µ = Op[a]. From (2.2), (iii) and (2.4), it follows that 

1J'l3('.DL1K) = v,:µ(:'Dt.,iilKp) = v,:µ(0Li,1K/a)) 

It therefore suffices to show that we can find an clement a in O such that 

L = K(a) and 

V<:p(,h'Vwµ(a)) = v'-J.l(OL!K(a)} 

For this, let (12.  . er, : L ----+ KP be K -embeddings giving the primes 1.131 IP 

different from l.p. Let a E Op be an element <,uch that 

(*) lrfi-al=l forall rEGp=G(KplKp). 
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(Choose a = 1, rc&p. a = 0, according a5 the residue classe5 rfJ mod 13 

which arc conjugate over tJp/P arc zero or not.) Using the Chinese remainder 

theorem, we now pick an a E O rnch that la-,81 and la1a-al, for 

i = 2, ... , r, are very small. We may even assume that L = K (a) (if not, 

modify bya+n''y, n E p,forv big, y E 0, L = K(y); forsuitable tJ-=/=- JL, 

one then finds K(a +nvy) = K(a +n1'y) = K(y)). Since a is close to ,8, 

we have O'l-l = Op[a]. Now 

SL,i,!Kr(a) = TT (a - ra), 
,;t 

 

where r rum through the Kp-embeddings L'l-l ----+ KP different from I. 

Furthcnnorc, 

 

8Lw(a)= TT(a-aa)= nca-ra)Ilnca-r1JrT10'), 
ac;icl r,tcl 1=1 J 

 

where a runs over the K -embeddings different from l, and the r11 arc certain 

elements in Gp· But now 

la - r11rr,al = lr,�1a - a1al = lr,�1a - a +a - a,al = 1, 

since la - a,al is very �mall, and r,�1a i� very clo�c to  1/J (see (*)). 

Therefore v,ii(tiLIK (a))= v'lJ(TT,11(a - ra)) = asrequired. 

□ 

 
The different characterize� the ramification behaviour of the extension 

LjK as follows. 

 

(2.6) Theorem. A prime ideal 13 of L i.� ramified over K if and only if 

'lll'.lJ1.1K- 

Let 13·' be the maximal power of 13 dividing '.DLIK, and lei e be the 

mmification index of13 over K. Then one has 

s = e - 1, if13 is tamely ramified, 

e _::: s _::: e - I + v,:µ(e), if13 is wildly ramified. 

 

Proof: By (2.2), (iii), we may assume that o is a complete discrete valuation 

ring with maximal ideal p. Then, by chap. II, (10.4). we have O = tJ[al for 

a suitable a E 0. Let f(X) be the minimal polynomial of a. (2.4) say5 that 

s = v,,µ(l'(a)). As�ume LIK i� unramilied. Then fi = a mod 13 i5 a simple 

tero of f(X) = f(X) mod p, 50 that J'(a) E 0* and thus s = 0 = e - I. 



1 1 

200 Chapter Ill. Riemann.Roch Theory 

 

 

By (2.2), (i) and chap. II, (7.5), we may now pas<, to the maximal unramified 

extension and assume that LI K i1- totally ramified. Then a may be chosen 

to be a prime element of 0. In thi5 case the minimal polynomial 

f"(X)=aoX"+a1X"-
1

+··•+ae,   ao= 1, is 

an Eisenstein polynomial. Let us look at the derivative 

f
1
(a) = eana" 

1 + (e-  l)a1a"-
2 +  +ae-1 • 

For i = 0.  , e - 1, we find 

v,,µ( (e - i)a cl•-,-1
) = evp(e - i) + evp(a ) + e - i - I= -i - 1 mode, 

so that the individual terms of J'(a) have distinct valuations. Therefore 

s = l''J.!(f'(cy)) = !/!�i�,,{ v'J.l((e - i)a,a'·-,-
1
)) 

If now LI K is tamely ramified, i.e., if vp(e) = 0, then the minimum 

ii,. obviously equal to e - 1, and for 1Jp(e) ::::_ I,  we deduce that 

e ::S s ::S vrp(e) + e - I. Q 

 

The geometric significam:e of the different, and thus also the way it lit� 

into higher dimensional algebraic geometry, is brought out by the following 

characterization, which is due tot:. KAHLER. For an arbitrary extension BIA 

of commutative rings, consider the homomorphism 

Jl : B ®A 8 -----+ B,  x ® y i ------- + xy. 

whrn;e kernel we denote by /. Then 

Dh,A := ///
2
 = / ®R0R 8 

is a B ® B-module, and hence in particular also a B-module, via the 

embedding B ---* B ® B. h H- h ® 1. It is called the module of differentials 

of B I A, and ib elements are cal led Kahler differentials. If we put 

dx = x ® I - 1 @x mod /2
, 

then we obtain a mapping 

 
satisfying  

d(xy) = xdy + ydx. 

da = 0  for a E A. 

Such a map b called a derivation of BIA. One can show that dis universal 

among all derivations of BIA with values in B-modules. Dh1A consists of 

the linear combinations Ly,dx1. The link with the different is now this. 



§ 2. Different and Di�criminant 201 

(2.7) Proposition. The different :Dc,10 is the annihilator of the 0- 

module S22J10, i.e., 

:Do1o={xEO[ r:dy=0 forall yEO). 

 

Proof: For grealer notational clarity, let m, put O = B and a= A. If A' 

is any commutative A-algebra and B' = B @.4. A'. then it is easy to 5Ce 

that £?k,1A.' = £?k1,1 ®,1 A'. Thu5 the module of differentials is preserved 

under localization and completion, and we may therefore assume that A is 

a complete discrete valuation ring. Then we find by chap. II, (10.4), that 

B = A[xJ. and if /(X) E A[Xl i& the minimal polynomial of x, then QRIA 

is generated by dx (exercise 3). The annihilator of d.i j5 f'(x). On the other 

hand, by (2.4) we have :DBIA = (f'(x)). Thi� provc5 the claim. D 

 

A mosl intimate connection holds between the different and the 

discriminant of CJ lo. The latter is defined as follows. 

 

(2.8) Definition. The discriminant r:i010 i.� the ideal of o which is generated 

by the discriminants d(a1,  , a,,) of all /he bases a1, ....a11 ofL IK which 

are contained in 0. 

 

We will frequently write llLIK instead of lla10. If 0'1, , an i� an 

integral basis of Olo, then r:i, IK is the principal ideal generated by 

d(a1, .. , an)= dLIK. because all olher bases contained in Oare tran&fonn� 

of the given one by matrices with entries in n. The discriminant i� obtained 

rrom the different by taking the noon N, iK (see S 1 ). 

 

(2,9) Theorem. The following relation exi�b between the discriminanl and 

the different: 

 

Proof: If S is a multiplicative sub5et of o, then clearly r:i.� 

s-1r:io10 and :Ds-iois 10 = s-1:Dc,10. We may therefore as�ume  o is 

a discrete valuation ring. Then. since o is a principal ideal domain, so is() 

(see chap. I, §3, exercise 4). and it admil� an integral basis a1. . , a,, 

(see chap. I, (2.10)). So we have llL1K = (d(a1, ,a11)). Dedekind's 
complementary module ................................................................................. , a11 

which i1> characterized by is a 

principal ideal (/3) and admits the ... , f3an of discriminant 

d(f3a1, .. ,f3a11) = N1.1K(/3)
2

d(a1, ...... ,a11). 
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But (N, 1;dfi)) = N1.1d!!o10) = = NL1d'.DL1K>-
1
, and 

(d(a1, ............ an))= DLIK· One ha� d(a1.. = dct((a1aJ))2. 

d(a;.  .a;,)= for a, E HomK(L.K), and Tr(a,a;) = 011. 

Then d(a1. . .. an) ... , c<i) = I. Combining these yields 

DL
1

K = (d(a1, ... an)-
1
) = (d(a

1
1, .. .,a;,))= (d(/fo:1,  .fia11)) 

2
NL1K<'.DL1K)- i)LIK 

and hence NLw('JJL1K) = i)LIK• LJ 

 

(2.10) Corollary. For a tower of fields K s; L � M, one has 

DM1K = D��/ NL1K(ll,H1d- 

 

Proof: Applying to '.DMIK = '.DM1L'.DLIK the norm N11J1K = Nrw c N,1111, 

(1.6) give� 

DMIK = NL K (llM1dNL1K('JJ�:�/ 
1
) = N1 w(iJM1tJD�

1
/
I
. □ 

 

 

Putting i) = Dt.,K and D,p = and viewing O;p al5o a� the ideal 

ll<p n o of K, the product formula  for the different, together with 

theorem (2.9), yields: 

 

(2.11) Corollary. D = TI,:p i.'l'll. 

 

The cxtcn5ion LI K is called unramified if all prime ideals p of K arc 

unramitied. This amounts to requiring that all primes of K be unramilled. 

In fact, the infinite primes are always to be regarded a� unramified 

because "'lJI p = I . 

 

(2.12) Corollary. A prime ideal p of K is rnmitied in L if;.md only ifplD. 

In particular, the extension LI K i., unramified if the di:.criminant D = (I). 

 

Combining this result ½ith Minkowski theory lead� to two important 

theorems on unramitied extensions of number llcld, which belong to the classical 

body of algebraic number theory. The first of the:,e results is the following. 

= 



n 
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(2.13) Theorem. Let K be an algebraic number field and Jct S be a linilc 

set of primes of K. Then there exist only finitely many extensions LI K of 

given degree n which are unramified outside of S. 

 
Proof: If /,IK is an cxtcn5ion of degree n which is unramificd outside of S, 

then, by (2.12) and (2.6). it5 di5criminant i:ILIK is one of the finite number 

of divisors of the ideal n =  p<ccS" pn{l+nl. It therefore suffices to show 
Pt= 

that there arc only finitely many extension:,, LI K of degree n with 

discriminant. We may assume without loss of generality that K =  For 

if LI K is an extension of degree n with discriminant i:!, then L IIQ is an 

extension of degree m = nfK: Ql] with discriminant (d) = i:!'.;;11QNKl\l'(i:l). 

Finally. the discriminant of L( J=T)IQ differs from the discriminant of LIQ 
only by a con5tant factor. So we are reduced to proving that there exist 

only finitely many fields K IQ of degree n containing R  with a given 

discriminant d. Such a field K has only complex embeddings T : K ---- + 

Choose one of them: To. In the Minkowski space 
 

(5ee chap. I, §5) consider the convex, centrally symmetric subset 

X �{(,,)EK:, I llm(,,,,JI < c/jdj. 

1Re(zr0)1 < I, lzrl < 1 for T-=/- ToJo). 

where C is an arbitrarily big constant which depends only on 11. For a 

convenient choice of C, the volume will satisfy 

vol(X) > 211JTJT = 2n vol(oK), 

where vol(oK) is the volume of a fundamental mesh of the lattice 

in Ket - sec chap. I, (5.2). By Minkow:,,ki':,, lattice poinl theorem I. 

(4.4)), we thw, find a E OK, a-=/- 0, �uch that ja = (ra) E X, that is, 

(*)  I lm(roa)I < c✓IJT, I Re(roall < I.  lral < I  for  r -1- To, To. 

This a i� a primitive element of K, i.e., one has K = Q(a). Indeed, 

INK1v,(a)I = nr 1ml?. I implies IToal > I; thus Im(Toa) -=I-() so that 

the conjugates Toa and T0a of a have to he distinct. Since ITai  < I for 

T -=I- To. T0, one has Toa -=I- Ta for all T -=I- To. This implies K = Q(a), 

because if Ql(a) � K then the restriction Tok�wl would admit an extension 

T different from To, contradicting Toa -=I- Ta. 

Since the conjugate:,, Ta of a are subject lo the condiliom (*), which 

only depend on d and n. the cocfficicnh of the minimal polynomial of a 
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arc bounded once d and n are fixed. Thus every field K IQ of degree n with 

discriminant d is generated by one of the finitely many lattice points a in the 

bounded region X. Therefore there are only finitely many fields with given degree 

and di5criminam. D 

 

The second theorem alluded lO above is in fact a strengthening of lhc fir�t. 

It follows from the following hound m1 the discriminant. 

 

(2.14) Proposition. T/ie discriminant of an algebrnic number field K of 

degree n s:itislics 

 

 

Proof: In Minkowski space K J = [Tir C] 4. r E Hom(K, C), consider the 

convex, centrally symmetric subset 

X, �I(,,) E Ke I � lc,1 <; 1). 

Its volume is t" 
vol(X1) = 2,.IT1 -  • 

n ! 
Leaving a&ide the proof of this formula for the moment (which incidentally 

was exercise 2 of chap. I, 95), we deduce the proposition from Minkow�ki's 

lattice point theorem (chap. I, (4.4)) a� follow;,. Consider in KIR the lattice 

r = .fo defined by o. By chap. I, (5.2), the volume of a fundamental mesh 

i;, vol(r) = Jl"clKT. The inequality 

vol(X1) > 2n vol(/") 
therefore holds if and only > 2"�, or equivalently if 

,n =fl!(�r jfd;1 + t", 

for some F > 0. If this is the case, there exists an a E v, a i- 0. such 

that ja E X1. As this hold;, for all e > U, and since X1 contain& only 

finitely many lattice points. it continue;, to hold fort = 0. Applying now the 

inequality between arithmetic and geometric mcam, 

�D,,l2:(n1,,1)11
". 

n  ' ' 
we obtain the de;,ircd result: 

1 <'. INK1o(a)I � CT!rnl <'. _!_o::: lrnl)" < t"_ � "- (.4.)'/1dKI 
r n"  r nn  n,, IT 

'.S �(.4.)11/2jfd;1_ 
n" IT 

Given this, it remain� lo prove the following lemma. C 
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(2.15) Lemma. In Minkowski space K 1Ft = [ nr C]➔ , the domain 

x, � { 1,,) E K-, I� 1,,I < t I 
 

has volume 

vol(Xr) = 2' n' !:.._ • 
n ! 

Proof: vol(Xr) is 21 times the Lebesgue volume Yol(f(X1)) of the 

image f(X1) under the mapping chap. I. (5.1). 

f: K1r;  .,,. nR, (z,) i--------+ (x,), 

where x/! = Zp, Xa = Re(za ), xrr = lm(za ). Sub,;;tituting .11• i = I,  .r, 

instead of x/!. and vJ. :1, j = I,  s,instead of Xa,Xrr, we sec that f(Xr) 

is described by the inequality 

 

lxil + + Ix,. I+ 2/ yf + zf + • • • + 2J y� + :� < t. 

The factor 2 occur5 becaw,e lz;; I = 12a I = l:a I. Passing to polar coordinate'> 

Yi= Ujcos01, z1 = u1sin01• where O =:: 01 =::: 2n, 0 =:: u1, one sees that 

Yol(f'(Xi)) i� computed by the integral 

/(!)= f U1···u1d.\1  dx,d111•·•du,d01,  d0_. 

extended over the domain 

lx1 I+···+ Ix, I+ 2u1 + + 2us :'.:: t. 

Re�tricting this domain of integration to x, ==: 0, the integral gets divided 

by 2r Substituting 2u1 = w1 gives 

/(t) = 2r4 '(2n)'t,.,.,(I), 

where the integral 

l,..,(t)= f W1·••w,d11•·•dx1dw1  dw., 

has to be taken over the domain ..1., ==: O. w1 ==: 0 and 
 

Clearly /1 ,.,(1) = t1
+2.

1
/1 ,,(I)= ,n I,.,(!). Writingx2+· ·+x1 +w1+· ·+«\ 

=::: t - t1 in5tead of(*), Fubini"s theorem yields 

/,.,.(1) = f1lr-1.,(I -xi)d.11 = t(I -_\i)11-
1dx1 /,-1,,(l) 

lo lo 
I 

= -/,  1,,(1). 
n 
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By induction, this implies that 

I 

l,.,�(I)= n(n-l)•·•(n-r+l)10··'(1). 

In the same way, one gets 

11 
2 2 

and, doing the integration, induction shows that 

I I 
/o_,(1) = (2s)! /o.oO) = (2_,)! • 

Together, this gives/,.,.,(!)=� and therefore indeed 

 
 

 

If we combine Stirling':c. fonnula, 
 

with the inequality (2.14), we ohtain the inequality 

ldK I > ("-)
2

'

1 

_!_ e2n-t, 
4  2rrn 

This �how& that the absolute value of the di�criminant of an algebraic 

number field tends to infinity with the degree. In the proof of (2.13) we saw 

that there are only finitely many number fields with bounded degree and 

discriminant. So now, since the degree is bounded if the di�criminant i&, we 

may �trengthen (2.13), obtaining 

 

(2.16) Hermite's Theorem. There exist only finitely many number fields 

with bounded discriminant. 

 

The expression a11= sati�fies 

 

� = ("-)1/2(1+ �)11> I, 

lln 4 fl 

i.e., a11�1 > a,,. Since a2 = � > I, (2.14) yield<; 

lo_.,(])= 
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(2.17) Minkowski's Theorem. The discriminant of a number field K 

different from Q is f=. ±I. 

 
Combining this result with corollary (2.12), we obtain the 

 

(2.18) Theorem. The field Q does not admit any unramitied extensions. 

 

These last theorems are of fundamental importance for number theory.  

Their significance i� seen especially clearly in the light of higher dimensional 

analogues. For instance, let us replace the finite field extensioni,, LIK of a 

number field K by all smooth complete (i.e., proper) algebraic curves defined 

over K of a fixed genus g. If p is a prime ideal of K, then for any i,,uch 

curve X, one may define the "reduction mod p". This is a curve defined 

over the residue class field of p. One says that X has ,.:ood reduction al the 

prime p if its reduction mod p is again a smooth curve. This corresponds 

to an extension LIK being unramified. In analogy to Hermite's theorem, 

the Russian mathematician I.S. SM:4Rn 1t formulated the conjecture that there 

exist only finitely many smooth complete curves of genus g over K with good 

reduction outside a fixed finite set of primes S. This conjecture was proved 

in 1983 by the mathematician Gnw FAwNGS (see [35]). The impact of this 

result can be gauged by the non-expert from the fact that it was the basi� for 

F,1u1Nn\·'s proof of the famous Mordell Conjecture: 

 

Every algebraic equation 

 

 

of genus g > I with cocfficienrn in K admits only finitely many solutions 

in K. 

 
A I-dimensional analogue of Minkowi,,ki's theorem (2.18) was proved 

in 1985 by the French mathematician J.-M. Fo!'ITAJl'li:,: over the field Q, there 

are no smooth proper curves with good reduction mod p for ail prime 

numbers p (see [391). 

 

Exercise I. Let d(a) 

 

..a" 1),foranelementa E Osuchthatl = K(a). 

Show chat D1_1K 1� genera1ed all discriminanh 

di�crcte valuation ring and  re�idue field 

word\, equal� the gcd of all di�crimmant� of 

to hold general. Counterexample: K = Q, L = 
(Sec [601, chap. III, § 25, p. 443. The untranslatable 

phenomenon 
1\: there are 
"au[Jerwe.1
entfiche 
Disl,.riminam



enrci/e1"  
 

 

 

for lhi� 



* 
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Exercise 2. Let be a Galois extension of hen�elian field� with �eparahle residue 

field cxlen¾ion  and let G,, i :::-_ 0. be the i-!h rarrnfication group. Then, if 

:Dr 1K = 'lJ'. one 

- I). 

 

Hint: If O = o[xl (.,ee chap. IL (10.4)). then .1 = 11i.(li11K(\)) = Lacr; 111(< -en) 

"'' 
Exercise 3. The module of differentiah 

r E 0, and lhere 14 an exact �e4uence 

()---;,. '.Do10 ---;,.0 ---;,. QC�IO ---;,. Q 

by a �ingle element d.1. 

Exercise 4. For a tower M 2 L 2 K of algebraic numher field� there i¾ an exact 

�equencc of o,11-modules 

0----c> f.?ilK 0 n.11---;,. Q�IK---;,. f.?(flL --l- 0. 

Exercise 5. If ( 1� a primitive p -th root of unity, then 

= 'lJI'" 1
1J)n-11-]). 

 

 

 

 

 

 

 

§ 3. Riemann-Roch 

 
The notion of replete divisor introduced into our development of number 

theory in  I is a lenninology reminiseem of the function-lheoretic model. 

We now have to ask the que:,,tion to what extent thi:,, point of view docs 

justice to our goal to also couch lhc numher-theorelic n!.\Ults in a geometric 

function-theoretic fashion, and conversely to give arithmetic significance to 

the da:,,:,,ica[ theorems of function theory. Among the latter. the Riemann­ 

Roch theorem stands out as the most important representative. If number 

theory is to proceed in a geometric manner, it must work towards tinding an adequate 

½ay to incorporate !hi:,, rcwlt a:,, well. Thi� is the task we are now going lo 

tackle. 

First recall the classical :,,ituation in function theory. There the basic data is 

a compact Riemann :,,urface X with the :,,heaf ox of holomorphic functiom. 

To each divisor D = LPcX l'pP on X correspond:,, a line bundle o(D), 

i.e.. an ox-module which is locally free of rank I. If U i<s an open :,,ub�ct 

of X and K(U) is the ring of meromorphic functions on U. then the vector 

space o(D)(U) of section:,, of the sheaf o(D) over U is given as 

o(D)(IJ) � { f E KW)I ocdp(f) c'"-<p fond! PE U}. 

The Riemann-Roch problem i;, to calculate the dimension 



£(D) = dimH0(X.o(D)) 
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of the vector space of global sections 

ll"(X,o(f))) � o(l))(X). 

In its fin,t version the Riemann-Roch theorem does not provide a formula for 

H0(X. o(D)) itself. but for the Euler-Poincare characteristic 

x(o(O)) �dimH"(X,o(D)) -dimH'(X,o(D)). 

The formula read� 

x(oUJJ) �deg(l))+l-g. 

where g is the genus of X. For the divisor D = 0, one has o(D) = ox 

and deg(D) = 0. �o that x(ox) = I - g; then this equation may abo be 

replaced by 

x(o(D)) = deg(D) + x(ox). 

The cla�sical Riemann-Roch formula 

£(DI - £(IC - DI� deg(DJ + I - g 

i� then obtained by using SENNt. duality. which state� that H1(X,o(D)) is 

dual to H0(X.w®o(-D)), where (1) = Dl is the '>O-called canonical 

module of X, and K, = div(w) is the associated divisor (�ee for instance 

[511.chap.III, 7.12.1 and chap.IV, 1.1.3). 

 

In order to mimic this state of affairs in number theory, let us recall the 

explanation� of chap, I, § 14 and chap. III, §I. We endow the places p of 

an algebraic number field K with the r6le of points of a space X which 

�hould he conceived of a� the analogue of a mmpat t Riemann surface. The 

clements / E K* will be given the rOle of '·meromorphic functions" on 

this '>pace X. The order of the pole, re,;,p. Lero of f at the point p E X, 

for pf x, is defined to be the integer vp(./), and for ploc it is the real 

number vp(/') = - log lcfl In thi� way we a�sociate to each f E K* the 

replete divi.,or 

div(/)= Lvp(/)p E Dil·(O). 
p 

More precisely, for a given divisor I)=  LP VµP, we are interc.:,ted in the 

replete ideal 

 

 

and the set 

o(D) = TT p-,·r, 

' 

H"(o(DIJ �If EK' I div(/) 2: -0/ 



�II Eo(Dl,IOsf 1/1,S'J'l(pJ'' locploc/, 



210 Chapter Ill. Riemann-Roch Theory 

 

where the relation D' :::_ D between divisors D' = LP v�p and D = LP l!pP 

is simply defined to mean v� :::_ Vp for all p. Note that 11°(0(/J)) is no longer 

a vector space. An analogue of H1(X,o(D)) is completely missing. Instead 

of attacking directly the problem of measuring the size of H0(o(/J)), we 

proceed as in the function-theoretic model by looking at the "Eulcr-Poincare 

characteristic" of the replete ideal o(D). Before defining this, we want 

to ei,,tablish the relation between the Minkowski space K1r1. = [nr C] 1
• 

r E Hom(K, C), and the product TTPI= Kµ, The reader will allow us lO 

explain this :;.imple situation in the following sketch. 

We have the correspondence:;, 

p: K ➔ R 

 

aJf: K ➔ 

real prime, p =Pp; K11------- ,,.IR, 

 
complex prime, a=  Op: Kp  ::: ,.. C. 

There arc the following isomorphism� 
 

rp being the canonical embedding K ---+ Kp (see chap. II, (8.3)). They lit 

into the commutative diagram 

K@R - K, nR X  rnc X Cl+ 

,r ,Tn1, 

K@IR  - n K, n K, 
PIN prc,il 

where the arrow on the right is given by a P  (aa,?fa). Via thi� i�omorphism, 

we identify K:1 with TTPI"'- Kp: 
 

The scalar product (_.1, y) = Lr xT y, on K�: is then transformed into 

(x.y) = L \p)'p +  
prc,,1 



The Haar measureµ, on K11c which is determined hy {\, v) becomes the 

product measure 
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where 
Jlp = Lebesgue measure on Kp = IR, ifp real, 

flp = 2Lebe5gue measure on Kp = :C, ifp complex. 

Indeed, the sy�tem 1/./2, i/./i is an orthononnal basis with respect to the 

<,calar product x_V + ,ty on KP = C Hence the square Q = {:- = 1 + iy I 
0 _:s r,y  _:s 1/./i) has volume µ,p(Q) = I, but Lebesgue volume 1/2. 

Finally, the logarithm map 
 

studied in Minkow�ki theory is transformed into the mapping 

I: nK;- nR. H -------- +(loglx,1,). 
pl:x, ploc 

for one has the commutative diagram 
 

 
where the arrow on the right, 

l n:R J ' � n,� x  nrR x iw  - n 1F2. 

T fl o Pl"" 

j<, defined by .\ 1-+ x for p ++ p, and hy (.1,.,) 1-+ 2x for a ++ p. 

This isomorphism takes the trace map x 1-+ L,x, on [TT,IPi.]+ into 

the trace map x 1-+ Lpi:x, Xp on TTPl"'- IP/., and hence the tracc-.tero space 

H=/.1 E[TTrRtl L,<,=0) iniothetrace-zero�pace 

H�{xc nRI I: x,�o). 
Pix, Plrx 

In this way we have translated all necessary invariants of the Minkowski 

space Ki to the product TTPI"" K p, 

 
To a given replete ideal 

a= Ot • '1r,o = n p' � X TT p1
'p 

Pt"" Pl"--' 

\¼e now a�sociate the following complete lattice ja in Kw., The fractional 

ideal a1 � K is mapped by the embedding j  K ....,,. K111 onto a 
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complete lattice Jar of K,� = Kp. By componentwise multiplication, 

a"" = nploc p''" = (. , e''p, yield<; an isomorphism 

a-x:,: Kw_---+ Kirt,  (Xp)pl-x., f--+ (l''·rxp)p1,c,, 

with determinant 

(*) dct(n�) � TT,,,,/,� TT 'll(p)'" � 'll(n�). 

Plcx, Pl"" 

The image of the lattice ja1 under this map is a complete lattice 

ja := a,x,Jar. 

Let vol(a) denote the volume of a fundamental mesh of ja with respect to 

the canonical measure. By (*), we then have 

vol(a) = IJt(ocx.,) vol(a1). 

 

(3.1) Definition. If a is a replete ideal of K, then l11e real number 

x(a) = - logvol(a) 

will be called the Euler-Minkowski characteristic of a. 

fhe rea�on for this tcnninology wii1 become clear in* 8. 

 
(3.2) Proposition. The Euler-Minkowski characteristic x(a) 011/y depcnd8 

on the class ofa in Pic(8) = J(8)/P(o). 

 

Proof: Let la]= [al1 • la]'X) = (a) x [ak be a replete principal ideal. Then 

one has 

 

The lattice  is the image of the lattice ja1 under the linear map 

ja : K11: ---+ (xp)p''Xl 1-+ The absolute value of the determinant 

of this mapping is obviomly given 

ldet(jaJI � TT lale � TT 'll(p)-''i"1� 'llllak)_, 
Pl""-' p-x., 

For the canonical meawre, we therefore have 

vol(aai) = IJt([a];c,)-1vol(ar). 

Taken together with (*), thi� yields 

vol([a]a) = IJ1(fa]'X)a,.,..,) vol(aai) = '.TT(a""') vol(ar) = vol(a). 

so that x(!ala) = x(a). D 

 

The explicit evaluation of the Euler-Minkow,;ki characteri�tic results from 

a result of Minkowski theory, i:iz., proposition (5.2) of chap. I. 
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(3.3) Proposition. For every replete ideal a of K one has 

vol(o) ~ /jd;l!Jl(o). 

 

Proof: Multiplying by a replete principal ideal [a] we may assume, as 

vol(laja) = vol(a) and 91([ala) = 91(a), that a1 is an integral ideal of K. By 

chap. I, (5.2) the volume of a fundamental mesh of a1 is given by 

vol(ai) = jfd,;T(o: a1). 

Hence 
 

 

In view of the commutative diagram in § I, p. 192, we will now introduce 

the degree of the replete ideal a to be the real number 

deg(a) ~ - log !Jl(a) ~ deg( div(al). 

Observing that 

x(o) ~ - log /Td;l. 

we deduce from propo'-ition (3.3) the first version of the Riemann-Roch theorem: 

 

(3.4) Proposition. For every replete ideal of K we have the formula 

x(a) = deg(a) + x(o). 

 

In function theory there is the following relationship between the Euler­ 

Poincare characteri:c.tic and the genus f? of the Riemann surface X in question: 

x(o) = dim H0(X .Ox) - dim H1(X ,Ox)= I - g. 

There is no immediate analogue of H 1(X. CJx) in arithmetic. However, there 

is an analogue of H0(X.ox)- For each replete ideal a= flPpl'p of the 

number llcld K, we define 

H0(a) = \ f EK*  I vp(/) 2: vp for all p). 

This i5 a llnite set because j!i0(a) lie� in the  of the lattice jai s; Kif 

which is bounded by the conditions lflp .:S Pl'.Xl. As the analogue of 

the dimemion, we put {(a) = 0 if //0(n) = 0, and in all other ca:c.e:c. 

#/10(0) 

£(a):= log vol(W)' 
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where the normalizing factor vol(W) is the volume of the set 

w� l<c,)EK,�[l;icr11,,1 :' 1). 

This volume is given explicilly by 

vol(W) = zr(2rr)", 

where r, resp. s, is the number of real. resp. complex, prime� of K (see the 

proof of chap. I, (5.3)). In particular, one has 

0 #11,(K) 

H (o) = Jl(K). sothat f(o) = log zrczrrr' 

because lflp :S 1 for all p, and TIP I/Ip= I implies lflp = I for all p, so 

that H0(o) is a finite subgroup of K* and thus must consist of all roots of 

unity. This normalization leads w, necessarily to the following definition of 

the geom, of a number field, which had already been proposed ad hoc by the 

French mathematician ANDRE Wm. in 1939 (sec [l.381). 

 

(3.5) Definition. The genus of a number field K is defined to be the real 
number 

#1,(K)./Til,;T 

g = i'(v) - x (o) =log�· 

 

Observe that the genus of the field of rational number<; Q is 0. Using thi:;. 

definition, the Riemann-Roch formula (3.4) takei,. the following shape: 

 

(3.6) Proposition. For every replete ideal a of K one ha:;. 

x(a) = deg(a) + £(0) - g. 

 

The analogue of the strong Riemann-Roch formula 

£(D) � deg(D) + I - g + £(K - /J). 

hinges on the following deep theorem of Minkow<;ki theory. which i<; due 

to SERGF LA/\'G and which reflects an arithmetic analogue of Serre duality. 

A:;. usual, let r. resp. s, denote the number of real, re1-p. complex, primes, 

and11=IK:QJ. 

 

(3.7) Theorem (S LANG). For replete ideals a= nl' p"'p E J (0 ), one has 

1 21 (2rr)' I 

#H"(a- ) � ./Til,;j �(a)+ o(�(a)' ') 

 

if 91(a) ----+ oo. Here, a.� usual, O(t) denotes a function suc/J that O(t)/t 

remain1,, bounded as t ---+ x. 



h 
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For the proof of the theorem we need the following 

 

(3.8) Lemma. Lei a1,  , 011be fractional ideals representing the cla.sses of 

the finite ideal class group Pie( a). Let ( be a positive conMant and 

2l1 = { o = TTP"'P I n1 = a,, 91(p)vP 2 c91(a)1"111 for Ploo) 
p 

Then the constam ( c:m be chosen in such a way that 

1(6) � LJ '21,P(i5). 
l=I 

 

 

Pr-oof: Let 23, = {a E ,l(O) I nr = 01). Multiplying by a suitable replete 

principal ideal [al, every a E J(o) may be transformed into a replete 

ideal a' = a[aj :-uch that o� = 01 for some i. Consequently, one has 

1(8) = LJt=I 231?(8). It therefore suffices to show that 231 £:;" '2l,P(8) 

for i = I.  . h, if the constant c is chosen conveniently. To do thb, let 

a= a,arx, E 23,, O:,o = np1,x,PVp E nploc,iF!/.�. Then we find for the replete 

ideal 
a;.,,= a'X)91(o,.,J-� = TT p"�, 

"� 
where v� = l!p - ¼ Lqlrx, /qvq, that 91(o�) = I, and thus Lplx {pv� = 0. 

The vector 

(.  ,fps;....) En  ffi< 

Pl"" 

therefore lies in the trace-zero  H = {(xp) E nploo JR I = 0). 

Inside it we have - see chap. I, - the complete unit  Thus 

there exists a lattice point A(u) = (. . - /pvp(u),  )pio-., u E o*, �uch 
that 

Ifi,v� - /pvp(u)j :S {pco 

with a constant lo depending only on the lattice A(o*). This implies 

vp-vp(u) = v�+� L {qvq-vp(u)::: � log91(arx.,)+c0 =� log91(a)+c1 

n qlex, n n 

with c1 = (O - h log91(o1). Putting now b = a[u 1J = TTpPnP, we get 

b1 = 01. This is because [ult= (u)= (I) and 

{pnp = JP( Vp - l'p(u)) :'S � log91(a) + nc1, 

 

so that 91(p)11
P::: em191(a)fv/n for Ploo; then b E -it,. so that a=  b[u] E 

m,P(8), where c = emi_ [J 



A5 Y � rnPri =H (n- ) �  and a� s; 
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Proof of (3.7): A� O(t) = O(t) - 1, we may replace H0((c1) by 

H0
(n 1

) = lfr\o.-1
) U {O} = { f E o.j1 11 /Ip :S \Jl(i.,)1

'P for plcc). 

We have to show that there arc constants C, C' �uch that 
 

for all o. E l(o) satisfying \)1(0.) 2: C'. For a  EK*. the set 11°(n-1) is 

mapped bijectively via x  f-+ ax  onto the set H0(laja-1
). The numbers 

#ll0(a-1
) and \Jl(a) thu� depend only on the da�:c. a  mod P(O). As by the 

preceding lemma J(0) = u;1
=l m, P(O), it suffices to �how(*) for 

over the set 2l1 . 

For this, we shall use the identification of Minkowski �pace 

ranging 

 

 
with its canonical measure. Since Ot = a, for n = np p1

'p E Q(,, we have 
 

We therefore have to count the lattice points in r = Ja-;1 s; Kffi. which fall 

into the domain 

 

 

where Dp = {x E Kp I lxlp :S \Jl(p)1
'P}. Let F be a fundamental me�h of r. 

We consider the �els 

x � I y Er I (F + y) n P, # 01. 

r �Iyer IF+y  c;;P,I. 
x,  Y � ! y Er I (F + y) n JP,# 01. 

0  1 
X LJY"'y(F+y) � P.,  Ur"'x(F+y), 

one has 

 

a5 well as 

This implies 

 

#Y vol(F) :S vol(P0) :S #X vol(F). 

 

 

#lln(a-1) - vol(P.,)I < #X  - #Y= #(X "- Y). 
l vol(F) - 

a 
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For the set Pr;,.= TTP1,.,_D,p, we now have 

vol(P,) � TT 2'll(p)'',  TT  2'r'll(p)'', � 2' (2ncJ''ll(u�J 
p real p cnmplc, 

(ob�erve here that, under the identification Kp = one ha� the equation 

lxlp = l.tf). For the fundameJllal mesh F, (3.3) yield� 

vol(F) � /iJ,J'll(u1
1). 

From this we get 
 

Having obtained this inequality, it suffice� lo show that there exist 

constant5 C, C' such that 

#(X,  n �#/ y E r I (F + y) n ilP, ,rn} ,: c 'll(uJ'- •. 

for all a E '21.1 with lJl(a) 2: C'. We choose C' = I and lind the constant C 

in the remainder of the proof. We parametriLe the set P0 = TTpix, Dp via the 
mapping 

where I = [O. I], which is given hy 

I-------+ Dp,  t 1---+ 2ap(f- ;). ifp real. 

/2-------D+p, (p,0) 1---+ �(pcos2rr0,psin2rr0). ifp complex, 

where ap = We bound the norm lldip(x)II of the derivative 

d<.p(x) : IR" ---+  (x E /11
). If dip(x) = (a,d, then II d<.p(.t)II :Sn max la,i I. 

Every partial derivative of ,;o is now hounded by lap, resp. 2rr�-  Since 

a E 211, we have that ap = lJl(p) v" :s c'.TT(a) /p/n. for all p loo. It follow� that 

II d,;o(x)[I :S 2rrn maxa�/fp :s nlJl(a)1
/
11

. 

The mean value theorem implie� that 
 

where II II is the euclidean norm. The boundary of Pa, 

JP,� LJ [ aDµ x n Dq], 
p q,'cp 

 

j5 parametrized by a finite number of boundary cube� 111
-
1 of /11

. We 

1,ubdividc every edge of 1n-l into m = LlJl(a)1111
] 2: C' = I �egments of 



rp(l" -1 11 1 1  11 11 1 
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equal length and obtain for /"-1 a decomposition into m11
-
1 small cubes of 

diameter_:::: (n - 1)112/m. From(**), the image of such a small cube under r.p 

has a diameter_:::: (n-�)
112 

c191(o)1/n :S (n-1)112c1n�:1 ::;: (n-1)112c12 =: c2. 

The number of translates F + y, y E I', meeting a domain of diameter _:::: ( 
2 

is bounded by a comtant c1 which depends only on c2 and the fundamental 

me�h /<. The image of a small cube under  thus meets at mo5t c.1 

translates F + y. Since there are precisely = \IJ1(a)11"]11
-
1 cubes 

), we see that tp(/ - ) meets at most r·.,[91(0)  1 ] - ::;; 

translates, and since the boundary iJ Pa is covered by at most 2n such 

parts cp(l"-1), we do indeed find that 

#[y E r1 (F+y)naPal0} :<C91(o)1-, 

for all a E 2l, with IJt(a) :::_ I, where C = 2nc3 is a constant which is 

independent of a E 21,, as required. D 

 

From the theorem we have just proved, we now obtain the strong version 

of the Riemann-Roch theorem. We want to fonnulate it in the language of 

divisors. Let D = I:P \JplJ be a replete divisor of K, 

H0(D) � H0(o(D)) � { f EK' I vp(f) 2: -vp}· 

 
f.(D) = f(o(D)) = log #H(\D) and x(D) = x(o(D)). 

vol(W) 

We call the number 

;(D) � £(D) - x(D) 

theindex of specialty of D and get the 

 

(3.9) Theorem (Riemann-Roch). For every replete divi�or D E Div(()) we 

have the formula 

/(D) � dcg(D) + l(o) - g+ ;(/J). 

The index of �pccialty i (D) 5ati.�fies 

i(D) = 0( e-* deg(DJ), 

in particular, 1 (D) ➔ 0 for deg(D) ➔ oo. 

 

Proof: The formula for f(D) follow� from x(D) = deg(D) + f(o) - N 

and x(D) = f(D) - i(D). Putting a-1 = tl(D), we find hy (3.7) that 

#HO(a-1) � _2l(_aJ_( I + �(a) 91(0)-'i"). 

2' (2rrY v'T<l,;l 
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for �ome function ip(a) which remains bounded as 91(n) ----+ oo, �o that 

deg(D) = - log91(n- I) = log91(a) ----+ Taking logarithms and observing 

that log(!+ O(t)) = O(t) and = exp(-¾ deg D), we obtain 

f(D) � f(a-') �-log(�91(a-')) + 0(91(a) 'i") 

= x(D) + O(e-t deg:/)). 

Hence i(D) = £(D)- x(IJ) = O(e-iUeg:D). □ 
 

To conclude this section, let us study the variation of the Eulcr-Minkowski 

characteristic and of the genus when we change the field K. Let /, IK be a 

finite extcm,ion and o, resp. 0, the ring of integer5 of K, resp. L. In §2 we 

considered Dedekind's complementary module 

([,LIK = j x EL I Tr(xO) 5; ol � Hom0(0, 0). 

It is a fractional ideal in L whose inverse is the different '.DLIK. From (2.6), 

it is divisible only by the prime ideals of L which arc ramified over K. 

 

(3.10) Definition, The fractional ideal 

WK= c:KIQ � Homz:(o,Z) 

i.� called the canonical module of the number field K. 

 

By (2.2) we have the 

 

(3.11) Proposition. The canonical modules of L and K satisfy the relation 

WL = ([,I.IKWK. 

 

The canonical module WK is related to the Eulcr-Minkowski character­ 

istic x(o) and the genus:.: of Kin the following way, by formula (3.3): 

vol(o)��. 

 

(3.12) Proposition. deguJK = -2x(o) =2!; - 2E(o). 

 
Proof: By (2.9) we know that is the di5criminant ideal 

◊KIQ = (dK), and therefore by (1.6), 

91(wK) = 91(:DK,,c)-1 = 91(0KI-Q,)-1 = ldK 1-1
, 

so that, as vol(o) =�.we have indeed 

dego)K = - log91(wK) = log ldK I = 2 log vol(o) = -2x(v) = 2!;-2f(tl). 

[J 
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As for the genus, we now obtain the following analogue of the Riemann­ 

Hurwitz formula of function theory. 

 

(3.13) Proposition. Let LIK be a finite exten1,ion and �L, resp. RK, the 

genus of L, resp. K. Then one has 
 

In particular, in the c.:ise ofan unramified cxtcn.�ion LIK: 

x(od = [L: K]x(o,I;"}. 
 
 

Proof: Since WL = ([LIKWK, one has 
 

so that 

degwL = [L: K]dcgwK +dege'.LIK. 

Thus the propo<;ition follows from (3.12). D 

 
The Ricmann-HurwitL fonnula tells us in particular that, in the deci1,ion 

we took in � 1, we really had no choice but to consider the extension CI Ile 

as unramijied. In fact, in function theory the module corresponding by 

analogy to the ideal e:LIK takes account of precisely the branch point1, of 

the covering of Riemann su1t'aces in question. In order to obtain the same 

phenomenon in number theory we are forced to declare all the infinite 

primes� of L unramified, since they do not occur in the ideal e:LIK. 

 
Thus the fact that CIR is unramified appears to be forced by nature ihclf.  

Investigating the matter a little more closely, however, this turns out not to 

be the case. It is rather a con1,cquence of a well-hidden initial choice that we 

made. In fact. in chap. I, §5. we equipped the Minkowski space 

with the "canonical metric'' 

 

 

Replacing it, for in1,tance, by the "Minkowski metric" 
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aT = I if T = T, err = ½ if T #- T, change5 the whole picture. The Haar 

measures on K:1 belonging to {,) and (.) are related as follows: 

vot.monica1(X) = 2'" vol,1mkov,,�1(X). 

Distinguishing the invariant� of Riemann-Roch theory with respect to the 

Minkow,;ki measure by a tilde, we get the relations 

Y(a) = x(a) + log 2
1

,  l(a) = t(a) + log2' 

(the latter in ca5c that H'\a) #- 0), whereas the genm, remains unchanged. 

Substituting this into the Riemann-Hurwitz fonnula (3.13) preserves it& �hape 

only if one enriches l!LIK into a replete ideal in which all infinite prime� ,P 

such that L<p #- K II occur. This forces us to con&ider the extension CIIP: a� 

ramified, to put (''PIP= [L-+J: K11], f�IP = I, and in particular 

l'p=[K11:IRJ,  ft,= I 

The following modilkations ensue from this. For an infinite prime pone has 

lo define 

Vp(a)=-£'11loglrnl,  p1'=e�1e". IJi(p)=e. 

The absolute norm as well m, the degree of a replete ideal a remain unaltered: 

IJl(a) = 91(a), ifug(a) = - loglJl(a) = deg(a). 

The canonical module WK however has to be changed: 

WK = WK n p21og2. 

pcomplcx 

in order for the equation 

degWK= -2X(o) = 2g - 2i(o) 

lo hold. By the same token. the ideal ([LIK has to be replaced by the replete 

ideal 

 
 

 
&o that 

W1. = i[LIK it.,K(ijjK). 

In the same way as in (3.13), this yicl<ls the Riemann-Hurwitz formula 

RL - f(o,) = [L: K](RK -f(oK)) +i degitl,K. 

 

In view of this semitivity to the chosen metric on Minkowski space K11s., 

the mathematician Uw1 JAl\,VSEN propose� as analogues of the function fields 
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not just number fields K by themselves but number fields equipped with a metric 

of the type 

 

a, > 0, a,= ar, on Kn<- Let these new objects be called metrized number 

fields. This idea docs indeed do justice to the :;.ituation in question in a very 

precise manner, and it is of fundamental importance for aljfehraic number theory. 

We denote metrizcd number fields (K, ( , ) K) as K and attach to them the 

following invariants. Let 
 

 

Let p = Pr be the infinite prime corresponding to r : K --+ C. We then put 

ap = a,. At the same time, we also use the letter p for the positive real 

number 

which we interpret a� the replete ideal (I) x (L •··, \.e"". I.---,\) E 

.!(CJ) X ]R*t-· We put 
Pl= 

 

and we define the valuation Vp of K* associated top by 
 

Further, we put 

IJl()J) = efp  and lalp = IJl()J)-1'p(aJ. 

so that again lalp = lral if pis real. and !alp= lrnl1 if )J is complex. For 

every replete ideal ll of K, there i� a unique repre5entation a=  i:,1'p, which 

gives the absolute norm IJl(a) = 91():l)�r, and the degree  P 

p 

degR(a) = - log IJl(a). 

The ( anonical module of K is defined to be the replete ideal 

WR=WK·Wcx.E.!(8)=J(o)x n]R.�, 

µloc 

 

where WK is the inver5e of the difforent '.DKIU or KIQl, and 

W-,o = (cx;
1
)ploo E n IR�. 

,ioc 
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The Riemann-Roch theory may be transferred without any problem, 

using the definitions given above, to metrized number fieldi,, K = (K, (, )K ), 

Distinguishing their invariants by the suffix f yields the relations 

volR(X) = Q Ja; vol(X), 

because Ta: (K1r.:, (, )K)----+ (K3:, (, )), (x-r) r-+ CJU-;-x-r), is an isometry 

with determinant TI-r .jci;, and therefore 

XR(oK) = - log volR(oK) = x(oK) - log I) ,ja;, 
 
 

 

The genus 

 
#II0(0K) 

log-­ 
volK(W) 

 
 

 

 
#1,(KJv'l"dK] 

f.:R = fR_(OK) - XK(oK) = €(OK) - x(CJK) =log� 

does not depend on the choice of metric. 

Just as in function theory, there is then no longer one smallest 

is replaced by the continuous family of metrized fields (Q, axy), a E 

all of which have genus ,r.: = 0. One even has the 

 

(3.14) Proposition. The metrized fields (Q, axy) are the only metrized 

number fields of genus 0. 

 

Proof: We have 

,- - lo• #i,(KJv'l"dK] -0  - #µ(K)/jd;;T � 2' (2rr)' 
�K-  g   2'"(2rr)S - 

Since rr is transcendental, one has s = 0. i.e., K is totally real. Thus 

#p.(K) = 2 so that ldKI = 411 1
, where n = r = LK: IQ]. In view of the 

bound (2.14) on the di�criminant 

ldKll/2 � S(¾r/2_ 

this can only happen if n .:S 6, But for this case one has sharper bounds, due 

to Om.Y?KO (sec 11111, table 2): 

 

ldKll/n � 3,09 4,21 5,30 6,35 

 

This is not compatible with kh 11/n = 4�, so we may conclude that n _:s 2. 

But there is no real quadratic field with di1-criminant ldK I = 4 (see chap. I, 

*2, exercise 4). Hence 11 = I, so that K = Q. □ 
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An extension of metri:ed numher fields is a pair i = (K. ( , )K ), 

L = (L, (,)!,).such that K �Land the metric5 
 

 

5atisfy the relation U'r 2: /Ja whenever r = alK• lf,.PIP arc infinite primes 

of LI K, ,.P belonging to a and p to r = a I K, we define the ramification 

index and inertia degree by 

e'-J.lip=ctr//Ja and fq31p=/Ja/a,[L,v:Kpl­ 

Thus the fundamental identity 

I: e•oi, f'v1p � [L, KI 
'PIP 

is preserved. Also ,.P i5 unramilicd if and only if ar = �a. For "replete prime 

ideals" p = ear, ,.P = efi", we put 

i11dP)=TT'1J"'PIP, NL1d'1J)=phiv. 
'PIP 

Finally we define the different of LIK to be the replete ideal 

'Dr,,R='.1.hlK '.Dc,oEl(BL)=l(oL)x TI lR.�. 
'-"!31"'- 

where '.DL K is the different of LI K and 

'.lJ� � (f'P/ae)·a1� E TT 
'Pl� 

where /3rp = f3a and ap = ar (,.P belongs to a and p to r = a I K ). With this 

convention. we obtain the general Riemann-Hurwitz formula 

gr, - f1:(0L) = [L: Kl(g-K - fK(oK)) - � deg'D[ik · 

 

If we comider only number fields endowed with the Minkowski metric, 

then L'-J.l #- KP is always ramified. In this way the convention found in 

many textbooks i� no longer incompatible with the custom� introduced in the 

present book. 

 

 

 

§ 4. Metrized CJ-Modules 

 
The Riemann-Roch theory which wa5 presented in the preceding section 

in the case of replete ideals is embedded in a much more far-reaching 
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theory which treats finitely generated o-modules. It is only in this setting that 

the theory display" its true nature. and becomes susceptible to the most 

comprehensive generali7.ation. This theory i� subject to a formafo,m which 

has been constructed by ALL"XA•\·nt.H GHOTl!FNntECK for higher dimensional 

algebraic varieties, and which we will no\\- develop for number fields. In 

doing so, our principal attention will he focu<;ed a� before on the kind of 

compactificalion which i<; accompli�hed by taking into account the infinite 

places. The effect is that a leading r6le is claimed by linear algebra - frn 

which we refer to [15]. Our treatment is based on a cour�e on "'Arakclov 

Theory and Grothcndieck-Riemann-Roch" taught hy Gu,'VTEH Tu1rw1,. There, 

however, proofs were not given directly, a� we will do here. but usually 

deduced as �pecial case� from the general abstract theory. 

 

Let K be an algebraic number field and G the ring of integers of K. For 

the pa%age from K to IE. and  we start by considering the ring 

(I) 

 

It admit� the following two further interpretations, between which we will 

freely go back and forth in the sequel without further explanation. The set 

X(C) = Hom(K,C) 

induces a canonical decomposition of rings 

(2) K,c ;:: ffi C.  o @ z i ------ + 
aEX(C) 

 

Alternatively, the right-hand side may be viewed as the "ct 

Hom(X (C), C) of all function� x : X (C)--+  i.e., 

(3)  

The field K is embedded in K,c via 

K ---+ K ®'q C, o i-------+ a@ 1, 
 

and we identify it with its image. In the interpretation (2), the image of a EK 

appear� as the tuple E&a aa of conjugate� of o, and in the interpretation (3) 

as the function x(a) = aa. 

 

We denote the generator of the Galois group G(CIIR) by Fe:.,, or �imply 

by F. This underline,;, the fact that it has a po�ition analogoU', to the Froheniw, 

automorphism Fp E G(i!i\,IF,,), in accordance with our dcci�ion of§ I to 

view the extension C IIR a� unramified. F induces an involution F on Kc 
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which, in the repre�cntation K.� = Hom(X (C). C) for x : X (C) ----+ :C, is 

given by 

(Fx)(a) = x(i:r). 

F is an automorphism of the IR-algebra Kc. It is called the Frobenius 

correspondence. Sometimes we also consider, besides F, the involution 

z i----+ Z on Kc which is given by 

 

 

We call it the conjugation. Finally, we call an element x E K1.:, that is, a 

function x : X (C) ----+ :C, positive (written x > 0) if it takc5 real value�, and 

if x(a) > 0 for all a E X (C). 

 
By convention every o-module comidered in the <;equel will be mpposed 

to be finitely ienerated. For every such o-module M, we put 

Mc =M®z:C. 

This is a module over the ring Kr; = o ®z: C, and viewing o as a subring of 

K,c - as we agreed above - we may also write 
 

a:; M ®z IC = M ®o (o ®c:: :C). The involution xi----+ F \' on Kc induces the 

involution 

F(a®x)=a®Fx 

on M:;. In the representation M.:_, = M ®z  one clearly ha'> 

F(a ®z) =a®  Z. 

 
(4.1) Definition. A hermitian metric on the Kc-module Mc is a sesqui­ 

/i11ear mapping 

i.e., ,1 K:..; -li11ear form (x. y) M in the first variable satisfying 

(x, Y)M = (y.x)1,1, 

such that one has (x x)M > 0 for.\ f. 0. 

The metric ( . )M is called P-invariant if we have furthermore 

F(:1.y)M = (Fx.Fy)M. 
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This notion may be immediately reduced to the usual notion of a hennitian 

metric if we view the K1--module M1_·, by means of the decomposition 

Kc = ffi/J IC, as a direct sum 

Mc � M 0o Kc � EB Ma 
,rcX(:CJ 

of IC-vector spaces 

M,r =M®on IC. 

The hermitian metric ( . )M then splits into the direct sum 

 

 

of hermitian scalar products ( , 

interpretation, the F -invariance 

the diagrams 

 

 

 

Ma x Ma� IC. 
\ !lf., 

 
 

 

(4.2) Definition. A metrizcd o-module is a finitely generated o-module M 

with an F -invariant hermitian metric on Mee. 

 

Example 1: Every fractional ideal a£;.: K of o, in particular o it&elf, may 

be equipped with the trivial metric 

(.Ly)=x_f= EB t,rf,r 

aECX(:C) 

on a®:,; IC = K ®1(1 re = KIC· All the F -invariant hermitian metric� on a arc 

obtained a� 

a(x, y) = axY = 
 

where a E K':2 varies over the functions a  X(IC) --.- IR: �uch that 

a(u) = a(a). 

 

Example 2: Let LI K be a finite extension and Q1. a fractional ideal of L, 

which we view as an a-module M. If Y(IC) = Hom(L,C), we have the 

restriction map Y(C)--.- X(IC), r f--4' rlK, and we write rla if a= TIK• 

For the complexification M1_- = Q1. ®:,: IC =Lr.we obtain the decomposition 

M,c � EB C � Ma , 
r<cY(1-'J 
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where M('f = EB,irr C. M is turned inlO a metrized a-module by fixing the 

standard metrics 

(x, Y)M� = 
 

on the (L: Kl-dimensional (>vector spaces Ma. 

 
If M and M' are metrizcd ()-modules, then so is their direct sum M ffi M', 

the tensor product M ® M 
1 

the dual M = l lom��(M, o) and the n -th exterior 

power j\
11

M. In fact, we have that 

(M ffi M')c = M":: EB Mf;, (M 0() M'),� = Mr: ®Ki· Mi-, 

Mc =HomK,(Mu..:,Kc),  (/\nM)c =/1/K,:M,c, 

and the metric� on these Kc-modules are given by 

(\ E&x',y $ y')MeM' = (A,Y)M + (x', y'),w,, resp. 

(x@x'.y@y')M0w = (x,y)M  (x',y'),w,. resp. 

(.\.}·),W = (x,y)M, 

(x1 /\  . /\x11,}'1 I\. 

resp. 

/\Y11)/\/JM =det((t, y1)1v1). 

Here .t, in the case of the module Mrr:, denotes the homomorphi�m 

,i = ( ,X)M: M::--+ K.�. 

Among all a-module:;. M the projective ones play a :,,pccial r6le. They 

are defined by lhc condition that for every exact -;cquence of o-modules 

F' ---+ F ---+ F
11 

the sequence 

Hom�,.,(M, F
1 

-----+ Hom (M, F) -----+ Hom (M, F'') 

is also exact. Thi5 is equivalent to any of the following condition:,, (the last 

two. became o is a Dedekind domain). For the proof, we refer the reader to 

5tandard textbook:,, of commutative algebra (see for in:,,tancc [90], chap. IV, 

S3, or [161, chap. 7. *4). 

 

(4.3) Proposition. For any hnitely generated o-module M the following 

conditions are equivalent: 

(i) M i.� projective, 

(ii) M is a direct summand of a hnitely generated free o-module, 

(iii) M i:. locally free. i.e., M ®0 Op i:, a free Op-module for any prime 

ideal p, 

(iv) Mis torsion free, i.e., the map M---+ M, .\ r+ ax, is injective for al/ 

nonzero a E o, 

(v) M � a EB o'1 for some ideal a of o and some integer 11 :::: 0. 
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In order to distinguish them from projective o-modules, we will henceforth 

call arbitrary finitely generated o-modu]e!', coherent. The rnnk of a coherent o-

module M is defined to be the dimension 

rk(M) = dimK(M i&1c, K). 

The projective o-modules L of rank I are called invertible o-modules, 

because for them L00 l ----+ o, a 0 (/ ,-;. ll(a), b an isomorphism. The 

invertible a-modules arc either fractional ideals of K, or isomorphic to a 

fractional ideal a'> o-module'>. Indeed, if L is projective of rank I and a E L, 

a f- 0, then, by (4.3), (iv), mapping 

L----+L00K=K(a01),  J:i----------+/'(x)(a01), 

gives an injective o-modulc homomorphism L ➔ K, x ,-;. f(x), onto a 

fractional ideal a <:; K. 

 

To sec the connection with the Riemann-Roch theory of the last �ection, 

which we arc about to generalize, we observe that every replete ideal 

0 = TT p1
'p n p''p = 01ll-x, 

Pt"'-  Pl;o 

of K defines an invertible, metrized o-module. In fact. the identity 

0-x, = nPlrx p''P yields the function 

a: X(IC)----+ IR+, a(a) = e2
''"", 

where Po- denote5 as before the infinite place defined by a : K ----+ C. Since 

Pa= �a, one has a(CT) = a(a), and we obtain on the complexification 

lltC = Or 0:-: C = Kr: 

the F -invariant hermitian metric 

{A,Y)n=axS'= EB e2
v""Xo-Y" 

rrEX('L) 

(see example I, p. 227). We denote the metrized o-module thus obtained 

by L(n). 

 
The ordinary fractional ideals, i.e., the replete ideals a '>UCh that 

a= = I , and in particular o it�elf, are thus equipped with the trivial 

metric {x, y)" = (x, y) = r)'. 

 

(4.4) Definition. Two metri7ed o-modules M and M' are called isometric 

if there ex is1s an isomorphism 

f:M ----- +M' 

of o-modules which induce8 an isometry  : Mc ➔ M�, 
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(4.5) Proposition. 

(i) Two replete ideah a and b define isometric metrized a-module;; L(a) 

and L(b) if and only if they differ by a replete principal ideal [al: a = bla]. 

(ii) Every inverlib/e metrizcd o-module is isometric to an o-module L(a). 

(iii) L(ab) :;:::: L(a) ®o l.(b), L(a-1) = l(a). 

 

If a= bla], then J/p = /lp + Vp(a); thus a=  {3y, and ut = br(a). The 

a-module isomorphism b1----+ar. x f--+ a.t, takes the form (. )b to the form 

(, )a, Indeed. viewing a as embedded in Kc, we find a= EB" era and 

aii = 
 

because l'p,,(a) = - log iaal, :;,o that 

(ax .ay)a = a(ax, ay) = ay-
1
(x y)=fJ{x, y) = (,·, Y)o. 

Therefore b1----+ur, x r--'1- ax, gives an isometry L(a) :;:::: L(b). 

Convcrc;ely, let f,; : L(b) ----+ L(a) be an isometry. Then the a-module 

homomorphism 

J.;: br----+ a1 

b given as multiplication by some element a E bt I u � Hom (b . u ). The 

identity 

then implie& that a= fly, so that Vp = f.-Lp + i•p(a) for all ploo. In view 

of u1 = br(a), this yields u = blaJ. 

(ii) Let L be an invertible metrized o-module. A� mentioned before, we have 

an isomorphi5tn 

g:L-;. u1 

for the underlying o-module onto a fractional ideal ur. The isomorphism 
L1:, ---+ u1c = Kr: gives us the F-invariant hermitian metric 

= (g(:
1
Ct),g,C1(y))L on K,c.11 i� of the form 

h(x,y) = crx.V 

for some function a: X(C)---+ JR� &uch that a(O) = a(a). Putting now 

a(a) = e
2
vp..,, with vp,, E IR, makes ur with the metric h into the metrized 
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a-module L(a) ar,sociated to the replete ideal a= llt TTP100pl'p, and Lis 

bometric to L(a). 

(iii) Let a= nplJvP, b = TTpt:i1"P, a(a) = e2
"P'1", f3(a) = e2

''""· The 

isomorphism 
a1®0b1----+a1b1,  a@hf -------- ,,ah, 

between the o-modules underlying L(a) @0 L(b) and L(ab) then yields, as 

(ah,a'h')ah = afjaha'h' = a{a,a1)fl{h,h1
) = {a,a')a(h,h')D, an isometry 

L(a) ®o L(b) "' L(ob). 

The a-module Hom0(a1. o) underlying Lea) is isomorphic. via the 

isomorphir,m 

g:a;1----+Hom0(a1,0),  af----------,,(g(a):x1 --- c>-a.\). 

to the fractional ideal af1
. For the induced Kr:-isomorphir,m 

g,c: K,c----+ HomK1,(Kc, Kd 

we have 

 

so that ,:�·(x) = a-1.f.and thur, 

(,:c(x), g,c(y)) i.(al = a-2(.f. y')i.(al = 0'-2 (X,J)ual 

= a-
1
xf = (x Y)L(a 11. 

Thus g gives an ir,ometry Lea) ;;::: L(a-1). □ 

 
(4.6) Definition. A short exact sequence 

0 ----+ M' �  M �  M" --- + 0 

of metrized o-modules ir, by dclinition a short exact �equence of the 

underlying v-modules which .<.plits isometrically, i.e., in the sequence 

0----+ M� � M��  M� ----+ 0, 

M�. ir, mapped ir,omclrical/y onto and the orthogonal complement 

(a,cM�) 1 is mapped isometrically onto 

 
The homomorphisms a. fJ in a short exact sequence of metriLed o-module5 

are called an admissible monomorphism, resp. epimorphism. 

To each projective metrized a-module M ir, associated its determinant 

det M, an invertible metriLed a-module. The detcm1inant is the highest 

exterior power of M, i.e., 

detM = /\/'M, n = rk(M). 
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(4.7) Proposition. If O ➔  M' �  M �  M" ➔ 0 is :1 .�horl exact 

sequence of projective metrizcd a-modules, we have a c,monical isometry 

dctM
1
® detM";::: detM. 

 

Proof: Let n' = rk(M') and n
11 = rk(M"). We obtain an isomorphi�m 

K : det M' ®0 dct M'' �  dct M 

 

of projective o-module5 of rank 1 by mapping 

(m
1

1 /\ ... /\m;,,) ® (m'i' I\  /\m�.. ) i----+ am'1 I\ ... /\am;!' An7'i' /\ .. Ain;;,i. 

where iii'i'-  ,in�,, are preimages of m'(, under fl: M ➔ M''. 

This mapping does not depend on the choice of  prcimag:es, for if, say, 

1ri\' + am�1, 1, where m;1.11 E M', b another preimagc of m'i'- then 

am'1 I\ ... /\am�,/\(in'( +am;1,+1) A iii; I\.  /\m11,, 

= con; I\ .. I\ am�. I\ in\' I\ ••. I\ mn" 

�ince am'1 I\ ... I\ am�, I\ am;,.11 = 0. We show that the o-module iso­ 

morphi�m K is an i�ometry. According to the rules of multi linear algebra it 

induce� an isomorphi�m 

 

 

 

of Kc modules. Let x/.yj E M,(., i 

j = I, . . . n'', and furthennore 

x
1
=/\1.r;, .v'=l\,y;;  x=l\1x1•  y=l\,Y;· 

Then we have 

(K(t' ® f/x).1<(y' ® ,By)),k1M = (ax' I\ .\,ay' I\ y)de1M 

 

�de1(1x;,y;)w  I  

� (.Bx,.fJYd1vt" 

= det( (xj, .rk)M,) det((.Bx.1, f3yr)M") 

= (x',y')de1M'({Jr,{Jy),1e1M" 

= {x' @ f3x, y'@ f/y),k1M'8,kt I.I" 

Thus 1<· is an isometry. C 

o_) 
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Exercise 1. It M, N. L are metriLed o-modules, then one has canonical i�ometrie� 

M 0o N � N 00 M, (M®0 N)00 L � M0,,(N0,,I.), 

M ®o (NEB L) � (M 00 N)EB (M 0o L). 

Exercise 2. For any two projective metrized c1-module� M. N, one has 
 

 

Exercise .l For any two projective mctnzed n-module� M, N, one ha� 

det(M 0p N) � (detMJ"-'''1·\'i00 (dctN):;Hk(.Hl. 

Exercise 4. If M i� a proJective metri7ed c1-module of rank n, and p ?. 0, then there 

i� a canorncal isometry 

 

 

 

§ 5. Grothendieck Groups 

 
We will now manufacture two abelian groups from the collection of 

all metrized o-modules, rc<,p. the collection of all projective metri7cd o­ 

modules. We denote by /M} the i<somctry clas� of a metrized o-module M 

and fonn the free abelian group 

Fo(O) = EB Z{M},  resp. F0(0) = EB Z{M), 

!Mi IMI 

on the i�ometry classes of projective, rc"P· coherent, metrized o-modules. In 

this group, we consider the subgroup 

R0(0) s; F0(i5),  resp. R0(8) s; F0(0), 

generated by all clcmcnh [M') - {M} + {M"} which arise from a -;hurl exact 

sequence 

0-----+ M'-----+ M-----+ M
11 ------------- 

+0 

of projective, resp. coherent, metrized o-modulcs. 

 

(5.1) Definition. The quotient groups 

Ko(O) = Fn(O)/Rn(O). re."P· K0(o) = F0(i5)/R0(8) 

arc called the replete (or compactified) Grothendieck groups of o. If M 

i" a mclriLcd CJ-module, then fMl denotes the elms ii defines in K0(0), 

resp. K0(0). 
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The construction of the Grolhcndieck groups is such that a short exact 

sequence 

0------+ M'------+ M------+ M" ------- +0 

of metrized o-module,; becomc5 an additive decomposition in the group: 

[Ml� IM'I + IM"I. 

In particular, one has 

[M' EB M"] � [M'] + [M"J. 

The tensor product even induces a ring structure on K0(8). and K0(E5) then 

becomes a K0(8)-module: extending lhe product 

[M)[M') :� {M 00 M') 

by linearity. and observing that N ® M ;:,: M ® N and (M ® N) ® L _ 

M ®(N ®L), we find right away that F0(8) is a commulativc ring and 

is a subring. Furthennore the �ubgroups R0(Ci) c;;;: Fo(8) and R0(0) c;;;: 

turn out to be F0(8)-5ubmodule�. For if 

0 ------+ M' ------+ M ------+ M'' ------+ 0 

is a short exact sequence of coherent mclrizcd CJ-modules, and N is a 

projective mctri1:cd o-module, then it is clear that 

0 ------+ N ® M' ------+ N ® M ------+ N ® M" ------+ 0 

is a short exact sequence of mctri1:cd o-modules as well, so that. along with 

a generator {M
1

) - {Ml+ {M11}, the element 

{NJ({M') - {M) +{M"J) � {N 0M')-{N 0M)+ {N0M") 

will also belong to R0(0), resp. R0(8). This i5 why K0(i5) = F0(8)/R0(8) 

is a ring and K0(0) = F0(i:5)/ R0(0) is a K0(8)-module. 

Associating to the class [M] of a projective CJ-module Min K0(8) its 

cla1,,,; in K0(0) (which again is denoted by [MJ), dctinc5 a homomorphism 

Ko(i.5) ---- + K0(i5). 

It is called the Poincare homomorphism. We will show next that the 

Poincare homomorphi�m is an iwmorphism. The proof is based on the 

following two lemmas. 

 

(5.2) Lemma. All rnherent metrized o-modulcs M i.ldmit a "merrized 

projective rc,;o/ulion", i.e., ;1 shmt exact 8equence 

0------+E------+F------+M ------- +O 

of metrized CJ-modules in which f,' and F arc projective. 
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Proof: If a1,  , a" is a system of generators of M, and F is the free 

o-module F = o'1, then 

 

F-----+ M,  (x1, .... x,,) i-------+ Lx,a1, 
1=1 

 

is a surjective o-module homomorphism. Its kernel E is torsion free. and 

hence a projective o-module by (4.3). In the exact sequence 

 

0 -----+ Ee -----+ F:: � Mc -----+ 0. 

we choose a section�- : M": --+ Fe of J, so that F": = E{: EBsM1_·. We obtain 

a metric on F,c by transferring the metric of Mc to sM,c, and by choosing 

any metric on Ee. This makes O --+ R --+ F --+ M --+ 0 into a short exact 

sequence of metrized a-modules in which E and F are projective. LJ 

 

 
In a diagram of metrized projective resolutions of M 

 
0-----+E--+F--+M --------- +0 

1 1 
0 -----+ f,-, --+  F' --+  M ------ + 0 

 

the re�olution in the top line will be called dominant if the vertical arrow� 

are admissible epimorphisms. 

 

 

(5.3) Lemma. Let 

0-----+ E' -----+ F' L M -----+ 0, 0-----+ E" -----+ F" ..!:.+ M ------ + 0 

 
be rwo metrized projective reso/u1iom of the metri7ed o-module M. Then, 

laking the o-module 

F � F' XM F" � \ (x',x") E F' x F" I ['(x'J � f"(x"i) 

and the mapping f: F--+ M, (x',x") r--+ f'(x1
) = j '(x"), one oblains a 

third melriLed projective re.rnlution 

0-----+E-----+F-----+M ------ +0 

with kernel E = £' x £11 which domimlle.� both given one�. 
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Proof: Since F' EB F'' i� projective, ,;o is F, being the kernel of the 

homomorphism F' EB f 
11 

� M. Thus £ is also projective, being the 

kernel of F  ,. M. We com,ider the commutative diagram 

 

T  T 
0---+ E::_ ---+ F::, ,(---I  Mc ---+ 0 

l l 
0---+ E'.'. F{' ,(-I�_ Mc ---+ 0. 

 

where the vertical arrows are induced by the surjective projection� 

F�  F'. F �  F11 

The canonical i,;ometrie5 
 

give a �ection 

 

of F which transfers the metric on 

carries the -,.um of the metric, of 

receives a metric, and 

 

to a metric on sMc. r:c = x f;,l 

f,",�, so that F,c = E.::, EB also 

(l---+E---+F---+M---+0 

becomes a metri,cd projective resolution of M. It is trivial that the projections 

F  ,. F'. and r; ➔ /-,.;'' are admi�sible epimorphisms. and it remains to show 

this for the projections rr' : F ➔ F', rr11 
: F ➔ F" But we dearly have lhe 

exact sequence of o-modulcs 

0---+ E" ....!....:,. F = F' XM F" �  F'---+ 0, 

where ix" = (0, r"). As the restriction of the metric of F to £ = £' x £11 

is the sum of the metrics on E' and £11
, we �ee that i : £'.'. ➔ i £'.' i� an 

isometry. The orthogonal complement of i E; in F,c i� the :-.p'acc  ' 

F,{· xM, s"M:: = /(x1
,s

11

a) E F,;, x./'Mu:I f'(.x')=a} 

Indeed, on the one hand it is clearly mapped bijectively onto F,,'... and on the 

other hand it is orthogonal to i £�':. For if we write x' = s' a+e'.:,ith c' E F�. 

then 



(.r1,s11a) = sa + (e1

,0). 
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where (e', 0) E Ee and we find lhat. for all  E £�'., 

(d',(x'/'a))F � ((0,x"),.rn)F +((0,x"), (e ,OJ)£� 0. 

Finally, the projection 

(y',s"h) E Fl- XM, 

then we get 

is an isometry, for if (.t'.s''a), 

. y' = s'h+d', with ('
1
,d' E £�. 

 

 

and 

(x ,s
11

a) = sa + (e'.0). (y ,s''h) =sh+ (d
1

,0) 

( (x', s"a), (y, i'h))F � (.w, .,h)F +(.w, (d', OJ)F +((e', 0),,,h)F 

+ ( (e', 0), (d', 0))E 

= (a.h)/1,f + (c',d')E' = (.1'a.s'h)1-' + (e'.d')E' 

=(s'a+e',�'h+d')F•=(x.y')F'· □ 

 

(5.4) Theorem. The Poincar6 homomorphism 

K0(0)--+ K0(iS) 

is an isomorphism. 

 

Prnof: We define a mapping 

rr: F0(8)--+ Ko(O) 

by choosing, for every coherent metri7ed CJ-module M, a metrized projective 

re<;o]ution 

0--+E--+F--+M--+0 

and af,<;Ociating to the class /M) in F0(8) !he difference [Fl - fEJ of the 

classes LF land [E j in K0(0). To sec that this mapping is well-defined let us 

fin,l consider a commutative diagram 

 

0--+E------+F ----------- M--+0 

0--+ r;' ------+ f'
1 

------+ M --+ 0 
 

 

of two metriLcd projective resolution<, of M, with the top one dominating the 

bottom one. Then E----+ F induces an iwmetry ker(a) ::::_,. ker(fi). �o that we 



have the following identity in K0(8): 
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If now O ➔ E' ➔ F' ➔ M ➔ 0, and O ➔ r.:11 
----";0- F" ➔ M ➔ 0 are two 

arbitrary metri1:ed projective resolutions of M, then by (5.3) we find a third 

one, 0 ➔  f,; ➔  F ➔ M ➔ 0, dominating both, such that 
 

This shows that the map n : F0(0) ➔ K0(0) i� well-defined. We now show 

that it factorizes via K0(8) = F0(0)/R0(0). LetO ➔ M' ➔ M�M'' ➔ O 

be a short exact sequence of metri7ed coherent o-module�. By (5.2), we can 

pick a metrized �rojective resolution O ➔ E ➔ F�  M ➔ 0. Then dearly 

0 ➔ E'' ➔ F�M" ➔ 0 is a short exact sequence of metrized o-modules 

a� well, where we write f" = a of and E" = ker( f"). We thus get the 

commutative diagram 

O-➔E-F�M-➔O 

0-➔  E"  

 

and the snake lemma gives the exact �equence of a-modules 

 

0-➔ E-➔ J,;" �  M' -  0. 

 
It is actually a short exact !',equence of metrized o-modules, for Ef is mapped 

isometrically hy f onto M, so that   � Ef is mapped isometrically by f 

onto M,�. We therefore obtain in the identity 

n/M') -n/M) +n/M") � [E"] -[E] - ([F]- [El)+ [F}-[£"[ �0. 

Itshows that rr : F0(0) ➔ K0(8) does indeed faclorize via a homomorphism 

K
0
(8)-Ko(fi). 

Itis the inverse of the Poincare homomorphism because the composed maps 

K0(0)--,. K0(0)-➔ K0(0)  and  K0(8) -  K0(8)--,. K0(0) 

are the identity homomorphisms. Indeed, if O ➔  E ➔ F ➔  M ➔ 0 is 

a projective resolution of M, and M is projective. resp. coherent, then in 

K0(i5), resp. K0(0), one has the identity [Ml= IF)-[£]. □ 

 
The preceding theorem shows that the Grothendieck group K0(0) does not 

ju�t accommodate all projective metrin:d o-modulcs, but in fact all coherent 

metrized o-modules. This fact has fundamental significance. For when 
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dealing with projeclive modules, one is led very quickly to non-projective 

modules, for instance, to the residue class rings o/a. The corresponding 

classes in K0(i5), however, can act out their important r6let> only inside the 

ring K0(8), because only this ring can be immediately subjected to a more 

advanced theory. 

 

The following relationship holds bclween the Grothendieck ring K0(E5) 

and the replete Picard group Pic(i5), which was intrcx:luced in § 1. 

 

(5.5) Proposition. Associating to a replete ideal a of K the metrizcd o­ 

module L(a) yields a homomorphism 

Pic(8)-+ K0(8)*,  [a] i-------+ IL(o)]. 

into the unit group of the ring K0(8). 

 
Proof: The correspondence [a] i--+ [L(a)J is independent of the choice of 

a replete ideal a inside the class [al E Pic(i5). Indeed, if b is another 

representative, then we have a= b[a], for some replete principal ideal la), 

and the metrized tJ-modules L(a) and L(b) are isometric by (4.5), (i), sothat 

fL(a)] = [L(b)]. The correspondence is a multiplicative homomorphi�m as 

[L(nb)I � [L(n)0 L(b)I � JL(n)][L(b)J. □ 

 
In the sequel. we simply denote the class of a metrized invertible tl­ 

module L(a) in K0(8) by [aj. In particular, to the replete ideal tJ = TIP p0 

correspond� the class 1 = [o] of the a-module o equipped with the lrivial 

metric. 

 

(5.6) Proposition. K0(i5) is generated m, m1 additive group by the ele­ 

ment.� la]. 

 

Proof: Let M be a projective metrized tJ-module. By (4.3), the underlying 

a-module admits a� quotient a fractional ideal a1, i.e., we have an exact 

�equence 

0 -+  N -+ M -+  a1 -+ 0 

of o-module�. This hecomes an exact sequence of metrized o-modulc1, once we 

restrict the metric from M to N and choose on a1 the metric which is tram,fcrred 

via the isomorphism Ni: :::::::: or::- Thus a1 becomes the metri?ed o-modulc 

L(a) corre<,ponding to the replete ideal a of K, �o that we get the 
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identity [Ml= IN]+ lo] in K0(8). Induction on the rank shows that for 

every projeclive mctrized o-module M, there b a deeompo�ition 

[Ml= ra, l + ··· + lo,.J. □ 

The elemenli,, lo] in K0({)) satisfy the following remarkable relation. 

(5.7) Proposition. For w1y two replete ideals a and b of K we have in 

K0(8) the equation 

(lal - l)(lbl - I)� 0. 

 

Proof (T4MMI: ): For every function a : X (IC) ----+ let ui,, consider on the 

Kc-module Kc= ffioEX(t:J  the form 

axy = ffia(a)xo5'o. 

 

For every matrix A = ( � �) of :,,uch functions, we con:,,ider on the 

K:::-module Kc_· EB Kr: the form 

(x EB y,x' EB y')A = a,X' + yx_v' + OyX' + fiyy' 

a, Y, rc5p. { , ) A, is an F -invariant metric on Ke,, resp. on K:· EB Kc, if 

and only if a is F-invariant (i.e., a(a) = a(a")) and a(a) E rc:,,p. if all 

the functions a, /3, y, 8 arc F-invariant, a(a), /J(a) E JR: and = y, and if 

moreover <let A = afi - yy > 0. We now assume this in what follows. 

Let a and b be fractional ideals of K. We have to prove the formula 

lal + lbl � labl +I. 

We may assume that a1 and b1 are inteiral ideab  to one 

another, because if nccc%ary we may pass to replete a' = a[al, 

b' = b[hj with corresponding ideals o; = a1a, b; = b1h without changing the 

cla%es lo], [b], [abl in K0(0). We denote the CJ-module a1• when mctrized 

by ax_v, by (a1.a), and the o-module 111 EB b1• metri1:ed by ( , )4,  for 

A=(; �),by(orEBb1,A).GivenanytwomatricesA= (;  ;)  and 

A• 
= 
(aY'' /

y
3
')
' we wn

•
te 

A~ A', 

if [(o1 EB bi), A]= [(a1 EB bt), A'] in K0(8). We no\¼ consider the canonical 

exact sequence 

0------+ Ot--------'?- Ot EB b1 ------+ bf------+ 0. 
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Once we equip orEBbf with the metric (, )A which is given hy A = (;  �), 

we obtain the following exact sequence of metrized a-modules: 
 

Indeed, in the exact sequence 

0--;,- Kc--;,- Kr.EB Kc--;,- Kre--;,- 0, 

the restriction of ( , )A to Kr_· EB [OJ yields the metric axJ on K1:, 

and the orthogonal complement V of Kc EB {O} consists of all elements 

a+ h E K1· EB Kre such that 

(t EB0,aEBh) =axii+yxh =0, 

forall x EK_:_·, �o that 

V � { (-j7/a)bEBhl I, E Kc} 
 

The i�omorphism \/ �  K,c, (-Y /a)hEBh f------+ h. transfers the metric (, )A 

on \/ into the metric 8x y. where 8 is determined by the rule 

8�(rr '(l),rr-1(1J)A�((-j7/a)IEl)!,(-j7/a)IEl)i)A 

 

=a� -y=-Y� +/3=/J-Yf-· 

This shows that(*) is a short exact sequence of metrized o-modulcs, 1.e., 

Replacing fJ by f3 + 2!-, we gel 
 

Applying the same procedure to the exact sequence O ---+ br ---+ o1 EB b1 -----+ 

Ot---+ 0 and the metric ( �  ;, ) on or EB b1, we obtain 

 

a'+Yj y)~(a' 
j7 #' 0  fi' • 

Choosing  
, afi 

a�----. 

, 8+If  
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makes the matrices on the left equal, and yields 
 

or, ifwe put8 = /J + 1!,. 
 

which is valid for any F-invariant function 8 : X (C) ➔ Ill f>Uch that 8 :::_ fi. 

This implie5 furthermore 
 

 
for any two F -invariant functioni,, 8,£ : X (C) ➔ 

is an F -invariant function such that K 2: 8, K 2: F, 

For if K: X(C) ➔ E. 

(**) gives 

 

 
Now putting 8 = f3and F' = I in(***), we Jind 

 

For the replete ideals a= np p1
'p' b = np pVp, this means 

(I) 

for if we put a(a) = e2vP<,, fi(a) = c2µP", then we have 

(ar,a) = L(a),  (b1,/3) = L(b).  (or,a/J) = /,(ob:x,)- 

 

On the other hand. we obtain the formula 

(2) [al+ [b,l � [ab,I + I 

in the following manner. We have two exact sequence'> of ( ohcrcnt metrized 

o-modulc<,: 
 

A5 ctr and b1 are relatively prime, i.e., 0t + b1 = ci. it follows that 
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is an isomorphism, �o that in the group K0(i5) one has the identity 

fadarbrl = fa/bd, and therefore 

[(a,,a)] -[(a,b,,a)] �[(o, II] - l(b,, l)l, 

and so 

[a[-[ab,1� 1-[b,l. 

From (1) and (2) it now follow5 that 
 

In vie½- of the isomorphism Ko(i5) � K
0
(t:i), this i5 indeed an identity 

in Ko(fi). D 

 
 

 

§ 6. The Chern Character 

 
The Grothendieck ring K0(i5) is equipped with a canonical '-Urjective 

homomorphism 

rk: K0(i5) ---- ,. Z. 

Indeed. the rule which associates to every isometry class /M) of projective 

metrized o-modules the rank 

rk{Mj = dimK(M ®0 K) 

extend� by linearity to a ring homomorphism F0(i5) ---- + Z. For a short exact 

5equence O ---+ M' ---+ M ---+ M'' ---+ 0 of metrized tJ-modules one has 

rk(M) = rk(M') + rk(M"), and so rk(lM'} - {M} + {M"}) = 0. Thus rk is 

zero on the ideal R0(0) and induces therefore a homomorphism K0(i5) ----- +Z:. 

lt is called the augmentation of K0(8) and its kernel/= ker(rk) is called 

the augmentation ideal. 

 

(6.1) Proposition. The ideal I, re.w 12
, is generated as an additive group 

by the elemenls !al - I, resp. ([a] - l)(lbl - I), where a. b vary over the 

replete idea/� of K. 

 

Proof: By (5.6), every element� E Ko(O) is of the form 
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If$ E /. then rk(O = L;=1 n1 = 0, and thus 

,  � I:>,ln,J- I>,� I:>,crn,1- IJ. 

The ideal /2 is therefore generated by the elements ([al- !)(lb] - I). A'c. 

[c]([n] - l)([b[ - I)� ( ([rnl - I) - ([cl - !)) ([bl - IJ. 

these elements already form a syslcm of generators of the ahelian group / 2. 

□ 

 
By (5.7), thi:,, gives us the 

 

(6.2) Corollary. /2 = 0. 

 

We now define 

grKo(o)=ZEB/ 

and tum this additive group into a ring by putting xy = 0 for x, y E /. 

 

(6.3) Definition. The additive homomorphi:,,m 

c1: Ko(8)-------;- /,  l1(�) =$-rk(O 

i:,, called the first Chern class. The nrnpping 

ch: Ko(O) ----+ gr Ko(O),  ch(n = rk(O + ( 1 ($). 

i:-; called the Chern character of K0(8). 

 

(6.4) Proposition. The Chern character 

ch: K0(0) ------ + gr K0(0) 

i.� an isomorphi.�m of rings. 

 

Proof: The mappings rk and c1 are homomorphi5ms of additive group�. and 

both are also multiplicative. For rk this j5 clear, and for ( 1 it is enough to 

check it on the generatof5 x =[al,\'= !bJ. This works because 

c1(xy)=xy-l =(r- l)+(y- l)+(x- l)(y-l)=r1(.-1)+l1(y), 

because (x - l)(y - 1) = 0 by (5.7). Therefore ch is a ring homomorphism. 

The mapping 

ZEB/ -+  K0(l'0), 11 EB� i------+ � + n, 

is obviously an inverse mapping, so that ch is even an isomorphi�m. 0 
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We obtain a complete and explicit description of the Chern character by 

taking into account another homomorphi�m, as well a,; the homomorphi�m 

rk: K0(0) --+ Z, namely 

det: K0(0) -  Pic(O) 

which is induced by taking determinants det M of projective o-modules M 

as follows (see §4). detM is an invertible metrized o-module, and therefore 

of the form L(n) for some replete ideal n, which is well determined up 

to isomorphi,;m. Denoting by [det Ml the class of a in Pic(O), the linear 

extcm,ion of the map {M) 1---+ rdetM] give� a homomorphi<,m 

det: F0(0) -  Pic(O). 

It maps the subgroup R0(8) to I, because it i,; generated by the clements 

/M') - {M) + /M"/ which arise from �hurt exact sequence� 
11 

0 - M' - M - M -   0 

of projective metri7ed o-modules and which, by (4.7), satisfy 

det{M) = [det M] = [dctM' ® det M
11

J 

= [dct M'l[det M''J = det{M')det/M''\. 

Thu-; we get an induced homomorphi,;111 <let: Ko(8)--+ Pic(O). It satistlc� 

the following proposition. 

 

(6.5) Proposition. (i) The c1111onica/ /Jomomorp/Ji.m1 

Pic(8) -  K0(0)* 

is injective. 

(ii) The restriction ofdet to I, 

<let:/ -  Pic(O), 

i.� an isommphi�m. 

 

Proof: (i) The composite of both mappings 

Pic(O) -  K0(o)* �  Pic(8) 

is the identity, -;ince for an invertible metrized o-module M, one clearly has 

dct M = M. Thi5 give� (i). 

(ii) Next. viewing the elements of Pi/'(8) a<, clement� of K0(0), 

8:Pic(O)- t, O(x)=x-1, 

us an inver�e mapping to <let : / ➔  Pic(O). In fact, one has 

= id since dct([o] - I) = dctlol = rn], and 8 u det = id ..,ince 

8(det(loj - ])) = O(det[nJ) = O(fal) = [oj - I and because of the fact that 

Ii� generated by clements of the fonn la] - 1 (see {6.1)). D 
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From the i�omorphism det /  ::: .. Pic(8), we now obtain an 

isomorphism 

grK0(8)  :::: .. Z EBPic(8) 

and the composite 

Ko(8) �  gr Ko(8) �ZEBPic(6) 

will again be called the Chem character of K0(8). Observing thal 

det(c1(l;)) = dct(I; - rk(l;) I)= det(l;), this yields the explicit description 

of the Grothendieck group K0(8): 

 

(6.6) Theorem. The Chem character gives an isomorphism 

ch : K0(6) .....::::.,. ZEB Pic(8), ch(,;)= rk(l;) EB det(I;). 

 

The expert should note that this homomorphism is a realization map 

from K -theory into Chow-theory. Identifying Pic(8) with the divisor class 

group CH1(6), we have to view Z EBPic(O) a� the "replete" Chow 

rin!!,CH(B). 

 
 

 

§7.  Grothendieck-Riemann-Roch 

 
We now comider a finite extension LI K of algebraic number field5 

and study the relations between the Grothendieck groups of L and K. 

Let o, resp. 0, be the ring of integers of K, resp. L and write 

X(C) = Hom(K,C), Y(C) = Hom(/,,C). The inclusion i: o---+ () and the 

surjection Y(C)---+ X(C), a i----+ alK, give two canonical homomorphi�ms 

i*: K0(8) - Ko(O) and i*: Ko(i5) ----cl- Ko(8). 

defined as follows. 

If M is a projective metrized o-modulc, then M ®0 0 is a projective 

0-module. As 
 

the hermitian metric on the K:c-module M,c extends canonically to an 

F-invariant metric of the Le-module (M ®0 0)::. Therefore M ®c,0 is 

automatically a metrized 0-module, which we denote by i*M. If 

1 11 

0 - M - M- M -  0 
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is a short exact sequence of projective metrized a-modules, then 

0----;,- M' @ 0----;,-M ® 0----;,-M
11 

@ 0----;,-0 

i5 a t>hort exact sequence of metrized CJ-module�. becau<;e O it> a projective 

o-module and the metrics in the sequence 

0----;,- M� ----;,- Mr ----;,- M� ----;,- 0 

simply extend Lir-sesquilinearly to metrics in the �equence of Lr:-modules 

0----;,- M(c ®K. Le ----;,- Mc ®K,· Le ---+ M� ®K,_· Lr: -- + 0. 

This is why mapping, in the usual way (i.e.. via the representation 

Ko(O) = Fo(O)/Ro(O)), 

M>-+li'Ml�IM0n01 

gives a well-defined homomorphism 

i* : Ko(O) ---+ Ko(O). 

The reader may verify for himself that this is in fact a ring homomorphism. 

 

On the other hand, if M is a projective metrizcd 0-module, then M 

is automatically also a projective a-module. For the complexification 

M�: = M ®;c :C we have the decomposition 

M,c � EB M, � EB EB M, � EB Ma' 
TEY(l.:) acX(C) rlrr rrEX(:C) 

where MT= M ®o.TC and 

Ma� M0o.,C � EBM, 

''" 
The (:-vector space� MT carry hermitian metrics (, )Mr• and we dcline the 

metric {, )M" on the C-vector space Mrr to be the orthogonal sum 

{x,y),.,-" = L (x,,y,)M, • 

''" 
This gives a hennitian metric on the Kr:,-module M[·, whose F -invariance 

if> clearly guaranteed by the F -invariance of the original metric ( , )M. We 

denote the mctrizcd a-module M thus constructed by i* M. 

If O ➔ M' ➔ M ➔ M
11 
➔ 0 is a short exact sequence of projective 

metrized 0-modulcs, then 

0---+ i*M'---+ i*M ---+ i*M''---+ 0 

is clearly an exact sequence of projective mctri1:cd a-modules. A� before, 

thb b why the correspondence 

Mf ---- i-[i*M] 

gives us a well-defined (additive) homomorphism 

i*: K0(0)---+ K0(6). 
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(7.l) Proposition (Projection Formula). The diagram 

Ko(O)  x  Ko(B) Ko(O) 
 

K0(8)  x  Ko(8) Ko(i5) 

is commutative. where the horizontal arrows arc multiplication. 

 

Proof: If M, resp. N, is a projective mctrized 0-module, resp. o-module. 

there is an isometry 

i*(M ®v i*N) � i*M ®0 N 

of projective mctrized o-modules. Indeed, we have an isomorphism of the 

underlying o-modules 

M ®o (N ®0 CJ) � M ®o N. a® (h@c) 1---+ ca® h. 

Tensoring with  it induces an isomorphism 
 

That this is an i5ometry of metrized K,�:-modules rc�ulh from the 
distributivity 

I:!. )M,I, )N,, �(Li. ).w,)I. )N,, 
Tiff rlr, 

by applying mathematical grammar. □ 

 

The Riemann-Roch prohlem in Grothendieck"s perspective i5 the task 

of computing the Chern character ch(i*M) for a projective metrized 0- 
module Min terms of ch(M). By (6.6), thi� amounts to computing det(i.M) 

in terms of det M. But dct M is an invertible metrized 0-module and is 

therefore iwmetric by (4.5) to the metrized 0-module L(Ql) of a replete 

ideal Qt of L. N1 IK (Qt) i� then a replete ideal of K, and we put 

NL1KidctM) :� L( NL1Ki'll)) 

This is an invertible metrized a-module which is well determined by M up 

to isometry. With this notation we first establish the following theorem. 

 

(7.2) Theorem. For any projective metri7ed 0-module M one has: 

,kU,M) � rkiM) rkiO), 

det(i*M) � Ntw(detM)00 (deti*O)'k(Ml_ 

Herc we have rk(O) = (L: K]. 
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Proof: One has MK:= M @0 K = M ®o 0@,.) K = M@o L =: ML and 

therefore 
 

In order to prove the second equation, we fin,! reduce to a special case. Let 

A(M) = det(i,.M) and p(M) = NLIK(<lelM)@,, (deti.O)'k(MJ. 

If O ----+ M' ----+ M ----+ M" ----+ 0 is a 5hort exact sequence of projective 

mctri/cd 0-modules, one ha� 

(•) J.(M) S' J.(M') ®o ,(M") and p(M) S' p(M') ®0 p(M"). 

The irnrnorphi�m on lhe left follows from the exact sequence O----+ i*M' 

i*M ----+ i*M'' ----+ 0 by (4.7), and the one on the right from (4.7) al5o. from 

the multiplicativity of the nonn NL K and the additivity of the rank rk. As in 

the proof of (5.6). we now make use of the fact that every projective metri:,-ed 

0-module M projects via an admb�iblc epimorphism onto a suitable 0- 

module of the fonn L(Ql.) for some replete ideal Q(. Thus (*) allows us to 

reduce by induction on rk(M) to the case M = /,(Q{). Here rk(M) = I. 
we have to c5tablish the isomorphism 

 

For the underlying a-modules this amounts to the identity 
 

which ha� to be viewed as inside delK L and which is proved a� follows. 

If O and o were principal ideal domains, it would be obvious. In fact, in that case 

we could choose a generator a of Q{1 and an integral basis w1.  , co11 

of O over o. Since NLIK (a) i� by definition the determinant det(T,,) of the 

transformation T,,: L----+ L, ti--+ ax,we would get the equation 
 

the left-hand �ide, re�p. right-hand side, of which would, by (1.6), gcncrale the 

left-hand �ide, resp. right-hand side, of (**). But we may alway� produce 

a principal ideal domain as de�ired hy passing from Oio to the localization 

OµIOµ for every prime ideal p of o (see chap. I,* 11 and *3, exerci5e 4). The 

preceding argument then shows that 

(deto Q{I )p = dctop Q{fp = NL1K(Q{11) deto,, Op = (Ni 1K (2{1) det0 O)p, 

and since this identity b valid for all prime ideals p of o, we deduce the 

equality(**). 
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In order to prove that the metric'> agree on both sides of (**), we put 

M = L(2l), N = L(O), a= Nt.1K(2l) and we view M,N,a as metrized 

o-modules, One ha� Mr: = N-: = Le and a,:: = Kc, and we consider the 

metric� on the componenb 

Mrr�EflC,  Nrr�EflC,  Urr�C, 
r1r1 rlr1 

where a E Hom(K,C) and r E Hom(L,C) is such that rla. We have to 

show that, for i;, T/ E det:c M r1 and a, h E  one has the identity 

{ai;,hrJ)cte1M = (a,h)a.-,{i;,17)det•V
0
• 

For thi5, let 21.,:x, = n'lll(X, >,J3V•+
1

, so that one gets 

a°"= NL1Kcm""> = n PVp 
µloc 

with Vp = L'lllP f'lJ1pV'lJ. Then 

(x,y)N,,. = Lxrfr, 
,1rr 

 

Let � = x1 /\ ... /\ .\n, IJ = y1 I\ ... I\ Yn• We number the embeddings r la, 

r1, ..., r11, put l'/i = v'lJr1. and fonn the matrices 

Then, observing that 

det(D) = nev-.,, = n ehllPo \'•ii= evp,,., 

r '131Pa 

we do indeed get 

(a�,hry)uctM,, =ah{i;,17),1c1M,,. 

= abdet( (AD)(BD)1) = ah (det D)2det(AB1
) 

= e2vp,,.ah {i;, 1/)detN,, = (a, h),, (i;, 1J)de1N 

This proves our theorem, □ 

 
Extending the formulas of (7,2) to the free abelian group 

F0(0) � EflZ{M} 
[Ml 

by linearity, and pm,sing lO the quotient group K0(0) = F0(0)/R0(0) 

yield!', the following corollary. 
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(7.3) Corollary. For every class t E K0(i.5), one has the fomwlns 

ckU,s) � [L , K J ck(sJ, 

det(i*O = [dcti*O]rk(/;JN, 1ddetn. 

 

The square of the metrized o-module dcti*O appearing in the second 

formula can he computed to be the discriminant ilLIK of the extension L IK, 

which we view as a metrizcd o-module with the trivial metric. 

 

(7.4) Proposition. There i.� a canonical isomorphism 
 

of mctrized o-modu/e8. 

 

Proof: Com,ider on O the bilinear trace map 
 

It induces an a-module homomorphism 

T :detC'.J®detO ------- +o. 

given by 
 

The image of T is the di5criminant ideal ilt.lK, which, by definition, is 

generated by the discriminant5 

d(cv1 ..... w,1) = det(TrL,K(cv,cv1)) 

of all ba�e� of LIK which are contained in 0. This is clear ir ('.) admits 

an integral basis over o, since the a, and /31 can be written in terms of 

such a basi� with coefficients in o. If there i� no such integral basis, it will 

exist after localizing Op lop at every prime ideal p (see chap. I, (2.10)). The image 

of 

is therefore the discriminant ideal of Oplop and at the same time the 

localization of the image of T. Since two ideals are equal when their localizations 

are, we find image(T) = i)LIK· Furthermore, T has to be 

injective since (det Ofg:2 is an invertible o-modulc. Therefore T is an 

v-module i�omorphism. 
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We now check that 
 

is indeed an i�ometry. For Oc = 0 ®c:. IC, we obtain the K::_·-module 

decomposition 

 
where a varies over the set Hom(K. C). and the direct sum 

Oa � ffi(O®o,c I:)� ffii: 
,10 

is taken over all T E Hom(L, C) such that r I K = a. The mapping O::_· -  K 1• 

induced by TrLIK : 0--,,. o is given, for x = ffi Xrr, x,.,. E 0,.,., by 
 

 

where Tra (xrr) = 
metric on (i *Oh: = 

TrL K(X) = 

 

the Xrr. r E C being the components of x0• The 

is the orthogonal sum of the standard metrics 

(x,y)" = L t,Yr = Tr,,(x"y) 
,10 

on the :I::-vector spaces (i.0)1r = 0,,. = EBr,rr C. Now let x,, y, E 0..,., 
i = I, ... ,11, and writex = x1/\ ... /\ \-n, y = y1 I\  /\y11 E det(O,.,.). The 

map Tc splits into the direct sum T,c = EB,,. Tc, of the maps 

J'a : det(Orr) ®c dct(Oa) --+ (iJL1da = C 

which are given by 
 

For any two n-tuples \;, y; E Orr we form the matrices 

A� Cfre(x,y,)), A'� (T1e(,;v;)), 8 � (Tca(,,x;i). B' � (T,·o(y,v;)). 

Then one has A A1 = BB 
1 

and we obtain 
 

� dct(T!-0(,,y1)) det(T!-e(,;v;l) � det(AA') � det(BB') 

� det( T,-0 (.,; i))det(T,-0 (y, y;)) � det( (x,.x; le) det( {y,, y; le) 

= (x.x')detOa (_y. Y
1

)<1er(')CT = (x ® Y, \' ® Y
1

)(de10a )0�­ 

This �how� that T,c i� an i�ometry. □ 
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We now set out to rewrite the result� obtained in (7.2) and (7.4) in the 

language of GROTl-/t.'",J)!HK's general formalism. For the homomorphism i* 

there b the commutative diagram 

Ko(O)�Z 

,,1 l1LK1 

Ko(8)�Z, 

 

because [L: K] time5 the rank of an CJ-module Mis its rank as o-module. 

Therefore i* induces a homomorphism 

i�: /(0)-----+ /(8) 

between the kernels of both rank homomorphi�ms, 50 that there j5 a 

homomorphism 

i* :grK0(0) ------- +grK0(3). 

It is called the Gysin map. (7.3) immediately gives the following explicit 

description of it. 

 

(7.5) Corollary. The diagram 

grK0(0) � ZEBPic(O) 

 
ILK la:-N1 K 

gr K0(0) � ZEB Pic(8) 

is commutative. 

 
We now consider the following diagram 

Ko(O)   :_!'._. grKo(O) 

 

 

Kn(O) grK0(fl) 

 

where the Gysin map i* on the right is explicitly given by (7.5), whereas 

the determination of the composite ch o i, is precisely the Riemann-Roch 

problem. The difficulty that confronts us here lies in the fact that the diagram 

is not commutative. In order to make it commute, we need a correction, 

which will be provided via the module of differentials (with trivial metric), 

by the Todd elm.\, which is defined as follows. 
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The module .0{010 of differentials is only a coherent, and not a projective 

0-modulc. But it1> class fDl, 1 is viewed as an clement of K0(0) via the 
PoincarC isomorphism 

 

and since rko(Db ) = 0, it lies in / (0). 

 

(7.6) Definition. The Todd class of Olo is defined to be the element 
 

 

Because of the factor ½, the Todd class docs not belong to the ring 

gr Ko(O) itself, but i:- only an element of gr K0(0) ® Zl { ]. The module 

of differential5 .ab10 is connected with the different '.DLIK Or the extension 
LI K by the exact ,;cquence 

 
0---+ '.Dr.1K ---+ 0---+ Q�Jlo ---+ 0 

of 0-modules (with trivial metrics) ('-CC §2, exercise 3). This implies that 

l.1?2)10] = 1 - ['.I.hw l- We may therefore describe the Todd class also by the 

different: 

The main result now follows from (7.3) w,ing the Todd class. 

(7.7) Theorem (Grothendieck-Riemann-Roch). The diagram 

 

Ko(i5) � grKn(O) 
 

 

 

Ko(O) � gr K0(0) 

 
is commulative. 

 

Proof: For� E K0(i5). we have to !',how the identity 

chU,0 � ;,(Td(Olo)ch(sl). 
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Decomposing ch(i*O = rk(i*O EB c1 (i*O and ch(S) = rk(,;") EB c, (0 and 

ob&erving that 

Td(Olv)ch(s) � (I+½ (['.DL,Ki - !) ) (,k(s) + c,(rn 

�,ken+ [,,m + ½ ,k(sJ<l'.DL1Kl - 1J]. 

it rnffices to check the equations 

(a) 

 

(b) 

and 

(c) 

(d) 

,ku.n �,k(s),kU.[01). 

,,u.,1�;,c,·1(sJJ + ,kc,1,1 u,10D 

 

,k(;,101) �;.(I). 

2c1 (;,[OJ) � ;,(l'.D11K I - 1) 

in gr K0(0). The equations (a) and (c) are clear because of rk(i*fO]) = 

rk(i*CJ) = [L: K]. To show (b) and (d), we apply <let to both sides and are 

reduced by the commutative diagram (7.5) to the equations 

(c) 

(f) 

det(LO = NL1K( (detO) [deti*CJ]'k(/;J, 

(deti*CJ)02 = NL1K(det'.DL1K>- 

But (e) is the second identity of (7.3), and (t1 follow5 from (7.4) and (2.9). □ 

 

With this final theorem, the theory of algebraic integeVi can be integrated 

completely into a general programme of algebraic geometry as a special case.  

What is needed is the use of the geometric language for the objects considered. 

Thus the ring o is interpreted as the �cheme X = Spec(o), the projective 

metri7ed o-module5 a,; metrized 1·et tor bundles, the invertible c,-modules as 

line bundles, the inclusion i : o---+ CJ a5 morphism f : Y = Spec(CJ) ---+ X 

of schemes, the class as the cotanient element, etc. In this way one 

realizes in the present  the old idea of viewing number theory a5 part of 

geometry. 

 

 

 

§ 8. The Euler-Minkowski Characteristic 



 
Considering the theorem of Grothendieck-Ricmann-Roch in the special 

case of an extension K IQ, amounts to revisiting the Riemann-Roch theory 
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of S 3 from our new point of view. At the center of that theory was the Euler-

Minkowski characteristic 

x(a) = -logvol(a) 

of replete ideals a of K. Here, vol(a) was the canonical mearnre of a 

fundamental me�h of the lattice in Minkowski space K:..: = a€h. IR defined by 

a. This definition is properly explained in the theory of mctriLed modules of 

higher rank. More precisely, instead of considering a as a metrized o-module 

of rank I, it should be viewed as a metrized Z-module of rank [K : QJ. 

This point of view lead� us necessarily to the following detlnition of the 

Euler-Minkowski characteri�tic. 

 

(8.1) Prnposition. The degree map 

degK : Pit (l'J) ---+ IR,  degK (laj) = - log \Jl(a). 

extends uniquely 10 ;1 homomorphism 

XK: Ko(O)-----+ ,� 

on K0(0), and thereby on K0(0). It is given by 

XK =degudet 

and called the Euler-Minkowski characteristic over K. 

 

Proof: Since, by (5.6), K0(0) i� generated as an additive group by the 

elements [aJ E Pic(O), the map degK on Pic(O) determine� a unique 

homomorphism K0(8) ➔ IR which extends dcgK. But such a homomorphism 

i� given by the composite of the homomorphi�m� 

K0(0)�  Pic(O)�  JR. 

 

a<, the composite Pit (8) '-,l, K0(0) � Pit (l'J) i� the identity. LJ 
 

 

Via the Poincare isomorphism K0(0) �  K'\a). we transfer the maps 

det and XK to the Grothendieck group K0(0) of coherent metrized ()­ 

modules. Then proposition (8.1) is equally valid for K0(0) a� for K0(0). 

We define in what follows XK(M) = xd[Ml) for a metrized n-mudule M. 

If LI K is an extension of algebraic number fields and i : n ➔ CJ the 

inclusion of the maximal orders of K, resp. L, then applying degK to the 

formula (7.2) and using 

dcgdQI) � - log;Jl('ll) � - log ;JJ( NLIK ('llJ) � degK ( NLIK ('llJ) 

(sec (l.6), (iii)) gives the 
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(8.2) Theorem. For eve1y coherent 0-modulc M, the Riemann-Roch 

formu/:.J 

is valid, and in particular, for an invertible metrized 0-module M. we have 
 

 
We now speciali7e to the case of the base field K = Q. lhat is. we 

consider metrized Z-modulc<;. Such a module is simply a finitely generated 

abclian group M together with a euclidean metric on the real vector space 
 

Indeed, since Q ha<; only a single embedding into  i.e., Qr: =  a 

metric on M is simply given by a hermitian scalar product on the [>vector 

space M,c = M 1 ® C. Restricting thi:- to M f give:- a euclidean metric the 

sc�quilinear exten�ion of which reproduces the original metric. 

If M i� a projective metri7ed Z-module, then the underlying Z-modulc 

is a finitely generated free abelian group. The canonical map M --+ M ® IR, 

a 1--+ a® I, identities M with a complete lattice in Mn;;. If a1,  , a11is a 

Z-ba�i� of M, then the set 
 

is a fundamental me�h of the lauice M. The euclidean metric { , )M 

defines a Haar measure on M11,. Once we choo:-e an orthonormal basis 

c1, , e11of M1k, this Haar measure can be expres�cd, via the i<;omorphism 

MJ....:..,. Rn, J.1c1 +-- ·+ \11C11 i-------+ Ct 1, ... , Xn), by the Lebesgue measure 

on R.". With respect to this measure, the volume of the fundamental mesh (/) 

is given by 

vol(<P) = idet({a,.a,))I 
112 

It will be denoted hy vol(M) for short. It does not depend on the choice of 

Z-basis a1,  , a11because a different choice is linked to the original one 

by a matrix with integer coefficients which also ha<; an inverse with integer 

cocflicients. hence has determinant of ab<,olute value I. 

 

A more elegant definition of vol(M) can be given in terms of the invertible 

metrizcd Z-modulc det M. det M"9:. i� a one-dimensional IR-vector space with 

metric ( . )ctcr M, and with the lattice Jet M isomorphic to?.;, If x E det M i� 

a generator (for instance, x = a1 I\.  I\ a11), then 
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In the present case, where the base field i:;. Q, the degree map 

deg: Pic(Z) -----+ IR 

is an isomorphism (see§ I, exercise 3), and we call the unique homomorphism 

arising from this, 

x = degodet: K0(Z) ------ +IR, 

the Hu.ler-Minkowski characteristic. It is computed explicitly a:;. follow<;. 

 

(8.3) Proposition. For a coherent metrizcd Z-modu/e M, one ha.� 

x(M) = log#Mt<,, - logvol(M/M10r)- 

 

In this formula M10, denotes the torsion subgroup of M and M / M,or 

the projective metrized Z-module which receive:;. its metric from M via 

M®IR=M/M10,®II?. 

 

Proof of (8.3): If M is a finite Z-module, then the detenninant of the clas:;, 

LMJ E K0(Z) is computed from a free re:;,olution 

0-----+ E-----+ F � M ----- +0, 

where F = Z" and E = ker(a) � Z". If we equip F ® IR = E ® IR = JR" 

with the standard metric, the �equence becomes a short exact sequence of 

metrized Z-modules, becau:;.e M ® R = 0. We therefore have in K°Cl): 

IMI � [Fl - [£]. 

Let A be the matrix corresponding to the change of basis from the :;.tandard 

basisc1,   ,e,.ofFlOaZ-basise;,.  ,c;1ofE.Thenx=e1/\   /\e,,, 

resp. t' = e; I\ ... I\ e�. is a generator of det F, re�p. dct !: , and 

x' = det A• t = (F: E) • x = #M • x. 

The  metric II II on det E is the same as that on det F, <,o that 

x(E) � deg(<lctE) � - log llx'II � - log(#Mllxll) � - \og#M + x(F), 

and then 
x(M) � x(IFI -LEI)� x(F) - x(E) � \og#M, 

 
For an arbitrary coherent metrized Z-module M we have the direct sum 

decomposition 

M = MtorffiM/Mw, 
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into metri7ed Z-modules. If a1,  , r.xn is a basis of the lattice M/M10,, 

then r = a1 A  . A an is a generator of detM/M1or; then x(M/Mw,) 

= deg(detM/M10,)  = -logllxll = -logvol(M/M1or). We therefore 

conclude that 

x(M) = x(M1or) + x(M/M101) = log#M1or - logvol(M/M1,").  [J 

 

The Euler-Minkowski characteristic of a replete ideal a, 

x(a) = -logvol(a). 

which we defined ad hoc in §3 via the Minkowski measure vol(a) now 

appears a5 a �imple special case of the Euler-Minkowski characteristic for 

metrized Z-modules to which the detailed development of the theory has led 

us. Indeed. viewing the metri1:ed o-modulc L(a) of rank 1 associated to u as 

the mctrized Z-module i.•L(a) of rank [K: QI, we get the 

 

(8.4) Proposition. x(a) = x(i�L(a)). 

 

Proof: Let u = 0100.., = 01 nplcx: p\.'p. The metric (, )1,L(ol on the C-vector 

space K1, = TTrEX(i'l C is then given by 

(x,y),,L(o) = Lc2
vP,x,y,. 

 

where p, is the infinite place of K corresponding to the embedding 

r : K ➔ It results from the standard metric ( , ) via the F -invariant 

transformation 

T: Kc---+ K,c,  (x,),cX(iCJ f----;- (e''Prxr)ncX('.:'J· 

Equivalently, 

(x,J)i,L(o) = (Tx,Ty). 

The volume vol(i*L(a)) of a fundamental mesh of the lattice or in Kut with 

respect to the Haar measure defined by the euclidean metric on K1n i� then 

the volume of a fundamental mesh of the lattice Tar with respect to the 

canonical measure defined by ,( ). Thus 

so!(;,L(a)) � ,ol(Tor). 

In the representation Kw.= TTPI= Kp, the canonical embedding 

Ku,;= K R---+ K.�: = K ®li' 

maps an clement to the element (x, )rcx (Cl with x r = r ..1 P,. Here we 
extend r to Kp,·  restriction of the transformation T: (r,) H (evP,x,) 

to K"3. = TT111-x. Kp is therefore given by (xp) H (e'·rxp), The lattice Ta1 is 
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then the �ame lattice which was denoted a in § 3. So we obtain 

vol(i.L(nJ) � vol(n), 

□ 

 
Given thi<. identification. the Riemann-Roch theorem (3.4) proven in §3 

for replete ideals n, 

x(a) = dcg(n) + x(o). 

now appears as a special case of theorem (8.2), which f.ays that 

x(i.L(nJ) �deg(Linl) +x(i,o). 
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Chapter IV 

Abstract Class Field Theory 

 
§ 1. Infinite Galois Theory 

 
Every field k equipped with a distinguished Galois extension: the 

separable closure Its Galois group Gk = G(flk) is called the absolute 
Galois group of k. As a rule, this extension will have inllnite degree. It 

does, however, have the advantage of collecting ail finite Galois extension5 

of k. This is why it is reasonable to try to give it a prominent place in Galois 

theory. But such an attempt faces the difficulty that the main theorem of 

Galois theory doc:, not remain true for infinite extensions. Let us explain this 

in the following 

 

Example: The absolute Galob group G, , = G(FpiFI') of the field Fl' with 

p elements contains the Frohenim automorphism rp which is given by 

r'i' = r1'  for all x E FP. 

The subgroup (tp) = {tp" In E Z} has the �ame fixed field IFp as the whole 

of G1r,P. Bul contrary to what we are u<;ed to in finite Galois theory, we 

find (tp) f- Gw,,. In order to check this, let u,; con�truct an element VJ E G_, , 

which doc� not belong to (rp). We choose a sequence /an lntM of integers 

satisfying 

whenever but wch that lhere is no integer a �atisfying a11 = a mod n 

for all n E  An example of such a sequence is given by a"= n1x , where 

we write n = 11
1 pl'1,(ii), (n', p) = 1.and I = n'r11 + p1'!,(nly11. Now put 

Vin =tpa"lwl'" E G(IF'p11l[l<'I'). 

If IF'p"' £; IF p'. then m In, so that an = am mod m, and therefore 

VJ,, l1i· ,,,, = tp"" ]!fl'"' = tp<1"' Irr,·,,,,, =Vim• 

Observe Lhat tpl ·"i,n, has order m. Therefore the ifr11 define an automorphism 

i/1 of F\, = u�=I F,,,,, Now if, cannot belong to (rp) because i/1 = tp0, for 

a E Z, would imply ifrl. ,11 = tp""IF,,,1 = qi"l1i· ,,1 and hence a"=  a mod n 
1 1 

for all n, which is what we ruled out by construction. 



262 Chapter IV. Ab�tract Class Field Theory 
 

 

The example does nol mean, however, that we have to chuck the main 

theorem of Galoi" theory altogether in the case of infinite extensions. We just  

have to amend it using the observation that the Galois group G = G(.Qlk) 

of any Galois extension Dlk carries a canonical topology. This topology is 

called the Krnll topology and is obtained as follow&. For every a E G we 

take the cosets 

aG(DIK) 

as a basis of neighbourhoods of a, with K lk ranging over finite Galois 

subextensions of Q lk. The multiplication and the inverse map 

GxG------+G, (a,r)i--------+ar,  and  G-----+G,ai ---------- +a-1
, 

arc continuous maps, since the preimage of a fundamental open neigh­ 

bourhood arG(DIK), resp. a 1G(QIK), contains the open neighbourhood 

aG(QIK) x rG(.QIK), resp. aG(.QIK). Thu� G is a topological group 

which satisfies the following 

 
(1.1) Proposition. For every (finite or infinite) Galois extemion Dlk the 

Galois group G = G(Q lk) is compact Hausdorff with respect to the Krull 

topology. 

 

Proof: If a, r E G and a i- r, then there exists a finite Galois subextension 

Klk of Dik such that alK -f:. rlK, so that aG(.QIK) #- rG(.QIK) and 

thus aG(.QIK) n rG(QIK) = 0. This shows that G is Hausdorff. In order 

to prove compactness, consider the mapping 

h,G-TTG!Klk), a-TTalK• 
K K 

where K lk varic& over the finite Galois subextensions. We view the finite  

groups G(Klk) as discrete compact topological groups. Their product is 

therefore a compact topological space, by Tykhonov's theorem (see [98]). 

The homomorphism his injective, because alK = I for all Ki� equivalent 

to a = I. The sets u = nKi"Ko G(Kl,i..) X {ir} fonn a suhbasis of 

open �cts of the product TTK G(Klk), where Kolk varies over the finite 

rnbextensions of Qlk and a E G(Knlk). If a E G i� a preimage 

of a. then 1i-1(U) = aG(QIKO). Thus h is continuou�. Moreover h(aG(.QIKo)) 

= h(G) n U, so h  G f----+ h(G) is open, and thus a 

homeomorphism. It therefore �uftice� to show that h(G) b closed in the 

compact set TTK G(Klk). To �ee this we consider. for each pair L' 2 L of 

finite Galoi� subexten�ion� of Dlk, the �ct 

ML'IL � I naK En G(Kl>l I aL'IL � a,} 
K K 
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One clearly ha� h(C) = nr.'::,f. ML'iL- So it suffices to 5how thal Mu1L 

i5 clo�ed. But if G(Llk) = {<71, ,an), and S, <; G(L'lk) i5 the set of 

extensions of a1 to L', then 

Mu,1 � U( n G(Klk) X s, X Irr,)), 
1=1 K=/J,f' 

i.e., ML'IL is indeed clm.cd. □ 

 

The main theorem of Galois theory for infinite cxtem,ion� can now be 

formulated as follows. 

 

(1.2) Theorem. Let S?lk be a (finite or infinite) Galois extension. Then 1hc 

as.�ignmcnt 

Kc-+G(DIKI 

i.� a I-I-correspondence between the subexlensions Klk of S?lk and the 

closed subgroups of G(S?lk). The open �ubgroup!> of G(S?lk) correspond 

precisely to the finite .�ubextensions of Q lk. 

 

Proof: Every open subgroup of G(S?lk) is also closed, because it is the 

complement of the union of its open cosets. If Kjk is a finite subextemion, 

then G(S?IK) i" open, becaw,e each a E G(S?IK) admits the open 

neighbourhood aG(QIN) c; G(S?IK), where Nik is the normal closure 

of K lk. If K lk is an arbitrary <,ubcxtcnsion, then 
 

 

where K, lk varies over the finite subextensions of K lk. Therefore G(S? IK) 

is clo,,.cd. 

The assignment K 1---+ C(S?IK) is injective, since K is the fixed field of 

G(.QIK). To prove <,urjcclivity, we have to show that, given an arbitrary 

dosed subgroup Hof G(Dlk), we alway� have 

H �G(DIK), 

where K is the fixed field of fl. The inclusion I/ <; G(S?IK) is trivial. 

Conversely, let a E G(S?I K). If L IK b a finite Galoi� subextension of Q IK. 

then aG(S?IL) is a fundamental open neighbourhood ofa in C(S?IK). The 

map H � G (LI K) is certainly surjectivc, bccau�c the image TI has fixed 

field Kand is therefore equal to G(LIK), by the main theorem of Galoi� 

theory for finite exlensions. Thu� we may choose a r E H such chat 
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TIL = alt, i.e., r E HnaG(DIL). Thb show� that a belongs to the 

closure of Hin G(S21K), and thus to H itself, w that H = G(QIK). 

If H ban open subgroup of G(.Qlk), then it is also dosed, and therefore 

of the fonn II=  G(DIK). Bul G(Dlk) is the disjoint union of the open 

cosets of H. Since G(Q lk) is compact, a finite number of cosets suffices to 

cover the group. Thus there is only a finite number of them; fl = G (QI K) 

has finite index in G(Dlk), and this implie� that Klk has finite degree. □ 
 

The topological Galois groups G = G(Dlk) have the special property 

that there is a fundamental system of neighbourhoods of the neutral clement 

I E G which consists of nomrnl subgroups. Thi5 property leads us to the 

abstract, purely group-theoretical notion of a profinite group. 

 

(1.3) Definition. A profinite group is a topologic1:d group G which is 

Hausdorff and compact, and which admits a bm,is of neighbourhoods of 

I E G consisting of nonnal subgroups. 

 

It can be �hown that the last condition is tantamount to G being totally 

disconnected, i.e., lo the condition that each element of G i� equal to its own 

connected component. Every dosed 'iubgroup H of G is obviously again a 

prolinite group. The disjoint coset decompo�ition 

G =LJa,H 

 
shows immediately that H is open if and only if the index (G : H) is finite. 

 

Profinite groups are fairly dose relatives of finite groups. They can 

be reconstituted rather easily from their finite quotients. For the preci'ie 

de�cription of thi� we need the notion of prrjective limit, which naturally 

occur� in various places in number theory and which we will introduce next. 

 
Exercise I. Let LI/..: he a Galois extemion and Klk an arbitrary cxten\1on, both 

contained in a common exlen�ion .!?lk. If l. n K = k, then the mapping 

G(LKIK) ➔ G(Llk), a 1--+ rrj,. 

is a topological isomorplmm, that i\, an i\omorphi�m ot group\ an<l a 

homcomorphi\m of topological �paces. 

Exercise 2. Given a 

of all 

J 1. If K, nK; 

m .!?lk, let Klk be the 

the composite of cxten\mn� K, lk .\ur.:h that 

one ha� a topological homorphi�m 

G(Klk) "'TTG(K,lk). 
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1<:xercise 3. A compact Hausdorff group i� total!y disconnected 1f and only 1f 

its neutral clement admit� a ba�1� of neighbourhood� con�i�ting only of normal 
�ubgroup�. 

Exercise 4. Every quotient Ci/ II of a protinite group G by a closed normal subgroup 

H i� a profinile group. 

Exercise 5. Let G' he the clo�ure of the commutator subgroup of a profimte group, 

and G"h = G/G'. Show that every homomorphi�m G ---+ A into an 

ahelian protimte group factorize� through 
 

 

 

§ 2. Projective and Inductive Limits 

 
The notions of projective, resp. inductive limit generalize the operations 

of inter5ection, resp. union. If {X1 LEI is a family of subsets of a topological 

space X which for any two sets X1, X1 also contain� the set X1 n X, 

(re�p. X, U X;), then the projective (resp. inductive) limit of this family is 

simply de ined by 

�  X; = ,C1 X, (resp. �  X1 = ,ld, X,). 

Writing i::;; if X,-:; X, (resp. X1-:; X1) makes the indexing 5et / into a 

directed system, i.e., an ordered set in which, for every pair i, j, there exi5t5 

a /,._ such that i .:S k and .i .:S k. In the case at hand, such a k is given hy 

Xk = X, n x, (resp. Xk = X1 U X1). For i .:s j we denote the inclusion 

XJ c.. ,,. X, (re:-p. X, c.. ,,. X;) by /11 and obtain a system {X,,J;i) of �et� 

and maps. The operations of intersection and union are now generalized by 

replacing the inclusiom f,1 with arbitrary map5. 

 
(2.1) Definition. Let I he a directed system. A projective, resp. inductive 

system over I i� a family {X;, f;1 I i, j E /, i ::; j) oftopologirnl space� X, 

and continuous maps 

f, : X --------X+,. resp. /1,: X,--------+ X • 

such thal one has J;, = idx and 

fa= J;J o f,1., resp. J;1. = f1k of,,, 

when i .:S j .:S k. 

 
In order to define the projective. resp. inductive limit of a projective. resp. 

inductive system {X1, f,1 ), we make use of the direct product n,,.1 X,, resp. 

the disjoint union Li,'=, X1• 



266 Chapter IV Abstra!.:l Cla�� Field Theory 
 

 

(2.2) Definition. The projective limit 

X= �  X, 
,c/ 

of the projective system {X;, /;1) is defined to be the subset 

X = I(x,)1E/ En  x, I .f1,(.r,) =x,  for  j _:'S j} 
i<cl 

of the product TT,ct X,. 

 
The product TT,f-1 X; is equipped with the product topology. If the X, arc 

Hausdorff, then so -is the product, and it contains in thi5 case X as a closed 

,;;ubspace. Indeed, one has 

 

where x,, = I (:qhtl E nk xk I f,,(X;) = x,}' so that it suffices to show 

the closedness of the sets X,1. Writing p; : TTA<ct Xt ➔ X, for the i-th 

projection, the two maps f.: = p,, f = _f;j o P; : TT1.<ct X1. --+ X, arc 

continuous, and we may write  = Ix E nk Xk I f.:(X) = /(x)}. But in 

the Hau5dorff case the equation = f(x) defines a closed subset. This 

representation X = n,'c I XII also  the following 

 

(2.3) Proposition. The projective limit X = �  X, of nonempty compact 

spaces XI is it.�elf nonempty and compact. 1 

 

Proof: If all the X, are compact, then so is the product TT,"'' X,, by 

Tykhonov's theorem, and rhu5 al<;o the closed rnbset X. Furthermore, 

X = n,::..., X11 cannot be the empty set if the X, are nonempty. In fact, 

as the product fl, X; is compact, there would have to be an intersection 

of finitely many X,1 which is empty. But thb is impo%iblc: if all indice1, 

entering into this finite intersection satisfy i, j .:'Sn, and if \n E Xn, then the 
element (x,);1:-1 belongs to this intcrscelion, where we choose .\1 = f;11(.,11), 

for i _:'S 11, and arbitrarily for all other i. □ 
 

(2.4) Definition. The inductive limit 

X = llig X, 
,c/ 

ofan inductive system {X,, f;1) is defined to be the quotient 

X � (lJ.c1X,)/~ 

of the disjoint union LJ,c1 X,, where we consider two elements r, EX, and 

l1 E XI equivalent if there exist\ ,1 A � i, j such Iha! 

J;dx,) = f1k(x1). 



fl2. Projective and Inductive Limits 267 

 

 

In the applications, the projective and inductive systems {X1, /;1} that 

occur will not just be systems of topological spaces and continuous maps, 

but the X1 will usually be topological groups, rings or modules. etc., and 

the ;; 1 will be continuous homomorphisms. In what follows, we will deal 

explicitly only with projective and inductive <;ystems {G;, g11) of topological 

groups. But since everything works exactly the same way for sy\>tems of 

rings or modules, these cases may be thought of tacitly as being treated 

as well. 

Let {G1• g11) be a projective, rc\>p. inductive system of topological groups. 

Then the projective, resp. inductive limit 

G = �  G,.  re<;p. G = �  U1 

1d 1£Cf 

i1-> a topological group as well. The multiplication in the projective 

limit i1-> induced by the componcntwise multiplication in the product 

fl,£'! G,. In the case of the inductive limit, given two equivalence classc<; 

x,y E G = �  G,, one has to choo<sc representatives .tJ. and y� in the 
,cl 

same G1 in order to define 

xy = equivalence class of :q_H. 

We leave it to the reader to check that this definition i1-> independent of the 

choice of repre<;cntatives, and that the operation thus dclined makes G into 

a group. 

The projections p1 : [11'=1 G, ----+ G,, resp. the inclusion<; t, : G, ----- + 

U,sc1 G,, induce a family of continuous homomorphism1-> 

g1 : G--------)- U1,  resp. 8i: G, ----- )- G 

such that 1;1 = g,1 o i{,, re1->p. f(; = g1 o g,.,. for i .:S j. Thi� family has the 

following universal property. 

 

(2.5) Proposition. Jf // i8 a topological group and 

h1:H--------)-G1•  resp. h1:G1 ---------------- )-H 

is a family of continuous homomorphisms such that 

h1 =g,1oh1,  resp. h, =hjog,1 

fori .:S j, then there exisb a unique continuous homomorphism 

h:/1--------)-G=� G,, re.w h:G=� G, ---------- )-H 

!,atisfyingh, = g, oh, resp. h, = h og1, fora// i E /. 
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The easy proof is left to the reader. A morphism between two projective, 

resp. inductive systems {G,,g1J) and {G;,g;JJ of topological groups is a 

family of continuou5 homomorphisms f; : G,-+ a;, i E /, such that the 

diagrams 
 

,.T_l_.T,•.. 
C, � c; 

 

resp. 

 

commute for i::: j. Such a family (f;),Er defines a mapping 

r. n G, -  nc;, cesp. J. LI G, - LI c;' 
11°/ 1€'{ 1E/ 1e'/ 

which induces a homomorphbm 

f: �  Ci-----+ �  Gj,  resp. f: �  G,-----+ �  c;. 
IE/ I/Cf 1€'{ 1€'{ 

In thb way U!!! , re�p. � , becomes a functor. A particularly important 

property of this functor j5 it5 so-called '·cxactncs�". For the inductive 
limit �,  exactness holds without restrictions. In other word�. one has the 

 

(2.6) Proposition. Lei a  1c;,g; 1 -----+ {G,.g,J) and fJ  \G,,g,;) ---+ 

, g;j) he morphisms between inductive systems of topological groups 

that the sequence 

 

i.� exact for every i E /. Then the induced �equence 

� c; ...?.+ �  c, L !i!¥ c;' 
1cJ He.! 1cJ 

is afao exact. 

 

Prnof: Let G' = !i!¥ c;, G = � G1, CJ" = � G;'. We consider the 

commutative diagram 
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Let x E G be such lhat /J(x) =I.Then there exist� an i and an x, E G, !>uch 

that g1(x1) =x. As 

 

there exists j � i such that fi, (x1) equal<; I in c;'. Changing notation, we 

may therefore as<;ume lhat  = I, so that there exists y1 E c; !>uch that 

a,(y1) =x,. Pulling y = we have u(y) =x. □ 
 

 
The projective limit is not exact in complete generality, hut only for 

compact groups, so that we have the 

 

(2.7) Proposition. Let a  1c;.x;11➔  \G,.x,J) :md f,  /G1,g1i) ➔ 

/G;
1.x;' ) be morphisms between projective systems of compact topological 

groups 1,uch that the sequence 

c; � c, -1l+ c;' 

is exact for every i E /. Then 

� c; � Q!!! G1 -1+ fu!! c;' 

' ' 
i.� again an exact sequence of compact topological groups. 

 

Proof: Let x = (t,),f't E ¥!!! G, and f,(.x) = I. �o that /J,(t,) = I for 

all IE/. The prcimagc!> Y, � a,-1(.x,) s; c; then form a projective 
of nonempty closed, and hence compact subsets of the Gf. By thi-, 

means that the projective limit Y = fu!! Y, s; �  c; is nonempty, and 

a maps every element y E Y to .x. lJ 

 

 

Now that we have at our disposal the notion of projcclivc limit, we 

return to our slarting point, the profinite groups. Recall lhat these are the  

topological groups which are Hausdorff. compacl and totally disconnected,  

i.e., they admit a basis of neighbourhoods of the neutral element con�isting 

of normal subgroups. The next proposition show!-. that they are preci�ely the 

projective limits of finite groups (which we vie\\- as compact topological 

groups with respect to the di�crctc topology). 
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(2.8) Proposition. lf C is a profinite group, and if N varies over the open 

nomial subgroups o[G, then one has, algebraicaJJy a.� weJJ as topologically, 

that 

G � li!!! G/N. 
N 

lf conversely {G,,,>,';1) i.� a projective system of finite (or even proJinile) 
groups, then 

G = �  G; 

is a profinite group. 

 

Proof: Let G be a profinite group and let {N, I i E / \ be the family of its 

open normal subgroups. We make / into a directed system by defining i .:'.:: j 

if N1 2 N1. The groupt, G, = G/N, are finite since the cosets of N1 in 

G form a disjoint open covering of C, which must be finite because G i5 

compact. For i .:'.:: j we have the projections g11 : G 
1 

--+ G; and obtain a 

projective system /G1, g,1) of finite, and hence discrete, compact groups. We 

show that the homomorphism 

f' : G ---+ _!l!!! G1. a 1------+ TT01, a,= a mod N,, 
1eCI id 

 

is an isomorphism and a homeomorphism. f is injective because its kernel 

is the intersection n,eCt N,, which equals {I} because G is Hausdorff and 

the N1 fonn a basis of neighbourhood� of I. The groups 

Us� [1 G, x [1{lr;,). 
,qs 1<cS 

 

with 5 varying over the finite i'>ubsets of /, form a basis of neighbourhood5 

of the neutral element in n,E/ G1- As l-1(Usn _!l!!! G,) = n,<cS N,, we see 

that f is continuous. Moreover, as G is compacl. lhc image f(G) is closed 
in�  G,.Ontheotherhanditisalsodense.Forifx=(x1)1E/ Ell!!! G,, 

and x(Us n l!.!!! G,)  i� a fundamental neighbourhood of x, then we may 

choose a y E G which is mapped to x1.. under the projection G--+ G/Nk, 
where we put Nk = nlE.\ N,.Then y mod N, = x, for all I E s, so that 

f(y) belongs to the neighbourhood x(Us n ll!!! G,). Therefore the closed 

set f(G) is indeed dense in �  G,, and so f'(G) = ll!!! G,.  Since G 

i� compact. j maps closed sets imo closed sets, and thus also open sets 

into open sets. This show� that f' : G - � C, is an i�omorphism and a 

homeomorphism. 

Convcr�cly, let {G,,g,1) be a projective system of protinitc groups. A� 

the G, are Hausdorff and compact, so is the projective limit G = � G,, 
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by (2.3). If N, varies over a basis of neighbourhoods of the neutral element 

in G1 which consists of normal subgroups, then the groups 

Us� [1G; x [1N;. 
1,jS !ES 

with S varying over the finite sub5ets of I, make up a basis of neighbourhoods 

of the neutral element in n1E/ G,consisting of normal subgroups. The nonnal 

subgroups Us n � G, therefore form a basis of neighbourhood5 of the 

neutral element in � G,; thus � G1 i:,, a profinite group. LJ 

 

Let us now illustrate the notion5 of profinitc group and projective limit by 

a few concrete examples. 

 

Example 1: The Galois group G = G(.Qlk) of a Galois extension .Qlk 

is a protinite group with respect to the Krull topology. This was already 

stated in§ I. If K lk varies over the fmite Galois subextcm,ions of .Qlk, then, 

by definition of the Krull topology, G(QIK) varies over the open normal 

subgroups of G. In view of the identity G(Klk) = G(.Qlk)/G(.QjK) and 

of (2.8), we therefore obtain the Galois group G(Qlk) as the projective limit 

G(Dlk) "' \i"' G(Klk) 

of the finite Galob group5 G(Klk). 

 

Example 2: If p is a prime number, then the rings 

a projective system with respect to the projections 

for n 2: m. The projective limit 

Zp= !,!!!! Z/pnz 

 
is the ring of p-adic integers (sec chap. II, § I). 

 

nEN,form 

---+ Z/pmz, 

 

Example 3: Let o be the valuation ring in a p-adic number field K and p it:,, 

maximal ideal. The ideals p", n E N, make up a ba:,,is of neighbourhoods of 

the zero element O in o. o is Hausdorff and compact, and so is a profinite ring. 
The rings o/p", n EN, arc finite and we have a topological isomorphism 

o � �  o/p",  a f------+ n (a mod pn). 
n n,cN 

The group of units U = is closed in o, hence Hau:,,dorff and compact, 

and the 5ubgroups U("l = I+ p11 fonn a basis of neighbourhoods of l EU. 

Thus 

 



i� also a prolinite group. In fact, we have seen all this already in chap. IL 94. 
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Example 4: The Z/11Z, n EN, form a projective <;ystem with respect 

to the projections  ---+ Z/mZ, nlm, where the ordering on Ni� now 

given by divi�ihility, nlm, The projective limit 

2 = � Z/nZ 

 

was originally called the PrUfer ring, whereas nowaday<; it has become 

customary to refer to it by the somewhat curt abbreviation "1.cd-haf' 

(or '·zee-hat"). This ring is  to occupy quite an important position 

in what follow�. It contains   subring. The group<; nZ, n EN, are 

preci<;cly the open subgroups and it i� easy to verify that 

'i;nZ � Z/nZ. 

Taking, for each natural number n, the prime factorization n = TT!' p''p, the 

Chinese remainder theorem implies the decomposition 

'£./nZ � TIZ/l11'Z, 
p 

and passing to the projective limit, 

z � nzfl. 
p 

This takes the natural embedding of Z into Z to the diagonal embedding 

;.f,----+ nl' 'llp, a I---+ (a.a,a, ...). 

 

Example 5: for the field IF'I with q elements, we get bomorphism� 

G(IFqnlIFq) � Z/n'll. 

one for every II E N, by mapping the Frobenius automorphism ip11 to 

I mod n'll. Passing to the projective limit give'> an isomorphism 

G(IFqifq) � 2 

which sends the Frobenius automorphism 'PE G(l8',11fq) to IE Z. and the 

subfroup (tp) = {'P" I n E Z] onto the den�c (but not clo5ed) -,ubgroup J'. 

of Z. Given this, it i� now clear, in the example at the beginning of this 

chapter, how we were able to construct an clement ifr E G( W,1lf,1) which did 

not belong to (ip). In fact, looking at it via the i1>omorphism G( W°,1llF',1) � Z. 
what we did amounted to writing down the clement 

.. ,0,0. lp,0,0, ... ) E TTZ1 = i. 
I 

which docs not belong to Z. 
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Example 6: Let  be '""-'"'"'''"'" obtained by adjoining all roots 

of unity. Its group is then canonically isomorphic (as a 

topological group) to the group of units Z* ;:::; nl'  z;, of Z, 

G(QIQ) c:e i'. 

This isomorphism is obtained by passing to the projective limit from the 

canonical isomorphisms 

where µ11 denotes the group of fl-th roots of unity. 

 

Example 7: The groups ZI' and Z are (additive) <,pecial ca&cs of the class 

of procyclic groups. These are prolinite groups G which are topologically 

generated by a single element a; i.e., G is the closure (a) of the subgroup 

(a) = {a11 I fl E Z). The open subgroups of a procyclic group C = (a) arc 

all of the form G". Indeed, G11 is closed, being the image of the continuous 

map G ---+ C. x f-'>- x11
• and the quotient group G / G" is finite, because it 

contains the finite group \a'' mod G" IO ::=: v < n) as a dense subgroup, 

and is therefore c4ual to it. Conver&cly, if H is a subgroup of CJ of index n, 

then G" �II� G and n = (G: H)::: (G: G")::: n, so that H = G11
. 

Every procyclic group G is a quotient of the group Z. In fact, if G = (a), 

then we have for every n the surjective homomorphism 

'Jl,/11Z---+G/G11
,  lmodnZf-'>-amodG11

, 

and in of (2.7), pa�sing to the projective limit yields a continuous 

�urjection ------- + G. 

 

Example 8: Let A be an ahelian torsion group. Then the Pontryagin dual 

x(A) ~ Hom(A.Q/Z) 

is a profinite group. For one has 

A~ LJ A,, 

 

where A, varies over the finite subgroups of A, and thus 

x(Al = � x(A,) 

 

with finite groups x(Ai). If for in5tance, 

A = Q/Z = LJ ¼z;:z, 
tlE'�1 
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then x<¼Z/Z) = Z/nZ, �o that 

x(Q/Z) "' �  7l/nZ � Z. 

 

Example 9: If G is any group and N varies over all normal subgroups of 

llnite index, then the profinite group 

 

is called 1he prrdmite 

example, i� the group 

profinite completion of Z. for 

 

 
 
 

 
Exercise l. Show that, for a protinite group G, the power map G x Z ➔ G. 

(a, n) c-+ a", extend� to a continuou� map 

GxZ➔G,  (a.a)c-+a", 

and that one ha� (rTal = o-"1
' and rr"+1

' = u"a1
' 1f G 1� abelian. 

Exercise 2. If a E: G and a=,��� a, E Z with a1 E Z. then cr" = Jim a"· ism G. 

Exercise 3. A fHo-p�group i� a protinite group G who�c 4uotient� (j / N. modulo all 

open nonnal �uhgroups N. are finite Imitating cxcrci�e 1, make �ense of 

the powers a". for all a E G and a E 

Exercise 4. A do5ed subgroup H of t-1 protinitc group G i� called a p-Sylow 

�ubgroup of G if, for every open normal �ubgroup N of G. the group H N / N is a 

p·Sylow subgroup of G/N. Show: 

(i) For every prime number p, there cxish a p-Sy[ow whgroup of G. 

(ii) Every pro-p-wbgroup of G 1s contHined in a p-Sylow subgroup 

(iii) Every two p-Sylow �ubgroups of G are conjugate. 

1<:xercise 5. What i� the p-Sylow wbgroup of 7'. and of z;? 

Exercise 6. If !G,) j\ a projective �ystcm of profinitc groups and G = �  G1, 

then G''1, = lli!) c:•1, (�ce* 1, excrn�e 5). 
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§ 3. Abstract Galois Theory 

 
Class field theory is the final outcome of a long development of algebraic  

number theory the beginning of which was Gauss's reciprocity law 

 
(�)(�)� (-1)9 "'. 

 

The endeavours to generalize this law finally produced a theory of the abelian 

extensions of algebraic and p-adic number fields. These extensions LIK are 

classified by certain subgroups .ML= NL,'KAt. of a group AK attached to 

the base field. In the local case, AK is the multiplicative group K* and in 

the global case it i� a modification of the ideal cla5S group. At the hean of 

this theory there is a mysterious canonical isomorphism 
 

which - if we view things in the right way - encapsulates the reciprocity 

law in its most general form. Now, this map can be abstracted completely 

from the field-theoretic situation and treated on a purely group theoretical  

basis. In this way, class field theory can be given an abstract, but elementary 

foundation, to which we will now tum. 

We begin our considerations by giving ourselves a profinitc group G. The 

theory we are about to develop is purely group theoretical in nature. However, 

the only application� we have in mind :lfe field theoretical, and the language 

of fleld theory allow� immediate insights into the group theoretical relations. 

We will therefore formally interpret the profinite group G as a Galois group 

in the following way. (Let us remark in passing that every profinite group is 

indeed the Galois group G = G(kjk) of a Galois field 

extension klk; this will allow the reader to rely on his �tandard knowledge 

of Galoi� theory whenever the formal development in terms of group theory 

alone would :-eem odd.) 

We denote the closed subgroups of G by (h, and call these indices K 

'•field�"; K will be called the fixed field of GK. The field k such that G� = G 

is called the base field, and k denotes the field sati:-fying G; = /1). The 

field belonging to the closure (a) of the cyclic group (o-) = {u' / k E �G/ 

generated by an element u E G is simply called the fixed field of u. 

We write formally K <;: L or LI K if GL <;: GK,  and we call the pair 

/,IK a field extension. LI K i� called a finite extension, if G L i,;, open, i.e.. 

of llnite index in GA. , and this index 
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will be called the degree of L IK. LI K is �aid to be normal or Galois if Ch 

is a normal wbgroup of GK. If this is the case, we define the Galois group 

ofLIKby 

 
If N 2 L 2 K arc Galois extensions of K, we define the restriction of an 

element a E G(NIK) to L by 

all= amod G(NIL) E G(LIK). 

This gives a homomorphism 

G(NIK) -----1- G(LIK),  a i-------+ rrl1, 

\liith kernel G(NIL). The extension LIK is called cyclic, abclian, solvable, 

etc., if the Galois group G(L IK) has these properties. We put 

("intersection") 

 

if GK is topologically generated by the rnbgroups GK,, and 

K = TI K; ("compm.ite") 

if GK=  n,GK,- If GK'= a-1GKa for a E G. we write K' = Krr. 

 

Now let A be a ( ontinuous multiplicatin' G-modulc. By this we mean 

a multiplicative abclian group A on which the elements a E G operate as 

automorphisms on the right, a : A ----+ A, a r+ ar1. This action must �atisfy 

(i) a1 = a, 

(ii) (ah)" = a0 ha, 

(iii) a"r = (a"V, 

(iv) A = UiK:�J<cx, AK. 

where AK in the last condition denotes the fixed module Ac;K under GK, 
so that 

AK = / a E J\ I a0 = o for all a E GK\ , 

and where K varie� over all extemions that are finite over k. The 

condition (iv) says that G operates continuously on A, i.e., the map 

GxA----...A, (a,a)f ----- +t/'. 

is continuous, where A is equipped with the discrete topology. Indeed. thi.-; 

continuity b equivalent to the fact that, for every element (a .a) E G x A. 

there exist,; an open subgroup U = GK of G such that the neighbourhood 

all x {a) of (a, a) is mapped to the open -;ct {a"}, and thi� means simply 

that a" E AC= AK. 
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Remark: In the exponential notation a", the operation of G on A appears 

as an action on the right. This notation is adequale for many computations 

in the case of multiplicative G-modules A. For im,tancc, the nolation 

a"-1 := a0a-1 is to be preferred lo writing (a - l)a = aa • a-1
. On the 

other hand, cla5sical usage often calls for an operation on the left. Thus in the 

case of a Galois extension LIK of actual fields, the Galois group G(LIK) 

acts as the automorphism group on L from the left, and therefore al1'o in the 

same way on the multiplicative group L*. This occasional switch from the left 

to the right 1'hould not confu<;e the reader. 

 

For every extension LIK we have AK £" At., and if LIK i1' finite, then 

we have the norm map 

NL1K: AL--+ AK, N,_,K(a) =Ila", 

 

where rJ varies over a sy�tem of representatives of G L\GK· If LI K is Galoi1', 

then AL i<; a G(LIK)-modulc and one has 

Atf.lKJ=  AK 

 

At the center of cla1'1' field theory there is the norm residue grnup 
 

We also consider the group 
 

where 

NL,KA1 = ja EAL I N1_1K(a) = I} 

is the "norm-one group" and h;(LiK)AL i1' the subgroup of Ni IK AL which is 

generated by al I element� 

aa-1 :=a"a I 

 

with a E A1_, and rJ E G(LIK). If G(l.lK) is cyclic and a is a generator, 

then lcu.1Ki!\L is simply the group 

A�-l = / aa-- 1 I a E AL) . 

In fact, the formal identity a/.:- I= (I +a+·· +at-1)(a -1) implies 

arr' 1 = h". 1 with h = Tl��(: a"', 

 

Let us now apply the notions introduced so far to the example of Kummer 

theory. For this, we impose on the G-modulc A the following axiomatic 

condition. 
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(3.1) Axiom. One fo1s H-1(G(LIK),A,J = I for al/  finite cyclic 

exlcnsions LI K. 

 

The theory we are about to develop makes reference to a surjective 

G-homomorphism 

6·': A--------)' A,  a i---------+ aS.', 

with finite cyclic kernel µ,�i• The order n =   is called the exponent of 

the operator  The ca�e of prime interest to u:;. when g-.1 is the n-lh power 

map a 1---+ and /L5,, = tL11 = {� E A I $11 = I} is the group of "11-th roots 

of unity" in A. 

We now fix a field K such that 11,,�i £ AK. For every subset B s; /\, 

let K (B) denote the fixed field of the closed subgroup 

H � [ a E GK I h" � h fo, all h E B} 

of GK. If 8 is GK-invariant, then K(B)IK is obviously Ga!oi:;.. A Kummer 

extension (with respect to g-.;) is by definition an extension of the form 
 

where .1 s; AK. A Kummer extenc;ion K(p-1(.1))1K is always Galois, 

and its Galois group is abelian of exponent n. Indeed, for an extension 

K (p-1(a))IK, we have the injective homomorphism 

G{K(S:J-1(a))IK) "------)o- /.L,;,,  a i--------+ arr-I 

 

where a E tr1(a). Since /.L6., £;; AK, this definition does not depend 

on the choice of a. Thu'-. for a Kummer extension L = K(p-1(Ll)) = 
TTatd K(p-1(a)). thecomposite map 

G(LIK) -  n G(K(t,-'(a))IK) -  l't 
"'' 

is an injective homomorphi�m. 

 

The following proposition say� that conversely, any abelian extension 

L IK of exponent n is a Kummer extension. 

 

(3.2) Proposition. If LI K is an abclian extemion of exponent n, then 
 

/fin p,micular. LIK is cyclic, then we find L = K(a) with as,>= a E AK. 
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Proof: We havep-1(,1) <;;:; AL,  for if x EA and  = ai;.' = a E AK, 

a E AL, then x = i;a E AL for some i; E µ�)  <;;:; AK.  Therefore 

K(p-1(L1)) <;;:; L. On the other hand, the extension LIK is the composite of 

it5 cyclic subcxtensions. For it is the composite of its finite subextensions, 

and the Galoi5 group of a finite subextension is the product of cyclic 

groups, which may be interpreted as Galois group5 of cyclic �ubextemions. 

Let now MI K be a cyclic 5Ubextension of LI K. It suffices to show that 

M <;;:; K(tJ-1(,1)). Let a be a generator of C(MIK) and ( a generator 

Let d = [M: KJ,  = n/d and i; = (d'_ Since NM1K(i;) = i;d = I, 

<,hows that i; =   for some a E AM. Thus K £ K(a) <;;:; M. 

But a"" = i;ia. Thus a"' = a is equivalent to i = 0 mod d, 50 that 

K(a) = M. But (a�))a-l = (a"-1)t' = i;I? = I, �o that a= a�1 E AK; then 

a E tJ-1(L1), and therefore M £ K(fl-1(L1)). 0 

 

As the main result of general Kummer theory, we now obtain the following 

 

(3.3) Theorem. The correspondence 

Ll,_.L�K(i?  '(Ll)) 

is a I-I-correspondence between the groups Ll 1,uch that Ar £ L1 <;;:; AK and 

the abelian extensions LI K of exponent n. 

If L1 and L correspond to each other, then Arn AK = Ll, and we have <i 

canonical isomorphism 

Ll/Af ;,: Hom(G(LIK),Jls,)), a mod Ai i----+ Xa, 

where the chan1.cter x,, : G(LIK)-+ /L!f' is given by x"(a) = a"-1, for 

U E fl 1(a). 
 

 
Proof': Let LIK be an abelian extension of exponent n. By (3.2), we then 

find L = K(p-1(L1)) with L1 =Arn AKW. e consider the homomorphism 

Ll----+ Hom(C(LIK),µ61).  a i----+ Xa, 

where Xa(a) = a"-1
, a Ep-1(a). Since 

Xa = I {=}  a"" 1 = I for all a E G(LIK) 

{=}  a E AK {=}  a =alf' EA�, 

it has the kernel A�. To prove the surjectivity, we let x E Hom(G(LIK), /lp), 

x defines a cyclic extension MI K and is the composite of homomorphisms 

G(LIK)-+ G(MIK) L /Li;i- Let a be a generator of G(MIK). Since 
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NMid.f(a)) = .f(a)IM.KI = 1, we deduce from (3. l) that X(a) = arr-I for 

some a E AM- Now, (at')" -I= (a"-1
)&'' = X(a)!P = I, so that a= aP E 

Arn  AK =LI.Farr EG(LIK).oneha<;x(-r)= X(<IM) =ar-l =x"('r), 

so that x = x". This proves the surjectivity, and we obtain an isomorphism 
 

If ,1 is any group between and and if L = K(g.)-1(6.)), then 

,1 = A'f n AK. In fact, putting n AK, we have ju<;t seen that one 

has 

Ll'/Af C' Hom(G(LIK)./<,,) 

The subgroup /1/ A� corre:-ponds under Pontryagin duality to the subgroup 

Hom(G(LIK)/H ,/lg,,), where 

H�\aeG(LIK)lx,(a)�l fmallaELlj. 

As r./' 1 = Xa(a) for a E tri-1(a), H leaves fixed the clements 

of sr1(Ll). and a<; K(t-)-1(.1)) = L. we find that JI = I, so that 

H?m\t/<�IK)/H,11,,6') = Hom(G(LIK),µp). It follows that Ll/At = 
,1 /AK, 1.e., ,1 = ,1. 

It i<; therefore clear that the corre�pondence Ll r-+ L = K(p-1(11)) i:;, 

a 1-1-corre<;pondence, as claimed. This finishes the proof of the theorem. D 

 

Remarks and Examples: I) If LIK is infinite. then Hom(G(LIK),/Lp) 

has to be interpreted a<; the group of all continuous homomorphisms 

x: G(LIK)----+ Jls,,, i.e., as the character group of the topoloiiwl group 

G(LIK). 

2) The composite of two abelian extem,ions of K of exponent n i� again 

of the �ame type, and all of them lie in the maximal abelian extension of 

exponent n. It is given by K = K (�-1(AK)), and for the Pontryagin dual 

G(KIK)' � Hom( G(KIK).{()/Z) � Hom( G(KIKJ.p,,) 

we have by (3.3) that 

 

 

3) If k b an actual field of positive characteristic p and f i� the separable closure 

of k, then A may be chosen to be the additive group k and gJ to be lhe 

operator 

p:k----+k,  at ----- *fi!a=a1'-a. 

Then axiom (3.1) is indeed satisfied, for we have. in complete generality: 
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(3.4) Proposition. For every cyclic finite field extension L IK, one has 

H-'(G(LIK), L) � I. 

Proof: The extemion L IK always admits a normal basis {ac I a E G(L IK)}, 

so that L = ffi,.,. Koc. This means that Lis a C(LIK)-induced module in 

the sen:-e of *7, and then H-1(G(L IK), L) = 1, by (7.4). 0 

 

The Kummer theory with respect to the operator pa = afi - a is usually 

called Artin-Schreier theory. 

 

4) The chief application of the theory developed above is to the case where G 

i<; the absolute Galois group G(klk) of an actual field k, A is the multiplicative 

group k* of the algebraic closure, and 5.J is then-th power map a M a11
, for 

some natural number n which is relatively prime to the characteristic of A. 

(in particular, n is arbitrary if char(k) = 0). Axiom (3.1) is always satisfied 

in this ca:-c and is called Hilbert 90 because thi:- statement occurs as Sat:: 

number 90 among the 169 theorems in Hilbert's famow, "Zahlbcricht"' f72J. 

Thus we have the 

 

 

(3.5) Theorem (Hilbert 90). For a cyclic licld extension LI K one always 

has 

W'(G(LIK),C) � I. 

In other word1,: 

An element a E L * of n01m N1.iK (a) = 1 is of the [01m a = /3"-1• 

where f3 EL� and a i.� a genera/or ofG(LIK). 
 

 

Proof: Let 11 = !L: K]. Ry virtue of the linear independence of the automor­ 

phisms I, a, ....an1 (sec [ 151, chap. 5, §7, no. 5), there exists an element 

y E L * such that 

f3=y+ay"+a1.,.."y""+   +a1+,,+·+"/)2y"" i-=/=O. 

As N1.w(a) = I, one gets a/3" = /3, and thw, a= /31-". [J 

 

 

If now the field K contains the group fln of n-th roots of unity, the 

operator f)(a) = an has exponent n, and we obtain the following corollary, 

which i� the most important special case of theorem (3.3). 
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(3.6) Corollary. Let n be a natural number which is relatively prime to the 

characten\,tic of/he field K, and a<,sume that µ,11 £ K. 

Then the abe/ian extem,ions LI K of exponent n correspond l -1 to the 

subgroups Ll s; K* which contain K*11
, via the rule 

 

and we have 

 

 

Hilbert'5 theorem 90, which is the main basi:;. ofthi� corollary. admits the 

following generalization to arbitrary Galois exten<;ions LI K, which goe:c. back 

to the mathematician EMMY NOETNf:.R (1882-1935). Let G be a finite group 

and A a multiplicative G-module. A 1-cocycle, or crossed homomorphism. 

of G with values in A i'> a function f : G --+ A satbfying 

f(a,) �f(a)' f(,) 

foarll rr, r E c.;. The 1-cocycles form an abelian group Z 1 (G, A). For every 

a E /\, the function 

is a 1-cocycle, for one has 

J;,(aT) =ac" 1 = (aa-l)rar-l = fa(aVfa(T). 

The function:- fa are called 1-coboundaries and form a subgroup B 1 (G, A) 

of Z1(G, A). We define 

H'(G. A)� Z'(G, A)/B'(G. A) 

and obtain as a first result about thi<; group the 

 

(3.7) Proposition. IfG is cyclic, then H 1(G. A) � f/-1(G, A). 

 

Proof: Let G = (a). If f E Z1(G. A), then fork 2':: 1 

f(a') � f(a' ')"/(a)� f(ak-2)0
' f(a)" /(a)� .. ='n' f(a)"'. 

!=0 

and f(I) = I because f(l) = /(l)f(l). If n = #G, then 

Nc;f(a) � "fi' f(a)"' � f(a") � f(l) �I, 

i=O 



" " 

§ 3. Ab�tract Galoi� Theory 283 
 

 

so that f(a) E N(; A = {a E A I Nr;a = rr=ri aa' = 1 }. Conversely we 

obtain, for every a E A such that N c;a = I , a 1-cocycle by putting f (o) = a 

and ,_, 
f(ok) = n aa' 

!=0 

The reader is invited to check this. The map f r+ f(u) therefore i5 an isomorphism 

between Z1(G, A) and N(,A. This isomorphism maps B1(G, A) onto le A, 

because f E 81(G.A)<====> f(al..) = a"'-1 for some fixed a <====> 

f(a) = aa 1 
<====} f"(a) E /01\. D 

 

Noclher's generalization of Hilbert's theorem 90 now reads: 

 

(3.8) Proposition. For a finite G,itois field extension LI K, one has that 

H'(G(LIK),L') � I 

 

Proof: Let f: G--,)- L* be a 1-cocyde. For c EL*, we put 

a� L  f(a)c" 
a<c.GU-IK) 

Since the automorphisms a are linearly independent (see rt5], chap. 5, §7, no. 

5), we can chom,e c E L * such that a f. 0. For r E G(L IK), we obtain 

a'=  L,f(a)r:c"' = L,f(r)-1f(ur)c"r = f(r)-1a.. 

i.e., f(r) = w-1 with /3 = a-1
. [J 

 

This proposition will only be applied once in thi5 book (see chap. VI. 

(2.5)). 

 

Exercise 1. Show that Hilbert 90 in Nocthcr's fonnulation al�o hokb for the additive 

group L of a Galo1� extension LI K. 

Hint: U5e the normal basi� theorem. 

Exercise 2. Let A. be a field of char<1ctcristic fl and I its separable dosure. For fixed 

n c". 1, com1der rn the ring of Witt vectors W(K°) (�ee chap. II, lH, exercise 2--6) the 

additive group W,.(k) of truncated Wilt vector�  = (ao.a1, ... ,an-1). Show th.it 

axiom CU) holds for the G(klk)-module A= 

Exercise 3. Show that the operator 

p:W,,(k)➔W,,(kl, pa=Fa-a, 

i.-, a homomorphism with cyclil: kernel p,, of order p". Di�cu�� the corre�ponding 

Kummer theory for the abelian extension� of exponent p''. 
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Exercise 4. Let G he a profinite group and A a rnntinuou� G-module. Put 

H1(G. A)= Z1(G.A)/B\G, A), 

where Z1(G, A) con�ists; of all contmuom; 

dis;crctc topology on A) such that 

al! functions ot the fom1 

�uhgroup of G, then one  an exact sc4uence 
 

 

Exercise 5. Show that 

the open normal subgroups 

Exercise 6. If I ---+ A ---+ B ---+ C ---+ 1 is an exact �equcnce of c::ontinuous 

G-modulc�. then one has an exact sequence 

I---+ A(;---+ B'·'---+ Cu---+ H1(G,A)---+H1(G,B) ➔ H1(G,C). 

 

Remark: The 1/ 1 ( G, A) i� only the tirs;t term of a whole �cries; of group� 

H'(G. A).1 =  ., which arc the ohjccb of group cohomolog_v {see 1145]). 
Class field theory can al�o be built upon this theory (�ee 11OJ, 11 08 jl. 

Exercise 7. Even for infinite Galois exten�ion� L IK, one ha� Hilbert\ theorem 90: 

!l1(G(LIK)./.*) = l 

Exercise 8. If n is not divisible by the characteristic of the field K and 1f fln denotes 

the group of n-lh roots of unity in the �cparabk clowre K. then 

fl1(GK.µ/J) � K'/K*". 
 
 

 

 

§ 4. Abstract Valuation Theory 

 
The further development will now be based on a 1ixed choice of a 

surjective continuous homomorphism 

d: G-----+ i 

from the profinite group G omo the procyclic group :Z = 0n Z/nZ (see 

§2, example 4). Thi� homomorphism will produce a theory which i� an 

abstract reflection of the ramification theory of p-adic number ticlds. Indeed, 

in the ea,;e where G is the absolute Galois group G� = G(klk) of a p-adic 

number field k, such a wrjectivc homomorphbm d : G ----+ Z arises via tbe 

maximal unramilled extension klk:  i,; the residue class field of k. then, 

by chap. II, §9. p. 173 and example 5 in   we have canonical isomorphi�ms 

G(klkl ;, GiW,W,);, ?' 

: G---+ A 
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I E i the Frobenius automorphi5m 

 

a'P = a'1 mod p for a E l"ri, 

where(), re�p. p, denote the valuation ring of k, resp. its maximal ideal. The 

homomorphi&m d : G ---+ S; in question i5 then given, in this concrete ca�e. 

as the compo5ite 

 

 
In the abstract situation, the initial choice of a surjective homomorphism 

d : G ---+ 2 mimics the p-adic case, but the applications of the theory are by 

no means confined to IJ-adic number field5. The kernel / has a certain 

fixed field klk, and d induces an i�omorphism G(klk) � 

More generally, for any field K we denote by / K the kernel of the 

restriction d: GK---+ i, and call it the inertia group over K. Since 

fK=GKnl=GKnGr=GK[, 

the fixed field K of I K i� the composite 

K �Kk. 

We call ilK  the maximal unramified extension of K. We put 

(K �(Zcd(GKl).  'K �(I c/K) 

and obtain, when fK i5 finite, a surjective homomorphbm 

I � 
dK = -d:GK ------- +Z 

!K 

with kernel / K, and an irnmorphism 

dK: G(iZIK) .....::::...+ i. 

 

(4.1) Definition. The element ({!K E G('f<IK) such that dd({!K) = I is 

called the Frobenius over K. 

 

For a field extcn&ion LI K we define the inertia degree .hw  and the 

ramification index n IK by 

fi.1K = (d(GK): d(Gd) and l'LiK =UK: /i). 

For a tower of field� K £;; L £;; M thi& definition obviou�ly implies that 

f"1v1,K = .h1K fM1L and e,'vliK = Cf IK eMIL. 
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(4.2) Proposition. For every extension LIK we have the "fund,imcntal 
identity" 

[L: K J = /L1K CLIK - 

 

Proof: The exact commutative diagram 

I-----+ IL ----+ Gt.-------)' d(GL) ------* I 

 

 

immediately yield<;, if LIK is Galob, the exact sequence 

I----; h/lL----; G(LIK)----; d(GK)/d(G1)----; I 

If LIK is not Galois, we pass to a Galois extension MIK containing L, and 

get the result from the above transitivity rules fore and f. □ 
 

LIK b called unramified if e,.,K = I, i.e., if L <;; i. LIK  is called 

totally ramified if fLIK = I, i.e., if L n K = K. In the unramified case, we 

have the :;.urjective homomorphism 

G(KIK) - G(LIK) 

and, if fK < oo, we call the image <fJLIK of(f)K the Frobenius automorphism 

of LIK. 

For an arbitrary extem,ion LIK one has 

l �LK. 

since Li = LKk = Lk = L, and L n flK is the maximal unrami!ICd 

subexlcnsion of LI K. It clearly has degree 

hiK�fLnK,Kl. 

Equally obvious is the 

 

(4.3) Proposition. If fK and fr are finite, then h1K = .fL/fK, and we 

have the commutative diagram 

GL   d, , Z 

1 lb 

GK � i 
 

In p:lflicular, one has ({)f. lR = 



§4. Abstract Valua!1on Theory 287 

 

The Frobenius automorphism governs the entire class field theory like 

a king. It is therefore mo&l remarkable that in lhe case of a finite Galois 

extension LI K, every a E G (LI K) becomes a Frobenius automorphism once 

it is manceuvered into the right position. This is achieved in the following 

manner. For what follows, let us assume systematically that Ji< < oo. 

We pas:;, from the Galois extension LIK to the extension LIK and consider 

in lhe Galois group G(LIK) lhe semigroup 

Frnb(LIK) � { a E G(LIK) I dK(a) EN}. 

Observe here that dK : GK ------+ Z factorizes through G(LIK) because 

Gr. = h c;h ; recall also that O f/:. N. Firstly. we have the 

 

 

(4.4) Proposition. For a finite Galois extemion LI K the mapping 

Frob(T.IK)------+ G(LIK), a 1------+ alt, 

i.  � surjective. 

 

 

Proof: Let a E G(LIK) and let rp E G(T.IK) be an element such that 

th(rp) = I. Then 'PIK = ((!K and rplLnR = 'Pu,RiK· Restricting a to the 

maximal unramified subexten:;.ion L n KI K, it becomes a power of the 

Frobenius automorphism, aluiR = rp�1
.niiK' so we may choose n in N. As 

L = LK, we have 

G(LIK) ""G(LIL n K). 

If now r E G(lli<) is mapped to arp n IL under this isomorphism, then 

if= is an element satbfying iJlr. = rrpnlL = arp-11rpnll = a and 

a IR=  Hence dK(ii) = 11, and so a E Frob(llK). □ 
 

 
Thus every element a E G(LIK) may be lifted to an clement 

a E Frob(Z IK ). The following proposition :;.hows that this lifting, com,idered 

over its fixed field, is actually the Frobcnius automorphism. 

 

 

(4.5) Proposition. Let ii E Frob(ZJK), and let E be the fixed field of a-. 
Then we h:we: 

(i) fr1K=dK(O), (ii) fE:KJ<oo, (iii)  f=L, (iv) 0='/JE· 
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Proof: (i) J: n K i<; the fixed field of a IR = so that 

fr1K = IE n K: K1 = dK(O). 

 

(ii) One ha1- K <;;:;EK= E <;;:; L: thus 

<'EIK = (h: Ir)= #G(EiK) ::= #G(il'i) 

is finite. Therefore [L: K] = friKCEiK is finite as well. 

(iii) The canonical surjcction I'= G(LIE)----+ G(flE) � Z has to he 

bijective. For 1-incc r = {a1 is procyclic. one finds (I' : n for every 
n E N (1-ee § 2. Thus the induced maps I'/ I'11 

�  bijective 

and 1-0 is r----+  But G(LIE) = G(EIE) implies that = 

(iv) fr1Kdr;(O") = {h(O) = fEIK; thu1- dr(O) = I, and so a= rp1,·.  □ 

 

Let us illustrate the <;ituation described in the last propo1-ition by a diagram, 

which one should keep in mind for the sequel. 
 

 
All the preceding discu1-sion5 arose entirely from the initial datum of the 

homomorphism d : G ----+ Z. We now add to the data a multiplicative G­ 
module A, which we equip with a homomorphism that i1- to play the role of 

a henselian valuation. 

 

(4.6) Definition. A henselian valuation of A� with re,._pec/ to d: G----+ Z is 
a homomorphism 

V: Ak---+ i 
.�atisfying the following properties: 

(i) v(Ad = Z 2 Zand Z/nZ � Z/n?l for all II EN, 

(ii) v(N Kl�AK) = .fK Z for all finite extem,ion� K lk. 

 

Exactly like the original homomorphi"m d : G1. ----+ i, the henselian 

valuation v : Ak ➔  2 has the property of reproducing itself over every finite 

extension K of k. 
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(4.7) Proposition. For every field K wl1ich is finite over k, the formula 

I 
VK = ----;--voNKlk: AK------+ L 

!K 

defines a �urjective homomorphism satisfying the following propertie�: 

(i) VK = l'K� oa fora/la E G. 

(ii) For every finite extemion LI K, one has the commutative diagram 

AL � z 

1 lh" 
AK �zVK - 

 
 

 

Proof: (i) If T run:- through a sy�tem of representatives of G�/GK, then 

a-1ra <;weep� acros� a system of representatives of Uda-1GKa = 
G�/GKa• Hence we have, fora E AK, 

 

VK-(a")� _l_v(TTaaa-'w) � _l_v((TTa')") � _l_v(NK ,(a)) 
/Ka  r JK r /K 

= VK(U). 

 

(ii) For a E AL one has: 

I I 
ft.1KvL(a) = fL K y;_v(NL1!Ca)) = y;i,(NK dN,.1da))} 

= vK(NL1da)) D 
 

 

(4.8) Definition. A prime element of AK is an element HK E AK .�uch th:it 

VK(1TK) =I.We put 
 

 

 

For an unramilicd exlension LI K, that is, an extension such that 

fL K =IL: K],we have from (4.7), (ii) that VLIAK = VK, In particular. a 

prime clement of AK is itself also a prime element of AL, If on the other 

hand, LIK is totally ramified, i.e., fLIK = I, and if 1TL ha prime clement 

of AL, then 1TK = N,.1K(rr,) is a prime element of AK, 
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Exercise I. Assume that every closed abelian suhgroup of G is procyclic Let K lk 
be a fimte extension. A microprime p of K is by definition a conJugacy da�� 

\u) � GK of some Frobenius element u E Frob(klK) which i� not a proper power 

um, 11 > 1, of some other Froheniu� element a' E Frob([ IK ). Let �pc<.:(K) he the 

set of a!l microprimes of K. Show that 1f LIK is a finite extension, then there i� a 

canonical mapping 

:r: spee(L) ➔ �rec(K). 

Ahove any m1cropnmc p there are only finitely many mieroprime\ � of L. i.e., the 

set JT-
1(p) is finite. We write �IP to mean� E Jr 

1(p). 

Exercise 2. For a finite exten�ion LIK and a mieropnmc �IP of L, let 

h.11p = d(�)/d(p). Show that 

 

 

Exercise 3. For an infinite exten�ion L IK, let 

�ree(L) = 1i._t!! �pee(L..,), 

 

L"IK vane� over the finite subextensions of L]K. Whal are the m1eroprime� 

 

Exercise 4. Show that 1f LIK i� Galoi�. then the Galoi� group G([,IK) operate� 

tran�it1vely on spce(L). The "decomposition group" 

G,:µ(LIK) = (a E G(LIK) IW = �I 

and if z13= L(.,,pi/lKI is the "dc<.:0mpo�1tion field'" of� E �pec(L), then 

is unramified. 
 
 

 

§ 5. The Reciprocity Map 

 
Continuing with the nolation of the previous section, we consider again a 

profinite group G, a continuous G -module A, and a pair of homomorphisms 

d: G --+ Z, V: A1- --+ z. 
such that d is continuous and surjeclivc and v is a henselian valuation with 

respect to d. In the following we introduce the convention that the letter K, 

whenever it occurs without embellishment� or commentary to the contrary, will 

alway� denote a field offinite degree over k. We furthermore impose the 

following axiomatic condition, which will be systematically a%umed in lhc  

sequel. 

 

(5.1) Axiom. For every unrnmitied finite extension LIK one has 

H'(G(LIK),U,)�1 foe ;�o,-1, 
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  1 , and we find that 
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For an infinite extension LI K we set 

NL1KAL = nNM1KAM, 

M 

with MI K varying over the finite suhextensions of LI K. 

 
Our goal is to define a canonical homomorphism 

rt,1K : G(LIK)-----+ AK /NLIK At, 

for every finite Galois extension LI K. To this end, we pass from /, IK to the 

extension l IK and define first a mapping on the semigroup 

Frnb(L[K) � { a E G(L[K) I dK(a) EN}. 

 

(5.2) Definition. The reciprocity map 

r[iK: Frob(LIK)-----+ AK/N[1KA[ 

i1, defined by 

where E i1, the fixed field of a and 7rE E AE is ,1 prime element. 

 
Observe that E is of finite degree over K by (4.5), and a becomes the 

Frobenius automorphism 'PE over E. The definition of rl
1

K(a) does not 

depend on the choice of the clement 7rE, For another one differs from 7rE 

only by an element u E Ur;, and for this we have Nr;IK(u.) E N[
1

KA[, 

so that Nr:1K(u.) E NM1KAM for every finite Galois suhextension MIK 

of l1K. To see this, we may dearly m,sume that E � M. Applying (5.1) to 

the unramificd extension MIE, one find1, u. = NM1r:(t:), 1::· E U1,1, and thus 

Nr:1du) = Nr:1K(NM1r:(e)) = NM1df') E NMiKAM. 

Next we want to show that the reciprocity map 111K is multiplicative. To do 

this, we con�iderfor every a E G(LIK) and every n E N the endomorphisms 

a f-----;- 0cr-l = 0cr/a, 

 

a f-----;- acr" = TT acr' 

J=O 

In fonnal notation, this gives an = :•� 1 

(a - 1) :Jan= an o (a - l) = a11 - I 

Now we introduce the homomorphism 

N = Nr.1K.: Ar. -----+ AK 

and prove two lemmas for it. 



292 Chapter IV. Abstract Cla�s Field Theory 

 

(5.3) Lemma. Let 'P, a E Frob(LI K) with dK (({)) = I, dK(a) = n. If E is 

the fixed field of a and a E Ar, then 
 

 

Proof: The maximal unramified subextension E0 = EnK IK is of degree 11, 

and its Galois group G(E01K) j5 generated by the Frobenius automorphi<;m 

if!ro1K = if!Kl1::11 = 'PIKlrn ='Piro.Consequently, = lf)nlAro· On 

the other hand, one has EK = l and E n K =   and therefore 

N EIE11 =NIA,,- For a E Ar we thus get 

N:r:1da) = Nrn,K(Nr1E11(a)) = N(a)<P" = N(a<P"). 

The Ja,;t equation follows from tpG ('i I K) = G CLIR )ip. □ 
 

The subgroup 

fonnu'1,uE 

N = NL1R: Ur --- + 

which is generated by all elements of the 

N: Ho(G(liK).Vr) ------ + UR 

on the quotient group Ho(G(lli<). Ur) = ULf /G(liRiU[- For this group, we 

have the following lemma. 

 

 
(5.4) Lemma. lfx E H0(G(lli<), U[) is fixed by an element ,;p E G(LIK) 

such rhatdK(<{') = I, i.e.,.t'f" =x, then 
 

 

Proof: Let x = u mod /G(TiKiU[, with ,li,o-l = I, sothat 

 

(*) u<P 1 = hu�'-
1

.  u1 EU[, r, EG(Lli). 
l=I 

 

Let MI K be a finite Galois subcxtension of LIK. In order to prove that 

N(u) E NM'KUM, we may assume that u.u, E UM and L � M. Let 

n = [M : K ]. a = ipn and let E 2 M be the fixed Held of a. Further, 

let E11IL be the unramified extension of degree n. i.e.. the fixed field of 

a" =({)'};,By (5.1), we can then find element5 {i, il1 E UE,, such that 
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By (*), the element� [ilf-I and TT, ii�- ' I only differ by an element X E U r/1 

such that  = I. Hence - again by (5.1) - they differ by an element 

of the form with _y E Ur • We may thus write 

[i'P-1= y<t''-1 nu r1 l=  (y'f")<p-1 TTfi r,-I 

1 1 

' ' 
Applying N gives N(ii)'f'-I = N(_)''l'11)'f-l, so that 

N(ii)=N(_y<P/1) z, 

for �ome :: E UR such that ;:<P 1 = I; therefore = ::. and z E UK. Finally, 

applying a,. and putting y = Y"" = Nr,,1EU) E UE, we obtain, ob5crving 
n =IM: Kland using (5.3), that 

N(u) = N(ii)"" = N(.V'l'11)""z"11 = N(y<P11
):::" 

= NE1K(y)Nl,f1K(z) E NM1KVM, □ 
 

 

(5.5) Proposition. The reciprocity map 

rLIK: Frob(LIK)----+ AK/NLwAL 

is multiplicative. 

 

Proof: Let a1a2 = a3 be an equation in Frob(LIK), n, = dK(a,), L, the 

fixed field of a1 and rr, E AL, a prime c\cmcnl. for i = I. 2. 3. We have to 

show that 

Nr11K(rri)NE21K(rr2) = NE,1K(rr3) mod Nl1KA[. 

Choo5c a fixed 'PE G(LIK) such that dK((f)) = I and put 

r, = a,--1
(/)

11
' E G(LIR). 

From a1a2 = a3 and 111 + n2 = 113, we then deduce that 

 

Putting a4 = 
and r4 = 

 

/14 = dK(o-4) = n1, l::4 = E(
12 

r, = r2r-1 and 

 

, 1T4 = 
2 

n{' E 

 
AE4 

 

 
We may therefore pass to the congruence 
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the proof of 

Nr,1K(rr,) = 

 

uses the identity T1 = r2r--1. From (5.3), we have 

Thus, if we put 

 

 

then the congruence amounts simply to the relation N(u) E N[1KA[, For 

this, however. lemma (5.4) gives us all that we need. 

Since if!n, o (tp - l) = i:pn, - I and rr;,'
11

' 1 = rriT' 
1 

'-I= rr,r,-l, we have 
 

From the identity T1 = T2T4, it follow5 that (T3 - I)+ (I - T2) + (I - T4) = 
( I - T2)( I - T--1)- Putting now 

 

 

we obtain 

 

 

 

u'f'-1 = Iiu;•-1. 

1=2 

u, E Ur,, 

For the element x = u mod lu(LIR)Ul E Ho(G(lli<). Ur), this mcam that 

x'P-1 = I, and so x<P = x; then by (5.4), we do get N(u) = N(x) E 

 

 

 

From the surjectivity of the mapping 

 

Frob(i:IK) -  G(LIK) 

and the fact that NrwAL s; NL1KAL, WC now have the 

 

 

(5.6) Proposition. For every Jinitc Galois extension LI K, there is a 

canonical homomorphism 
 

given by 

rL1K(u) = N1:1drrr) mod Ni iK At, 



where Eis the fixed field ofa preimage a- E Frob([jK) ofa E G(L IK) mid 

rrr E Ar is a prime element. It is called the reciprocity homomorphism 

ofLIK. 
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Proof: We first show thal the definition of r1. K(a) is independent of the 

choice of the preimage a E Frob(L IK) of a. For thi�. let a-' E Frob(L I K) 

be another preimage, L' its fixed field and 7rl."' E Az· a prime clement. 

lfdK(fi) = dK(61
), lhen &IK = &'IK and Ult.= &'IL, so that fr=  51

, 

and there is nothing to show. However, if we have, say, dK(ff) < 

then a-'= &f for some f E Frob(LIK), and flL = I. The lixed field 

off contain� L, so  = N:r;,,1K(nz•,) = I mod NLIK AL. It follow� 

therefore that = rl1K(6)r[1K(f) = rz:1K(&). 

The fact that the mappi� is a homomorphism now follow� directly 
from (5.5): if 51.52 E Frob(LIK) are preimages of a1,a2 E G(LIK), then 

ffi = ff1ff2 is a preimage of o-_i = a1a2. □ 

 

The definition of the reciprocity map cxprcssc� the fundamental principle 

of clas� field theory to the effect that Frobenius automorphisms correspond 

to prime clements: the element er= r.p:r; E GilL) is map_ped to lfl." E Ar; 

for reasons of functoriality, the inclusion G (LIL) '--+ G (LI K) corresponds 

to the norm map Nr1K: A:r;-----+ AK, So the definition of rL1K(cr) is already 

forced upon us by these requirements. This principle appears at its purest in 

the 

 

(5.7) Proposition. If LjK i.� an unramified extension, /hen the reciprocity 

map 

 
is given by 

 
and is an isomorphism. 

 

Proof: In this case one has l =Kand 'PK E G(i<IK) b a prcimage of 

'PLIK with fixed field K, i.e., l"L1K('Pt.1K) = lfK mod NL1KAL- The fact that 

we have an isomorphism is seen from the composite 

G(LIK)------,)- AK/NL1KAL------,)- Z/nZ � 'll./n'll., 

with n = [/, : K], where the �econd map is induced hy the valuation 

VK : AK -----+ Z because '.;; nZ. ll is an isomorphism, for 

if VK(a) = 0 mod nZ. then a=  and 5incc u = NLIK(t,) for �ome 

FE UL, by (5.1), we flnd a=   = I mod N,_1KAJ.. On the side of 

the homomorphisms, the generators 'PL K, nK mo<l NLIK AL. and I mod nZ 

correspond to each other, and everything is proved. D 

 

The reciprocity homomorphism rt.lK exhibits the following functorial 

behaviour. 
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(5.8) Proposition. Let LIK and L'IK' be finite Galois extensions. so that 

Kc; K' andL c; L'.andlcta E G. Then wchavethecommutativediagrams 
 

G(LIK) � AK/NL1KAL G(L"IK/J) � AK"/NU'IKaAL0 

 
where the vertical arrow.<, on the left are given by a' r+ a'IL, resp. by the 

conjugation r r+ a 
1
ra. 

 
Proof: Let a' E G(L'IK') and a= a'IL E G(LIK). If a' E Frob(l'IK') 

is a preimage of a'. then a= O'I[ E Frob(LIK) i<; a preimage of a such 

that dK(rl) = fr,  E N. Let E' be the fixed field of 8-1
• Then 

E = E' n L � .E' n the lixed field of a- and h:'1r = I. If now 

rrp E Ar· i!> a prime element of E', then rrr = Nru;(rrr) E Ar: is a 

prime elemenl of E. The commutativity of the diagram on the left therefore 

follows from the equality of nonns 

Nr1K(rrx;) = Nr1K(N.r,1r(rrx;•)) = Nx;•w(rrr,) = NK'!K(NE'!K'(rrp)) 

On the other hand, let r E G(LIK), and let f be a preimage in Frob(i:'IK) 

with fixed field E, and f E G a lifting of f to k. Then E0 is the fixed 

field of a-1fal[", and ifrr E Arb a prime element of E, then rr" E Ap 

i� a prime elemenl of E/J. The commutativity of the diagram on the right 

therefore follows from the equality of norms 

□ 

 
Another very interesting funetorial property of the reciprocity map is obtained 

via the transfer (Verlaw'rtin[; in Gennan). For an arbitrary group G, let G' 

denote the commutator <;ubgroup and write 
 

for the maximal abelian quotient group. If then H c; G b a subgroup of 

finite index, we have a canonical homomorphism 

Ver: cah-----+ H"", 
 

which is called transfer from G to 1-1. This homomorphi�m is defined as 

follow<; (see [751, chap. IV,� I). 
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Let R be a system of representative:- for the left cosets of H in G, 

G = RH, l ER. lfa E G we write, for every p ER. 

ap = p'ap.  ap EH.  p' ER, 

and we define  

Ver(a mod C') = fl ap mod H'. 
p<c'R 

Another description of the transfer results from the double co5ct dccompo�i- 

tion 

G � LJ(a)rH 

 
of G in terms of the subgroups (a) and H. Letting /(r) denote the smallest 

natural number �uch that aT = r-1af{rlr E H, one has H n(r-1ar) = (err), 
and we find that 

Ver(a mod G') = fl aT mod H'. 

 

This formula is obtained from the one above by choo�ing for R the set 

{a1r Ii= L  , /(r)}. Applying this to the reciprocity homomorphism 

rLIK: G(LIKf't,------+ AK/NL1KA1 

we get the 

 

(5.9) Proposition. Let LIK be a finite Galois extension and K' an 

intermediate field. Then we have the commutative di;_igrnm 

 

G(LIK'ft, � AK1/Nt,1K1AL 

 
 

 

G(LIK)"/, � AK/NLIKAL, 

 
where the arrow on the right is induced by inclw,ion. 

 

Proof: Let us write temporarily G = G(LIK) and H = G(LIK'). Let 

a E G(LIK). and let O be a prcimage in Frob(Z'IK) with fixed field E 

and S = G(LIE) = 0). We con<,ider the double coset decomposition 

G = LJSrH and put ST=  r-1sr n Hand 8-r = r-1a,t(rlr asabove. Let 
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and therefore 

Ver( a mod G(LIK)
1
) =9 ar mod G(LIK')' 

 

For every r. let w, vary over a sy�tem of right co:-.ct representatives of H /S,. 

Then one has 

and G = 
 

Let Er be the fixed field of a-,, i.e., the fixed field of S,. rr is the fixed 

field of r-
1
ur so that Er IE' is the unramified subextension of degree f(r) 

in /,IE'. If now n E A_r is a prime element of E, then :rr' E Azr fr, a 

prime element of .E', and thus also of .E,. In view of the above double cosct 

decomposition, we therefore find 

Nc:1K(rr) � }J,,,,w, � 9(D(rr')'"') �9 Nr,1K'(rr'). 

 

and since a, E Froh(Z'IK') is a preimage of a, E G(L IK'), it follows that 

rL1da) = nrLIK'(a,) =r1IK'(f1a,) =r1 !K'(Yer(a mod G(LIK)')). 

' ' D 

 

 

 
Exerci<,e 1. Let /. I K he ahelian and totally ramified. and let JT be a prime ck:mcnt 

of AL. If then a E G(LIK) and 

 

with y E: Ur., then 
[122], chap. XIII, 

 

= N(y) mod N11KA1, where N = NrR (B.D1toRK, �ee 

Exercise 2. Generalue the theory developed so far m the following way. Let P he 

a set of prime number� and let G be a pru-P-group, i.e., a protinite group allot who�e

 G/ N by open normal subgroup� N have order divisible onl) by 

prnne� P 

Let d: Ci ---+ Zp be a surJective humumorphi\m onto 

and let A be a G -module. A henselian P-\-aluation wllh 

a homomorphi\m 

 

which sati�lie� the fullowmg propenie\: 

=Z2Zand 

only by primes in 

� Zjr(,£ for all natural number� n which are 

(ii) t·(NrnAA·l = {KL fur all finite extemiom Klk, where fK = {d(G): d(G� )). 
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Exercise 3. Lee d : G ----+ Z be a homomorphi�m. A a G-modulc which 

\ati�fie� axiom (5.1 ), and let v Ai. ----+  be a hen�elian valua!10n with rc�pcct to d. 

Let K lk be a finite exten�ion and let �pec(K) be the �et of microprimes of K 

(�cc §4. exercise 1-5). Define a canonical mapping 

rK :spec(K)----+ AK/N-iKA(, 

and �how !ha!, for a finite extension, the diagram 
 

�pec(L) � Ai: 

 

commutes. Show furthermore that, for every finite Galm� exten�ion LI K, rK induce� 
the reciprocity isomorphism 

l"LIK: G(LIK)----+ AK/NLIKAL. 

Hint: Let tp E GK he an element such that dK(tp) EN. Let E he the fixed field ot 

<p and 
 

 
where and where the projective 

limit 1� with re�pect to the norm maps ----+ AK.,· Then there is a 

�urjectivc homomorphism t•r: Ar----+ Zand a honmmocpl,i,mNr1K: Ar----+ AK. 
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We now impose on the continuous G -module A the following condition. 

 

(6.1) Class Field Axiom. For every cyclic extension LI K one has 

#H'(G(LIKi,Ai,) �/IL: KJ  foci �o, 
1 fori = -I 

 
Among the cyclic cxtcrn,iom, there arc in particular the unramilicd ones. 

For them the above condition amount-- precisely to requiring axiom (5.1), so that 

one has 

 

(6.2) Proposition. For a finite unramified extension L IK, one has 
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Proof: Since LIK is unramified, a prime element JCK of AK is also a 

prime element of AL, As 11-1(G(LIK),  = I, every element u E UL 

such that NL1K(u) = I is of the fonn u =   with a EAL, a= 'PLiK· 

So writing a = F E U 1., we obtain u = err- I. This shows that 

H-'(G(LIKJ.U, I� 

On the other hand, the homomorphism VK : AK --+ Z gives rise to a 

homomorphi&m 

VK: AK/Nt1KAL------+ Z/nZ =Z/n'JI.., 

where n =fl: K =]  hiK, beeau5e vK(NL,KArJ = hwZ = nZ. This 

homomorphi&m is 5urjective as VK(TCK mod NLIK AL) = I mod nZ, and it i& 

bijective as #AK /Nl IK At = n. If now u E UK, then we have ti = NLIK (a), 

with a EAL, since vK(u) = 0. But O = VK(U) = VK(N1 w(a)) = nvt.(a). 

t-.o we get in fact a EU L· This proves that H0(G(L IK). UL)= I. D 

 

By definition. a class field theory is a pair of homomorphi�ms 

( d : C --+ Z, V : A --+ Z)' 

where A is a G-module which &ati5tics axiom (6.1). d is a surjective continuout-

. homomorphism. and v is a henselian valuation. From proposition (6.2) and �5. 

we obtain for every finite Galob cxtcmion L IK, the reciprocity homomorphism 

rLiK: G(LIK)"h------+ AK/N1_wAL 

But the class field axiom yields moreover the following theorem, ½hich 

represents the main theorem of clat-.t-. field theory, and which we will call the 

general reciprocitJ' law. 

 

(6.3) Theorem. For every finite Galois extemion LI K, the homomorphism 

r, 1K : G(LIK)""------+ AK /NLIK AL 

is an isomorphism. 

 

Proof: If MIK j5 a Galois suhextension of LIK, we get from (5.8) the 

commutative exact diagram 

I---+ G(LIMJ � G(LIKI � G(MIKI � I 
 

 
We use this diagram to make three reduction._, 



§ 6. The General Reciprocity La½ 301 

 

 

First redu('fion. We may assume that G(LIK) is abelian. For if the 

theorem is proved in thi" ca�e. then, putting M = L'1h the maximal 

abclian subextension of LIK, we find G(LIK)''h = G(MIK), and the 

commutator subgroup G(LIM) of G(LIK) is precisely the kernel of r,.1K, 

i.e., G(LIK)ah ➔ AK/NL1KAL is injective. The surjectivity follows by 

induction on the degree. Indeed, in the case where G(LIK) i'> solvable, 

one has either M = L or [L : M] < [/. : K], and if l"MiK and rLIM are 

�urjective, then so is  In the general ca'-e, let M be the fixed field of a 

p-Sylow subgroup. need not be Galois, hut we may use the left part 

of the diagram, where r, IM is surjcctivc. It then suffices to show that the 

image of NMIK i� the p-Sylow subgroup Sp of AK /N1.1K AL. That thi°' holds 

true for all p amounts to saying that l'LIK is surjective. Now the inclusion 

AK s; AM induces a homomorphism 

i: AK/Nt.,KAL------+ Aw/NL1MA1.. 

 

such that NMIK u i = [M : K]. As ([M : K], p) = I, S1, � Sf! b 

,;,urjcctive, sos,, lies in the image of NMIK, and therefore of l"LIK· 

 
Scwnd reduction. We may assume that LIK is cyclic. For if MIK varies 

over all cyclic subcxtensions of LI K, then the diagram shows that the kernel 

of r,.1K lies in the kernel of the map G(l.lK) ➔ TT,w G(MIK). Since 

G(L IK) is abelian. thi<, map is injective and hence the �ame is true of rLIK. 

Choo�ing a proper cyclic subcxtcnsion MIK of L IK, '-Urjcctivity follows by 

induction on the degree as in the first reduction for solvable extensions. 

 
Third reduction. Let LIK be cyclic. We may asrnme that hiK = I. To 

sec this, let M = L n K be the maximal unramified subextcnsion of LIK. 

Then hiM = I and rMIK is an isomorphism by (5.7). In the bottom 

sequence of our diagram, the map NMIK b injective because the group� 

in this sequence have the re�pective orders [L : MJ, [L : Kl, fM : K J by 

axiom (6.1). Therefore rLIK i'> an isomorphism if l"LIM i<,. 

 

Now let LIK be cyclic and totally ramified, i.e., hw =I.Let a be a 

generator of G(L IK). We view er via the isomorphim1 G(L IK) � G (L If<) 

as an clement of G(Z'li<), and obtain the element if= at.pL E Frob(LIK). 

which i� a preimage ofa E G(l.lK) wch thatdK(O") = dK(t.pL) = .hl§ = I. 
Wethu,;, find for the fixed field EIK ofa- that friK = !,and so EnK = K. 

Let MIK be a finite Galois subextension of LIK containing E and L, let 

M0 = M n K be the maximal unramified subextension of MI K, and put 

N = NM1Mo- As f2,1K = .hw =I.one finds N IA.r = NE1K, N l,11 = NLIK 

(sec the proof of (5.3)). 



, 
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For the injectivity of rLIK, we have to prove this: if rLIK(ak) = I, where 

0 :S k < n = [L : Kl, then k = 0. 

In order to do this, let ITJ; E Ar:, ITL E AL be prime elements. Since 

.E.L <;; M, rr1: and ITL are both prime elements of M. Putting rri = urrf,, 

u E UM, we obtain 

rLIK (ak) a= N(rri) a= N(u) N(rrf) a= N(u) mod NLIK AL. 

 
From r,_1K(aA) = I, it thus follows that N(u) = N(v) forsome v E {h, so 

that N(u-1v) =I.From axiom (6.1), we may write u-1v = a0
-
1 forsome 

a E Aw, and find in AM the equation 

(rrft'),,.-1 = (nfv)"-1 = (rriu-lv)"-1 = (acr-1)"-1 = (ati-l)"r-1 _ 

and so x = nfi•a1_:, E 

imply that one has k = 

follows from (6.1). 

 

Now vMo(x) E Zand n1•Mo(x) = 11M(X) = k 
and so rLIK is injective. The surjectivity then 

□ 

 
TheinverseofthemappingrLIK :G(LIK)""---+ AK/NLIKAL gives.for 

every finite Galois extension LI K, a surjective homomorphism 
 

with kernel Nt,IK At,• This map is called the norm residue symbol of L IK. 

From (5.8) and (5.9) we have the 

 

(6.4) Proposition. Let LIK and L'IK' be finite Galoi.� extensions .�uch that 

K <;; KI 

and L <;; L1 

and let a E G. Then we have the commutative diagram8 

 AK� ( .LiKl  G(LIKt" 

1 1 
AK � G(LIK)ah, 

C1 1 c' 

AK"  �G(LrTIKrT)"". 

 

and if K' <;; L, we have the commutative diagram 

 



r 
AK' � G(LIKf" 

 
Iv« 

AK � G(l.lK)"". 
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The definition of the nonn residue symbol automatically extends to 

infinite Galois extensions LI K. For if L; I K varies over the finite Galois 

subextensions, then 

(see §2, exercise 6). Af, (a,L1,1K)l1,il! = (a,L1IK) for L1, 2 L,, the 

individual norm residue symbols (a. L1 IK), a E AK, determine an element 

(a,LIK) E G(LIKJ"", 

In the special case of the extem,ion KI K, we find the following intimate 

connection between the maps dK, VK, and ( , i<IK). 

 

(6.5) Proposition. One has 

(a,KIK)=<p/(a), andthus dKo( ,KIK)=VK. 

 

Proof: Let LIK be the subextension of RIK of degree f. As Z/f"Z = 
Z/fZ, we have 1JK(a) = n +  with n E Z, z E Z; that is, a= un;ht, 
with u E UK, h E AK. From we obtain 

(a, RIK)IL = (a,LIK) = (nK, LIK)n(h, LIK)1 = <f!2iK = 'P?(a) IL. 

Thmwe must have (a, i<IK) = 'P?fol_ □ 

 

The main goal of field theory is to classify all algebraic extensions of 

a given field K. The law governing the constitution of extension& of K is 

hidden in the inner �tructure of the base field K itself, and should therefore 

be expres5cd in terms of entitief, directly associated with it. Class field theory 

wives this problem as far as the abelian exten&ions of K arc concerned. 

It establishes a I - I-correspondence between these extensions and certain 

subgroups of AK. More precisely, this b done as follows. 

For every field K, we equip the group AK with a topology by declaring 

the co&etf, aNL:K AL to be a basis of neighbourhoods of a E AK , where L IK 

varie<, over all finite Galois extensions of K. We call this topology the norm 

topology of AK. 

 

(6.6) Proposition. (i) The open subgroups of AK are precisely /he clo8ed 

rnhgroups of finite index. 

(ii) The valuation VK : AK ---+ Z is continuous. 



* 
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(iii) lfLIK i!> a finite extension, then Nr.1K: AL➔ AK is continuous. 

(iv) AK i!> Hausdorff if and only if the group 

A1=nNLiKAL 
L 

of universal norms is trivial. 

 

Proof: (i) If},/ is a subgroup of AK, then 

/\[=AK-.... 

 

Now, iLV i5 open, so are all cosets u).,./, so that .,Vis closed, and since ;V has 

to contain one of the neighbourhoods NLIK AL of the ba:-b of neighbourhood:;, 

of I, ./I./ is also of finite index. If, conversely, .A! is closed and of finite index, 

then the union of the finitely many cosets a}./ #- }\/ is closed, and so }./ 

is open. 

(ii) The group5 JZ, f E N, form a ba:,,is of neighbourhoods of O E Z 
(�ee 2), and if LI K is the unramified extension of degree f", then it follow� 

from (4.7) that 

 

which shows the continuity of VK. 

(iii) Let Nrw,K AM be an open neighbourhood of I E AK. Then 

N1.1K<NML1LAMr) = NttLIK AM[. s; N.wwAM, 

which :-:.hows the continuity of N, iK. 

(iv) b self-evident. □ 
 

The finite abelian extension:,, LI K are now classified a5 follow:,,. 

 

(6.7) Theorem. A.�sociating 

L 1----➔ .Vt.= NLIK AL 

set.� up a 1-1-corre!>pondence between the finite abe/ian extension.� LI K and 

the open subgroup!>· JV of AK. Furthcmwre, one has 

L1                          s; L2   {::::::::};Vt.1  2.NL-:.,    A'1.1L2   =;'-h  n  }./,. •                        JVL  ~L-:.=;V1. /'./1. •  

 

The field L cmTe:c.ponding to the :,,ubgroup },/ of AK is called the class 

field associated with .,V. By (6.3), it satisfie:,, 

G(LIK) "AK/N. 



1 

1 

fl6. The General Ret:iprocity Law 305 

Proof of (6.7): If LI and L2 are ahelian extensions of K. then the transitivity 

of the norm implies}\/,.1L2 <;;:; .NL1 n}/L-::.· If, conversely, a E N,.1 n/VL2, then 
the element (a, L1L2IK) E G(L1L2IK) projects trivially onto G(L, IK). that 

is,(a,L1IK) = I fori = 1.2. Thus(a,L1L2IK) = l.i.e.,a E./\·L11.,. We 

therefore have /1.lt, 1 = NL n ./'ir, , and so - 
1 2 I 2 

NL1 2N,," {=::}/,f"J.1 nJVL2 =JV1.1L2 =NL2 {=::} lL1L2: KJ 

= [L2: Kl{=::} L1 £ L2. 

Thi" shows the injectivity of the correspondence L i----+ /'vL. 
If JV is any open �ubgroup, then it contains the norm groupJVL = NLIK AL 

of some Galois extension LIK. (6.3) implies that NL = .,Vf',h, so we may 

a%ume LI K to be abelian. But (.,V. LI K) = G(LIL') for some intermediate 

field L' of LI K. Since J\./ 2 J,/L. the group JV is the full preimage of 

G(LIL') under the map ( .LIK): AK---+ G(LIK), and thus it is the full 

kernel of ( . L'jK) : AK ---+ G(L'IK ). Thus Ar= JVt ,. This shows that the 

correspondence L i----+ NL is wrjective. 

Finally, the equality Ni. riL;,_ = .V, is obtained as follows. 

LI n L2 £ L, implies that ,',./L1··t.2 2 )\·L,.  and thus 

/'vl.1riL-:. "2.JVt.1ArL2• 

As;\h/'r..t.2 is open, we have just shown thatf,/L1Ar1.2 =}../L for some finite 

ahelian extension LI K. Bu,tVL £.ML implies L £ LI n L2, �o that 

□ 
 
 
 

Exercise l. Let n be  number, an<l a��ume  = ll; E A I l;" = 1) of 

order 11. A� A". Let K be a field µ11 c;  and !et 

the maximal abelian excen�ion ot exponent n. If l.lK 1� linite,   one ha� 

= Al-- 

Exercise 2. Under the hypothe\e\ of exercise I, Kummer theory and cla�� field theory 

via Poniryagin duality G(LIK) x Hom(G(LIK),/1,,l----,- p,,, a nondegcncrate 

n1apping (the ab�cracl "'Hilhert \ymbol") 

(.): AK/A; X AK/;\;-----+ tt,,. 

Exercise 3. Lei p he a prime number and (d: (; ----,- '61,. v : A; -,­ 

field 1heory in the �en\c of § 5. exerei�c 2. Let d' : G ----,- 21, be 

homo111orph1�m, and f'IK Che 21,-exten�ion defined by d'. Let ii': A,---;. Z" he Che 

composite ot 

A,_(  � C(R'IK)�  'E,,. 

Then (d'. v') i¾ abo a p-cla.\� field theory. The norm re�idue �ymbol, 

(d. v) and (d'. v') (No �1a!cmcnt hold, in lhc case or 

field !hcone, (d G ----,-  v ; A1 ---;. 
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V: A,➔ Zi 
compm:t for 

 

AK= )jQt AK,,, 

where  varies over the finite suhextension� of K lk and the projective limit i� 

taken respect to the norm map� NKolK": AK�➔ AKd· Show: 

I) For every (finite or infinite) extcn�1on LIK. one ha� a norm map 

N1.11< A1. ➔ A...-. 

and 1f LI K i� finite, there 

Gal01�, then one ha� AK � 

2) For every extension Klk with 

a cla�� field theory (d...- : GK ➔ 

: AK ➔  A1• If furthemmre LIK i� 

 

fK = [K nl: .l..], (d, v) induces 

 
 
 
 

 

1 
-'  ·-"-"- G(LIK)"n_ 

 

Exercise 5, If LIK 1� a finite Galm� extension, then Gt 1s a G(LIK)-module ma 

canomcal way, and the tran�fer from G...- to G1 is a homomorphism 

Ver: G�I• ➔ (G1''/'1111<J. 

Exercise 6. (Tautological class field theory.) Assume that 1he profinitc group G 

�ali�lie� the condition: for every finite Galoi� cxtemion, 

Ver: Gl'.' ➔ (G't'f11IK1 

is an isomorphism. (These are the groups 
,ion 2"' (see 11451, chap. 111, th. Put All = 

A= !!.!!l Ax via the transfer. A,, 1s identified 

Show that for every cyclic extension LI K one hd� 

cohomological dimen­ 
and form the direct limit 
A(;,_ 

#H'(G(LIK).Ai.)=111L:KI  r��;:�·1. 
and that for every �UTJective homomorphism d : G ➔ Z, the induced map 

= G"" ➔ Z is a hen�elian valuation with respect to d. The corre�ponding rec1- 

map r1 IK: G(LIK) ➔ A...-/NL1...-A1 i� e�sentially the identity. 

Abstract cla�s field theory act.Juire, d much broader range of applir.:at1on� if 11 i, 

gcneraliLed a, follows. 

Exercise 7, Let (; be a prolinite group and R(G) the category of finite G-,eh. 

i.e., of finite �et� X with a continuous Ci-operation. Show that the 

 

 



tran�1tivc G-,els in B(G) are, up to i�omorphi�m. the �ets -...here GA 

open �ubgroup of G, and G operate, via multipl1cat1on on 
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If X i� a finite G-set and x E X, then 

n1(X,x) =G, = {rr EGlax =x) 

is called the fundamental group of X with ba�e point x. For a map / : X ----J- Y m 

B(G), we put 

 

f is called 
the fibres 

G(XIY)=Autr(X). 

if X and Y arc connected and G(XIY) operates tran�itively on 

Exercise 8. Lct f : X ----J- Y be a map of conneucd finite G-�els, and let x E X, 
E Y. Show that f i� Galoi.� if and only if 1r1 (X. ,1,) i� a nonnal subgroup 

In this case, one has a canonical i�omorphism 

 

A palf of functor� 

A=  (A..,A.): B(G)---J- (ah), 

con�1s1ing of a contravariant functor A� and a covariant functor A, from B((;J to 

the category (ah) of ahelian groups is called a double functor if 

A�(Xl = A,(X) =: A(X) 

for all X E B(G). We define 

AK= A(G/GI(). 

If/ ; X ----J- Y 1s a morphism in B(G), then we put 

A*(f)=f*  and  A,(f)=f •. 

A homomorphi�m h A ----J- B of double functors 1� a of homomorphisms 

h(X) : A(X) ----J- B(X) representing natural tran.5formations  ---J- B* and A. ----J- B •. 

A G-modulation 1� defined to be a double functor A �uch that 

(i) A(X tJ Y) = A(X) x A(Y). 

(ii) It among the two diagram� 

 
A(X) � A(X

1
) 

/,1 1" 
A(Y) � A(Y') 

m B(G), re�p. (ah), the one on the left 1� carte�ian, then the one on the right i� 

commutative. 

Remark: G-modulat1on� were introduced in a general context by A DRt ..11 under 
the name of Mackey functors (sec 132]) 

Exerci�c 9, G-modulat1on� form an abelian c,ltegory. 



 

Exercise 10. If A i� a G-module. then the 
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The rule AM A is an c4mvalence between the category of G-modules and the 

category of G-modulation5 with '·Gai01� descent'·, 1.c.. of those CJ-modulations; A 
such that 

r: A(Y) .. A(xt1x1y1, 

forevery Galois; mapping f : X --+ Y, is an i5omorphi�rn. 

Exercise 11. G-modulations are explicitly given by the following data. I.et 

B0(G) be the whose object� are the G-�ets G/U. where U varic� 
of G, and who�e morphi�m� are the 

a<; well as the map<; c(a) : 

fora E G. 

: G/U--+ G/V 

 

Ind(' = A,(n): A{G/U)--+ A(G/V), 

Resj1 = A*(n): A(G/V)--+ A(G/U). 

c(o)* = A,(da)): A(G/U)--+ A(G/rrUa-1). 

If for any three open suhgroup� U. \/ � W of G, one has the mdm tion formula 

Resf o Ind� = lnd!',r·,,,-i,, '�c(a), o Re<,-,,, 

1hen A extends uni4uely to a G-modulation A: R(G) -➔ (ah). 

Hint: If Xi� an arbitrary finite G-set, then the di5Jomt union 

Ax= x� A(G/G,) 

i� again a G-sct, became c(o),A(G/G,) = A(G/G,,,). Define A(X) 10 be the 

group 

A(X) = Homx(X.Ax) 

of all G-e4mvariant �ections X--,. Ax of the projcc:tion A.1 --+ X. 

Exercise 12. The function n"1'(GfGK) = G';/' extends to a G-modulation 

rr"1
': B(GJ--+ (pro-ah) 

into the of pro-ahelian Thus, for an extension LI K. the map� 

/*: G'j'--+ rer.p. f.: Gt--+ induced by f: G/G,--+ G/G;.. are given 

by the transfer. re�p. the inclur.ion G1 --+ (;K· 

Exercise 13. Let A be a G-modulation. For every connected finite G-\et X, let 

N A(X) = n /,A(Y). 

where the inter\ection is taken over all Galoi� map<; f : Y ,. X. Show that the 

function N A(X) define� a G-<;ubmodulation NA of A, the modulation of unh•err.al 

 

Exerci<,e 14. If A ir. a G-modulatJon, then the completion Ai" again a G-modulation 

which, for connected X, i� given by 

A(X) = � A(X)/f�A(Y). 

where the projective limit ir. taken over all Gal01� maps f : Y ,. X. 
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For the following, let d : G ----,. Z he a fixed surJective homomorphism. Let 

f: X----,. Y be a map of connected finite G-;,cts and x EX,  y = /{x) E Y. The 

inertia degree, resp. the ramification index, of /" i� defined hy 

f"x1r = (d((;,): d(G�)), re�p.  ex1) = (!,,: /,). 
where/,, f,, 1s the kernel or d: G,, ➔ Z, rc'>p. d: G,----,. Z. j is called 

unramificd = J . 

Exercise IS. d defines a G-modulat1on Z ;,uch that the maps f*, corre;,pondrng 

to a mapping / : X ----,. Y ot connected G-scts, are given by 

Z(n = Z Z=Z(X). 

This give� a homornorphi;,m of G-rnodulatiom 

d :rr"i,------+ Z. 

Exercise 16. An unram1ficd map /" : X ----,. Y of connected fimte G-�et, is Galois. 

and d induces an i,omorph1�m 

G(XIY) � Z/fx1yZ. 

Let (fix y E G(XIY) he the element which i.., mapped to I mod fx yZ. 
 

Let A be a G -modulation. We define a he11�d11m 1·af11ation of A to be a 

homomorphism 

 
�uch the submodulation 

contains and ;,ati;,fics Z/nZ = 

v: A --- ,. Z 

of Z comes from a subgroup Z <; Z which 

for all II E N. Let U denote the kernel of A. 

Exercise 17. Compare this delinil1on with the definition (4.6) or a hcnselian valuation 

ot a G-module A. 

Exercise 18. As;,ume that for every unramified map f : X ----,. Y of connected finite 

G-;,cts. the �equem:c 

()----,. U(Y) .!:_.. U(X)� U(X) _l.:..c,. U(Y) ------- ,. 0 

for every Galois mapping j : X ----,. Y (the 

which will he imposed in exerci..e Then 

for every Cialoi., mapping /" : X ----,. Y, a canonical 

 
 

 
Exercise 19. A,.,umc, beyond the condition required rn exercise that for every 

Gal01., mapping/ X----,. Y with cyclic Galoi\ group G(XIY), one 

(A(Y): f�A(X)) = [X Y)  and  ker /. = 1m(a¥ - I). 

where [X : Y] = # / 1(y). wnh y E Y, and a i� ct generator ot G(XIY). Then 

i;, an isomorphism for every Galoi\ mapping / : X ----,. Y of prime degree [X : 

 
rw:  G(XIY)"1, _,. A(Y)/j�A(X), 

for every Galm� mapping f : X ➔ Y. 

1 
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Exercise 20. Under the hypotheses of exerci�e 18 and 19 one obtains a canonical 

homomorphVim of G-modu!ations 

 

who�e kernel 1s the G-modulation NJ\. of universal nonns (�ee exercise 13). It 

induce� an 1�omorphism 

A ::: , n"" 

of the completion Aof A (see exercise 14). 

 

Remark: The theory skct<.:hed above and conlamed in the exercises ha� a very 
interestmg application to higher dimensional class field theory. In chap. V, (1.3), 

we will show that, for a Galois cxtcmion LI K of local field�. there 1� a reciprocity 

1somorphi�m 

 

The multiplicative group K* may be interpreted m K-theury a� the group K1(K) of 

the field K. The group K2(K) i� defined to be the quotient group 

K2(K) = (K* 0 K�)/R, 

where R is generated by all element� of the form x 0 (1 - .1 ). Treatmg Galoi� 

exten�ion� LIK of "2-local fields" - these arc di,cretoly valued complete field� 

with residue cla�� field a local field (e.g., Ql'((..1.)), Fp((x})((y))) - the Japane�e 

mathematician K4Ll r,i KAJo (see [!BJ) h1.� e�tahli�hed • c1.nonic1.I i,omorphi1m 

G(LIK)"n � K2(K)/N1.1i,:K1(L). 

Kato\ proof 1s intricate and needs heavy machinery. It was simplified by the 

Ru�sian mathematician/. FViHIKO (�ce [36], l371, 1381). His proof may be viewed 

a� a �pecial case of the theory sketched above. The hasic idea i� the following. 

The corrc�pondence K � K2(K) may he extended to a G-modula110n K2. It doe� 

not .,ati.,fy the hypothe-�is of exerci�e 15, �o that one may not apply the ab�tract 
theory directly to K2. But F,11,vrn consider� on K2 the finc�t topology for which the 

canonical map (  ) : K* x K*----+ K2(K) 1s scqucncially continuous. and for which 

one has x,. + y. ----+ 0, -x11 ----+ 0 whenever.(,, ----+ 0, y,, ----+ 0. He puh 

K�uµ(K) = K2(K)/A2(K). 

where A2(K) i.� the inter�ection of all open neighhourhood.� of 1 in K2(K), and he show� 
1hat 

 

tor every Galoi� extension LIK, and that Kt'(K) �atistie� propcrtic� which imply 

the hypothe�i, of cxerc1�e 18 and 19 when viewing K;op a� a G-modulation. Thi� 

makes K,110'� theorem into a �pecial case of the theory developed above. 

 
 

 

§ 7. The Herbrand Quotient 

 
The preceding section concluded abstract class field theory. In order to 

be able to apply it to the concrete �ituations encountered in number theory, 



S7. The Herbrand Quotient '.Hl 

 

 

it is all important to verify the class field axiom (6.1) in these contexts. 

An excellent tool for this is the Herbrand quotient. It is a group-theoretic 

formalism, which we develop here for future use.  

 

Let G be a finite cyclic group of order n, let a be a generator, and A a 

G -module. As before, we form the two groups 

H0(G.A)=Ac/NcA and  H-1(G.A)= N,,-A/lcA, 

where 

11-I 

Ac�{aeAla"�a), Nc;A�{Nca�,D,a"'laEA}. 

 

Nr,A � /a EAI Nca �I},  lc;A � {aa-l I a EA} 

 

(7.1) Proposition. If I --+ A --+ B --+ C --+ l is an exact sequence of 

G-modules, then we obtain an exact hexagon 

 

 

 

Proof: The homomorphisms f1, .f4 and Ji, f5 are induced by A � B 

and B -1...+ C. We identify A with it5 image in B so that i becomes the 

inclusion. Then f,, is defined as follows. Let c E cc and let h E B be 

an element such that j(h) = c. Then we have j(h"-1) = c"-1 = I and 

Nc(h"-1) = Nc(h")/Nc;(h) = I, so that h"-1 E .fi i� thus defined 

by c mod NcC H- b"-1 mod le A. In order to define  let c E NuC, and 

let h EB be an clement �uch that j(h) =(.Then j(Nc;b) = Nc;c =I.so 

that Nch EA. The map f(, is now given by c mod i(;A H- Neb mod Ne A. 

We now prove exactness at the place 11°cc, A). Let a E AG such that 

f1(a mod NcA) = I; in other words, a= Nch for some h E 8. Writing 

c = j(h), we find J6(c mod /r;C) = a mod Ne A- Exactne<;s at H-1(G.A) 
is deduced as follows: let a ENr;A and .f4(a mod le A)= I. i.e., a= h"-1, 

with b EB. Writing c = j(h), we find f,,(c mod NcC) = a mod lc;A. 

The exactness at all other places is seen even more easily. 0 
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(7.2) Definition. The Herbrand quotient of the G-module A is defined 

to be 

#H0(G.A) 
h(G. A)� #11-'(G. A). 

provided that both orders are linitc. 

 
The saliem property of the Herbrand quotient is its multiplicativit:,1. 

 

(7.3) Proposition. If I ----+ A ➔ B ➔ C ----+ I is an exacl ,;equence of 

G -modules, then one li;rn 

h(G.B) � h(G.A)h(G.C) 

in the sense that, whenever two of these quotients are defined, .�o is /he third 

and the identity holds. 

Fora finite G-module A, one has h(G, A)= I. 

 

 
Proof: We consider the exact hexagon (7.1). Calling 111 the order of the 

image of f1, we find 

#H
0
(G.A)=n6n1, #H0(G,B)=n1112, #H

0
(G,C)=n2n1, 

#H-1(G,A)=n3114,  #ll-1(G,B)=n4n,.  #H-1(G,C)=n,n6. 

and thw, 

#H0(G, A)· #f/0(G.C) ·#H-1(G. B) 

�#H"(G.B)-#H-'(G.A) #W'(G.C). 

At the same time, we see that if any two of the quotients arc well­ 

detined, then so is the third. And from the last equation. we obtain 

h(G,B) = h(G,A)h(G.C). Finally, if A is a finite G-module, then the 

exact �equcnces 

 

1------+AG------+A�lcA------+I. 1------+..v(,A------+A�NcA  +I. 

 

show that #A= #Au- #lc;A = #tvr;A - #Nr;A, and h(G, A)= I. [l 

 

If G is an arbitrary group and Ka subgroup, then to any x-module B, we 

may associate the so-called induced G-module 

A= lnd};(B). 
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It consists of all function� f : G --+ B such that f(,n) = f(x)r for all 

r E g. The operation of a E G is given by 

If g = {I}. we write lndr;(B) im,tead of lnd/;(B). We have a canonical 

g-homomorphism 

rr:lnc((B)------,,B, f1--+f(I), 

which maps the !;-submodule 

B'�(fElnd[,(B)I /(x)� I fo,x;i) 

isomorphically onto B. We identify 8
1 

with B. If R is of finite index, we find 

lnd2,(B)� IT B", 
aEG/1; 

where the notation er E G /g signifie5 that a varies over a :-y�tem of left 

coset representatives of G / ff. 
Indeed, for any f E Ind&(B) we have a unique factorization f = na f::, 

where fa denotes the function in B' which is determined by ,1;.,(I)= f (a-
1). 

If conversely A is a G-module with a R-rnbmodule B such that A is the 

direct product 

 
then A:::::::: lndj;(B)viaB:::::::: B'. 

 

(7.4) Proposition. Ler G be a finite cydic group, g a .�ubgroup :.md B a 

g-module. Then we have canonically 

 

Proof: Let A= lnd!;(B) and let R be a �ystem of right coset representative� 

for G/g with I ER. We consider the g-homomorphi:-ms 

n:A-B, t-f(l): v:A-B, /c-+ IT /(p). 
pc.R 

Both admit the g-homomorphism  
I b" 

 

 for rr E g, 

�-: B------+ A. b 1--+ fi,(a) =l 1 
fora¢ f.:, 

a� a section, i.e., Tr o s = v o s = id, and we have 
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because one finds that. for f E A, 

(Ncf)O) � n n JP'(!)� TTTT/(pr) � nm /(p))' �N,(v(f)). 
TEI/ ptR T p T  p 

If f E AG, then f(a) = f(I) for all a E G, and /(I)= f(r) = /(l)r for 

all r E g. The map Jr therefore induces an isomorphism 

1r: AG-------+ B". 

It sends Ne A onto N"B, for one has n(Nc;A) = Ng(vA) s; N"B on the 

one hand, and on the other, Nx(B) = Ng(vsB) = n(Nc;(sB)) t;: n(NcA). 

Therefore H0(G. A)= H0(f?. B). 

As Ng o v = Jr o NG , the g-homomorphism v : A ---+ B induces a 

g-homomorphism 

v: N<,-A-------+ t,11B. 

It is surjective since v o s = id. We �how that le A is the prcimage of /11 B. 

le A consists of all elements EA, a E G. for if G = (an) and 

a = a(), then /0 -l = 
has l,;B = {h-r--i I h E 

Tp E f?, we obtain 

v(Ja-•)� TT f (op) �n /(p')'• �n hJ'- • E lgB. 

pcR f(p) p' f(p') p 

one 

ER. 

On the other hand, for hr-I E l,;B, the functionr-1
, with f = sh, 

is a prcimage as v(fr-l) = vs(hy-1 = br-1. After this it remains to 

show kcr(v) s; lcA. Let G = (rp), n = (G: g), R = {1,ip, .,l/'.Jn-11. 
Let f ENG A be such that v(f) = TT7""<: rp' = I. Define the function 

h EA by h(I) = I, h(1./') = n1�i' f(ip1
). Then f(ipk) = h(ipk)/h(ipk-1) = 

h(r/---1
)
1 

<P I for 0 < k < n, and f(l)h<P-
1

-
1(1) = nt:;: f(ipi) =I.Hence 

f = h1
_'f-i E lcA. Thus we finally get H 1(G,A) = H-1(g,B). □ 

 
 
 

endomorphi�ms of an ahclian group A such that 

of the following �tatement. The quot1cnl 

(ker f: im;;) 

qr.�(A) = (kcr;;: imf) 

i� multiplicative. 

Exercise 2. !,et f,g be two commuting endomorph1�m� of an ahelian group A. 
Shov. that 

 

provided all quot1cnl� are defined. 
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Exercise 3, Let G be a cyclic group of prime order p, and let A be a G-module 
;,uch that q0,1,(A) is detined. Show that 

h(G, A)P 
1 = qn ,(Ac;)I' /q11,,(A). 

Hint: Use the exact ;,cquence 

0-----, A(' -----+ A �  Aa-i -----, 0. 

Lee N = I +er+ ... + a1•-
1 in the group ring Z[Gl. Show that the ring Z[G]/ZN 

is i;,omorphic to Z[( I, for (, a primitive p-th root of unity, and that in this ring 

one ha� 

 

wheres i;, a unit in Z[G]/ZN. 

Exercise 4. Lee LI K he a cyclic exten�ion of prime 

compute the Herbrand quotient of the group ot unib 

G(LIK)-module. 

 
 

 
U;,mg exercise 3, 

of L, viewed as a 

Exercise 5. If G is 

H1(G, !nd�(A)) � 

g a normal wbgroup and A a g-modu!e, then 



Chapter V 

Local Class Field Theory 

 
§ 1. The Local Reciprocity Law 

 
The ab�tract class lield theory that we have developed in the last chapter 

is now going to be applied to the case of a local field, i.e., to a field which is 

complete with respect to a di:;.crete valuation, and which has a finite re�idue 

class field. By chap. II, (5.2), thc�c are precisely the finite exten,;ions K of 

the fields IQ\, or Fp((t)). We will use the following notation. Let 

VK be the discrete valuation normali.t:ed by VK (K�) = Z, 

OK  = Ia EK I vK(a) 2:. O} the valuation ring, 

1.1K = { a E K I l'K (a) > O} the maximal ideal. 

K = OK /PK the residue clas� field, 

lh = { a EK* I vK(a) = 0) the unit group, 

uj;i1 = I + P¼, the group of n-th higher units, n = 1, 2, . 

q =qK =#IC, 

lalp = q vK(aJ the nonnalizcd p-adic absolute value, 

µ11 the group of n-th root5 of unity, and µn(K) = /L11 n K*. 

TfK, or�imply IT, denotes a prime clement of K, i.e., IJK = ITOK. 

 

In local class field theory, the r6le of the profinite group G of ab�tract 

class field theory is taken by the ab<;olute Galois group G(klk) of a fixed 

local field k, and that of the G~modulc A by the multiplicative group f* 
of the separable clm,ure k of k. For a finite extension K lk we thu� have 

AK = K*, and the crucial point is to verify for the multiplicative group of 

a local field the class field axiom: 

 

(1.1) Theorem. For a cyclic extension L IK of Joe.ii field8, one has 

#ll'(G(LJKl,L') � I IL'  Kl  ro,; �o, 

l I tori= -1 
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Proof: For i = -1 thi:;. is the claim of proposition (3.5) ("Hilbert 90") 

in chap. IV. So all we have to show is that the Hcrbrand quotient i<; 

h(G.L*) = #H0(G.L*) = [L : KJ, where we have put G = G(LIK). 

The exact sequence 
 

in which Z has to be viewed as the trivial G-module, yields, by chap. IV, (7.3), 

h(G,C) � h(G,Z)h(G,UL) �IL, Klh(G,UL). 

Hence we have to show that h(G, UL) = I. For this we choose a nonnal 

basis {aa I er E G} of LIK (see [93], chap. VIII,§ 12, th. 20), a E and 

consider in t)L the open (and dosed) C -module M = L,ncG Then 

the open sets 

vn=l+nKM, n=i,2 .. 

form a basis of open neighbourhoods of I in UL. Since Mis open, we have 

n';j 01. s; M for suitable N, and for n 2: N the V" are even subgroups 

(of finite index) of UL, becau:;.e we have 

(n;MHn;M) = n'f,f1M Ms; ni"oL s; n}n-N Ms; nKM. 

Hence vnyn s; V11
, and since l -n;µ, forµ EM. lies in V". so 

does (I - rrKJL)-1 = I + rrK(L�111'nt lJ)_ Via the correspondence 

I +rrKa i---+ a mod ITKM, we obtain G-isomorphisms as in II, (3.10), 

V"/V"+1 :::::::: M/nKM = ffi(oK/PK)a" =lndc;(oK/PK). 
osG 

So by chap.IV. (7.4), we have H1(G.V11/vn+1 = I for  i =  0. - I 

and n 2: N. This in tum implies that H'(G, V") = I for i = 0. - I 

and n 2: N. Indeed, if for instance i = 0 and a E (V")c;, then a= (Nch0)a1. 

with ho E a1 E (V11+1f', and thus a1 = (NGh1)a2, for some h1 E v11+1
• 

a2 E etc.; in general, 

a,= (Nc;h,)a,+1-  h, E vn+i.  a,+I E (V11+1+l)G 

This yields a = Nc;h, with the convergent product h = E V", 

so that H0(G, V") = I. In the same we have for a E such that 

Nc;a = I, that a= ha-1. for some h E   where a is a generator of G. 

Thus H-1(G, vn) =I.We now obtain 
 

because UL/V11 is finite. □ 
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(1.2) Corollary. If L IK is an unramificd extemion of local fields. then for 

i =0, -1,onehas 

H'(G(LjK),U1,) � I  and  H'(G(LjK),u)"') � 1  fo,  n � 1,2, 

In particular, 
 

 

Proof: Let G = G(LIK). We have already seen that H'(G,Ui,) = I in 

chap. IV, (6.2). In order to prove H'(G,utl) =I.we first show that 

H;(G,A*) = I  and  Hi(G,A) = I, 

for the residue class field A of L. It fr, enough to prove this for i = -1, 

as A is finite, and so h(G,A*) = h(G,A) = I. We have H 1(G.A*) = I 

by Hilbert 90 (see chap. IV, (3.5)). Let f = [A: K] be the degree of A over 

the residue class field K of K, and let r.p be the Frobenius automorphism 

of AIK. Then we have 
 
 
 

 
and 

/-1 /-1 

#NGA=#{ x EA  / .t'P' = x"' = ql I 
1=0 1=0 

 

 

#(r.p-l)A=qf-1, 

 

since the map A � A has kernel K, Therefore H-1(G,A)= N(;A/(rp - !)A 

�], 

Applying now the exact hexagon of chap. IV, (7.1), to the exact sequence 

of G -modules 

1-ul1J ,..uL---+A* ,..1_ 

we obtain H;(G, u£1l) = H'(G, UL)= I, because H1(G,A*) = I. If n is 

a prime element of K. then n is abo a prime element of L, �o the map 

utl---+ A given by I +an" r-+ a mod PL is a C-homomorphi�m. From the 

exact sequence 

1  ,.. uf1+1i   ,.. uf'J---+;,,  ,.. 1, 

we now deduce by induction just as above, because H' (G, A)= 0, that 

Hi(G,ut-+l)) = Hi(c.uj_n)) =I, 

since fl'(G.Uj_
11

) = l. □ 
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We now consider the maximal unramified extension klk over the ground 

field k. By chap. II, §9, the residue class field of k is the algebraic closure K 

of the residue cla% field K of k. By chap. 11, (9.9), we get a canonical 

isomorphism 

G(klk) ""G(,ZIK) "'z. 
It associates to the clement I E Z the Frobenius automorphism x 1--+ r'f 

in G(KIK), and the Frobenius automorphism <fit... in G(klk) which is given by 

a'P' =a'f mod P);,  a E or. 

For the absolute Galois group G = G(klk) we therefore obtain the continu­ 

om, and surjective homomorphism 

d:G--+2. 

Thus the abstract notions of chap. IV, §4, based on this homomorphism, 

like "unramified", "ramification index", "inenia degree", etc.. do agree, in 

the case at hand, with the corresponding concrete notions defined in chap. IL 

As stated above we choose A = J:* to be our G-module. Hence AK = K*, 

for every finite extension KIL The usual normalized exponcnlial valuation 

V,( : k* --,,. Z is then henselian with respect to d, in the sense of chap. IV. (4.6). 

For, given any finite extcn�ion K lk, �VK  is the extension of Vf... to K�, and 

by chap. II, (4.8). 

1 1 
  !_vK(K*) = - -vdNK1AK*) = - -. vtJNK1t...K�). 
CK [K: kj CK.!K 

i.e., vdNK1tK*) = .f"KvK(K�) = f"KZ. The pair of homomorphisms 

(d: G --,,. .i, VJ : J...*--,,. Z) 

therefore salisties all the properties of a class field theory, and we obtain the 

Local Reciprocity Law: 

 

(l.3) Theorem. For every finite Galois exlcmion L IK of Joe.ii field.� we have 

a canonical i8omorp/Jism 
 

 

The general definition of the reciprocity map in chap. IV. (5.6), wa� 

actually inspired by the case of local cla,;s field theory. This is why it is 

especially transparent in this case: let a E G(L IK ), and let 5- be an extension 

of a to the maximal unramified extension LIK of L such that dK (ii) E N 
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or, in other words, iJIR =({)�,for some n EN. If Lis the fixed field of ij 

and rrr E J; i:, a prime clement, then 
 

Inverting rLiK gives us the local norm residue symbol 

,LIK)' K'   , G(LIK)"h, 

It is surjective and has kernel NL1KL*. 

In glohal class field theory we will have to take into account the field 

R = Qoc along with the p-adic number fields Q/!' It al'>o admits a reciprocity 

law: for the unique non-trivial Galoi'i exten'iion CIR. we define the norm 

residue symbol 

 

by 

(a,CIR),./=J= -/="T,gn(u). 

The kernel of ( , CIR) is the 

is again the group of norms 

R� of all po:,ilive real numbers, which 

�{eel' EC'), 

 
The reciprocity law gives us a very simple classillcation of the abelian 

extensions of a local field K. Il i:, formulated in the following 

 

(1.4) Theorem. The rule 

Li---------+ h'L = Nr.1KL* 

gives a I - I-correspondence hetween the finite abeli:m extensions of a local 

Jicld K and the open ,qihgroups }./ of finite index in K *. Funhemwre. 

L1 t; L2 {::::::::? Nr. 2 /\/r. , .VL L =,VL nJ,./Lc, J\1-L nL-:.= .Nl, ;VL"· 

 

Proof: By chap. IV, (6.7), all we have to show is that the subgroups J\( 

of K* which arc open in the norm topology are precisely the subgroups of 

finite index which are open in the valuation topology. A subgroup N which is 

open in the norm topology contain:, by definition a group of nonn5 N LIK L *. 

By (1.3), this has finite index in K*. ll is also open because it contains the 

subgroup NL1Kllr. which itself is open, for it i<, closed, being the image of 

the compact group ll1., and ha:, finite index in UK. We prove the converse 

first in 

The rnse char(K) f n. Let},/ be a subgroup of finite index n = (K* : N). 

Then K*11 s; ;V, and it is enough to show that K*11 contains a group of 
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norms. For this we use Kummer theory (see chap. IV, § 3 ). We may a1-1-ume 

that K� contaim the group f.Ln of n-th roots of unity. For if it doc1- not, we 

put K1 = K(tln), If Kr1 contains a group ofnonns NLilK1Lf, and LIK is 
a Galois extension containing L1, then 

N1.1KL* = NK11K(N1.1K1L*) i; NK11K(Nr.11K1Lf) 

i; NK11dKt) i; Kw 

So let ;111i; K, and let L = K ( �) be the maximal ahelian extension of 

exponent n. Then by chap. IV, §3, we have 

Hom(G(LIK),µ,) ;c K'/K'". 

By chap. II, (5.8), K* / K*11 is finite, and then so is G(L IK). Since K* /Nr 

is i1-omorphic to G(L IK)  and has exponent n, we have that K Hi i; Nr 

and (*) yield1- 
 

and therefore K*" = Nt,1KL*. 

The ewe char(K) =pin.In thi1- ca1-e the proof will follow from Lubin-Tate 

theory which we will develop in §4. But it i5 also possible to do without this 

theory, at the expense of ad hoc arguments which tum out to be somewhat 

elaborate. Since the result has no further use in the remainder of this hook, 

we simply refer the reader to the beautiful treatment in [122], chap. XI, §5, 

and chap. XIV, § 6. □ 

 
The proof also shows the following 

 

(1.5) Proposition. If K contains then -th roots of unity, and it the character­ 

istic of K does not divide n, then the extension L = K ( �)IK is finite, and 

one ha." 

 

Theorem (1.4) is called the existence theorem, because it:c. essential 

5tatement is that, for every open subgroup ./V of finite index in K •, there 

exists an abelian extension LIK such that NLIKL* = N. This is the 

"class field" of N. (Incidentally, when char(K) = 0, every subgroup of 

finite index is automatically open - sec chap. 11, (5.7).) Every open subgroup 

of K* contains some higher unit group v¼'l, as these fonn a basis of 

neighbourhoods of 1 in K *. We put UJ? = UK and define: 



u�t. 

fl 
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(1.6) Definition. Let LIK be a finite abelian extension, and n the smallest 

number:::_ 0 �uch that uf
1 

5;;; NLIK L *. Then the ideal 

f =p%, 

is called the conductor of L IK. 

 
(1.7) Proposition. A finite abelian extension LI K is 11nrnmified if and only 

if ils conductor is f = 1. 

 

Proof: If LIK is unramified, then UK = NLIKVL by (1.2), so that 

f = I. If conversely f = I, then (h 5;;; NL1KVL and rr� E NLIKL*, 

for n = (K*: N1.1KL*). If MIK is the unramified extension of degree n, 

then NMIKM* = (rr;) x UK � N1 IKL*, and then M 2 L, i.e., LIK is 

unramitied. [J 

 

Every open subgroup .A/ of finite index in K* contains a group of the 

form (rrf) x U�1l. This is again open and of finite index. Hence every 

finite abelian extension LI K is contained in the cla:-,5 field of wch 

group (rrf) x Therefore the class fields for the groups (rrf) x 

arc particularly imporlant. We will characlerize them cxplicilly in §5, as 

immediate analoguc5 of the cyclotomic fields over Q1,. In the case of the 

ground field K = Qp, the cla55 field of the group (p) x u}t is precisely 

the field Qp(/1,p") of p"-th root5 of unity: 

 

(1.8) Proposition. The group of norms of the extension :Qlp(/Lpn)IQ/! is the 

group (p) x 

 

Proof: Let K = QI' and L = Qp(/1-p")- By chap. II, (7.13), the extension 

LIK is totally ramified of degree pn 1(p - I), and if t; is a primitive p" -th 

root of unity, then 1 - t; is a prime element of L of norm N1,1K(I - t;) = p. 

We now com,ider the exponential map of 1J!p- By chap. II, (5.5), it gives an 
isomorphism 

exp: p� ---+ Uj_"1 

for \! :::_ I, provided p #- 2, and for v :::_ 2, even if  = 2. It 

transfonns the isomorphism PK ➔ 
1 given by a 1-+  - l)a. 

into the isomorphism ujt ➔  by x 1-+ so that 

cu;.1l)P
11 1

{P I} = ufl if p #- 2, and 
2 

= uf,) if p = 2,  > I 



) . 
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(the case /J = 2. n = I i5 trivial). Consequently, we have utl  £ NL1KL* 

if p -=I= 2. For p = 2 we nolc that 

ui(2
l = u;_.'l u supi = (uf1)

2 u s(uf1 2 

because a number that is congruent to I mod 4 is congruent to I or 5 mod 8. 

Hence 

uf'J= (vfi)2"-1  

ll i5 easy to show that 52
" 

2 

= NLIK (2+i), sout
1 £NLIK L * holds also in 

case p = 2. Since p = NL1K<I - (). we have (p) x uJ;1
l � NLiKL*. 

and since both group5 have index pn 
1
(p - I) in K*, we do find that 

N1. KL* = (p) x uf0 a� claimed. □ 
 

 

A� an immediate con5equence of this last proposition, we obtain a local 

version of the famous theorem of Kronecker-Weber, to the effect that every finite 

abelian extension of Q is contained in a cyclotomic field. 

 

 

(1.9) Cornllal'y. Every finite abelian cxlCnsion of L IQp is contai11ed in a field 

:Ql /! ( (), where ( i.� a root of unity. In other words: 

The maximal abelian extension Q�" IQp is generated by adjoining all roots 

of unity. 

 

Pl'oof: For �uitablc .f and n, we have (pf) x 

is contained in the cla�s field M of the group 

s; NL1KL*. Therefore L 

 

 

By (1.4), M i5 the composite of the class field for (pf) x U(ri, - this being 

the unramitied extension of degree f - and the class field for (p) x 

M is therefore generated hy the (p I - I) p11-th roots of unity. 

 

 

From the local Kronecker-Weber theorem, one may readily deduce the 

global, classical Theorem of Kronecker-Weber. 

 

 

(1.10) Theorem. Every finite abelian ex/cm.ion Ll:Ql is contained in a field 



Q(() generated by a root of uniry (. 
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Proof: Let S be the set of all prime numbers p that are ramified in L, and 

let LI' be the completion of L with respect to some prime lying above p. 

Then LplQ,, is abelian, and lherefore Lp £; Qp(Jl111,), for a suitable np. 

Ut p"'' be the precise power of p dividing np, and let 

n = TI p"P. 

pES 

We will show that L £; Q(µ,,.). For thi� let M = L(Jl11). Then 

abelian, and if p is ramified in M IQ, then p must lie in S. If Mp 

completion with respect to a prime of M above p whose restriction to L 

gives the completion Lp, then 

Mp= Lp(fln) = Qp(l-lp'l'n') = Qp(l-lp''f!)Qp(Jl111), 

wilh (n', p) = I. is the maximal unramified subextension of 

Qp(l-lp''1,11,)IQI'. The group Ip of MplQI' is therefore isomorphic to 

the group G(Qp(/11,,,,,)IQI'), and consequently has order <.p(p"''), where <.p 

is Euler's function. Let/ be the subgroup of G(MIQ) gencraled by all Ip, 

p ES. The lixed field of/ is then unramitied. and hence by Minkowski's 

theorem from chap. III, (2.18). it equals Q, i.e.,/= G(MIQ). On the other 

hand we have 

#I :o n #I,,� n�(p''') � �(n) � [ Q(1,,,), Q]. 
P'=S I''=� 

and therefore [M: Q] = [Q(f.Ln): Ql, so that M = Q(µ,,,). Thi� show� that 

L <;Q(1,,,). □ 
 

 

The following cxcrci�e� 1-3 presuppo�e exerci�e� 4-8 or chap. IV, *3. 

Exercise I. For the Galois group/'= G(RIK), one has canonirnlly 

H1(J'.Z/n'll.) :::::::: Z/n'll. and H1(I'.µ,,) :::::::: UKK*"/K*", 

the latter provided chat n i\ not divisible by the re\idue charactemtic. 

Exercise 2. For an arhitrary field Kand a GK-module A, pul 

H
1
(K. A)= H

1
(GK, A). 

If K is a p-adic number fidd and n a natural number, then there ex1�h a nondegen- 
erate pairmg 

of finite group� given by 

(x.al f-l- x((a. KiK)). 

If 11 is not divi�ihle hy the residue characteri�tic p, then the orthogonal complement or 

11,;,(K,Z/n) := l/1(G(RIK).Z/n'll.) c; H1(K.'ll./n'£) 

is the group 
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Exercise 3. If LI K is a finite exten�ion of p-adic numher field�, then one has a 

commutative diagr;im 

//1(L.Z/nZ)  x  l/1(L.µ,.) ZjnZ 

1,,' 
H1(K.Z/nZ) x H1(K.µ") Z/nZ. 

Exercise 4 (Local Tate Duality). Show that the statement� of cxcrci�c� 2 and 

3 generalize to an arbitrary finite GK-module A instead of Z/n'J'.., and A' = 
Hom(A, i<*) in�tcad ofµ". 

Hint: lhe exercises 4-8 of chap. IV, §3. 

Exercise 5. Let LI K be the compo�itc of all Zr-extensions of a p-adic numher field 

K  with Galoi� group i�omorphic to Show that the Galoi� group 

is a free, finitely generated Z1,-module and  it� rank 

Hint: Use chap. IL (5.7). 

Exercise 6. There i� only one unramitied 21,-extem,ion of K. Generate it by roob of 

unity. 

Exercise 7. Let p be the re�idue charackri�li<.: of K, ,md let L be the field generated 

by all rootf,, of ot p-power order. The tixed tield of the tor,ion subgroup of  

G(LIK) is a  It i� called che cydotomic Z,,-extension. 

 

be the eyclotomic  
be a chosen and let J : G:rJ , ➔ Z/! be the homomorphism of 

the absolute group. Show: 

For a �uitable topological generator II of che group of principal unit� of Q\,. 

_ loga 
v(a)=-, 

logu 

defines a henf,,clian valuation with 

theory (see chap. IV, §5, exercise 

to J, m the f,,enf,,e of ab,tract p-claf,,f,, tield 

Exercise 9. Detcnnine all p-class field theories (d: GK➔ Z1,, �·: K*--+ Zp) over 

a p-adic number tield K. 

Exercif.e IO. Determine all cla,, field theories (d: GK➔ Z, 11 Ky➔ Z) over a 

p-adic number field K. 

 
Exercise 11, The Weil group of a local field K is the preimage WK of Z under the 

mapping dK: GK----+ Z. Show: 

The norm re�idue �ymbol ( ,K"1,IK) of the maximal abclian extension K"1'IK 

yields an i�omorph1sm 

which maps the  group UK onto the inertia group l(KunjK), and the group of 



principal unit� onto the ramification group R{K"1'1K). 
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§ 2. The Norm Residue Symbol over QJP 

 

If ( is a primitive m-th root of unity, with (m, p) = I, then Qlp(OIQ,, 

is unramified, and the norm residue symbol is obviou<;ly given by 
 

But if ( is a primitive p11-lh root of unity, then we obtain the norm residue 

symbol for the extem,ion Ql'(()IQI' explicitly in the <;imple form 

(a.(!,,(Ol(l1t,), � ,,,-,. 

where a = and ("  is the power (' with any rational integer 

r = u-1 mod This result is important, not only in the local situation, but 

it will play an essential rOle when we develop global class field theory (:,ee 

chap. VI, S5). Unfortunately, there is no direct algebraic proof of this fact 

known to date. We have to invoke a transcendental method which makes 

use of the completion R of the maximal unramified extension i of a local 

lield K. We extend the Frobenius <p E G('ilK) to f by continuity. First we 

prove the 

 

(2.1) Lemma. For every c E OR, resp. every c E UR, the equation 

r<P - x = c.  ref,p.  x<f-l = c, 

admits a solution in OR, resp. in UR. Ifx<P = x for .l E OR, then x E OK. 

 

 

Proof: Let Jr be a prime element of K. Then n is also a prime element 

off, and we have the (f-invariant isomorphisms 
 

(see chap. II, (3.10)). Let c EUR and i" = c mod PK. Since the residue class 

field K of R is algebraically closed, the equation X'P = -�pi = X • (' (q = (JK) 

has a solution -1- 0 in K = OR IPR- i.e., 

c=xi 
1
a1,  X1 E Uf(,  a1 E 

 

For similar reasons, we find that a1 = x,f-
1
a?., for some x2 E and 

a?. E u}21, so that c = (x1 t2)'P 1a2. Indeed, putting a1 = I + h1rr, 

.\2 = I+ )'2Jr, gives a1x�-<P= I - (yf - Y2 - hi)rr mod rr2
. i.e., we 

have to solve the congruence yf - y2 - h1 = 0 mod rr, or equivalently the 
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equation Yi - y2 - h1 = 0 in K. This is possible becau�e K is algebraically 

closed. Continuing in thi� way, we get 
 

 

and passing to tbe limit finally 

The solvability of the equation 

isomorphisms P[/Pr l �  K. 

Now letx E CJi and x'° =x. 

(" = x'P-
1

, where X = n:=I Xn E Uf. 

- x = r follow� analogously, using the 

 

Then, for every n � I, one has 

(*) x=x,,+rr
11

y11  withx,,EOKandynEOK. 

Indeed, for n = I we have x =a+ rrh, with a E OR_, h E Of(, and l <P = x 

implies a'°= a mod rr. Hence a= -1:1 +rrc, with x1 E OK, c E 

therefore x = x1+rr(h+() = .,1 +rry1, y1 Ent, The equation x 

implies furthennore that y,'; = y11, so that we get a� above 
with c11 E OK, d11 E Of,  and therefore X = (x,, + + rr11+1J11 = 

X11+1 +rr11+1
Yn+I, for 5ome X11+1 E OK, Yn+l E OR. Now passing to the limit 

in the equation(*) give� x = lim11..... ,o t,, E OK, bccaw,e K is complete. D 

 

 

For a power series F(X1, ... ,X11) E odfX1, .. ,X11l], let F'P be the 

power scric� in oRff X 1, . , X11JJwhich arises from F by applying rp to the 

coefficient� uf F. A Lubin-Tate series for a prime element rr of K is by 

definition a power series e(X) E OK[IXI] with the properties 

e(X) = rr X mod deg 2 and e(X) =XI/ mod rr, 

where q = l/K denotes, as alway�, the number of element<; in the residue 

class field of K. The totality of all Lubin-Tate series is denoted by S,r. In 

Err there are in particular the polynomiab 

e(X) = uXI/ + rr(a,1_1X'1-
1 +  +a2X2

) + rr X, 

where u.a1 E OK and u = I mod rr. The�e are called the Lubin-Tate 

polynomials. The simplest one among them b, the polynomial X" + n X. 

In the case K =  for example, e(X) = (I+  X)1' - I is a Lubin-Tate 

polynomial for the element p. 

 

(2.2) Proposition. Let rr and If be prime clement., of R, and let c(X) E £", 

i!(X) E Err be Lubin-Tate series. Let L(X 1,  , X11) = I:=;1
= a1 X1 be a linear 

form with coctYicients a, E OR such that 
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Then there is a uniquely determined power :,cries F(X1, ........ ,Xn) 

EoRUX1, ....... ,XnJJsati8fying 

F(X1, .,X11)=L(X1, ............... n)moddeg2. 
 

lfthccoefficientsofe,e,L lie ina comp/ctesuhringo ofoi <;uc/1 thato"' = C"!, 

then F ha8 coefficients in o as well. 

 

Proof: Let CJ be a complete subring of Of< such that o"' = o, which 

contains the coefficients of e.e,L. We put X = (X1, .... X,,) and e(X) = 

(e(X1),  .e(X11)). Let 

F(X) � %=, E,,(X) E v[[X]] 

 
he a power series, Ev(X) its homogeneom, part of degree \!, and let 

 

Clearly, F(X) is a solution of the above problem if and only if F1(X) = 

L(X) and 

(]) e(FdX)) = F/f(C(X)) mod deg(r + I) 

for every r ?. I. We detennine the polynomials E,,(X) inductively. for 

v = I we are forced to take E1(X) = L(X). Condition (I) is then satisfied 

for r = 1 by hypothe<;is. Assume that the f-,\,(X), for v = I, ... ,r, have 

already been found, and that they are uniquely determined by condition (I). 

We then put F,+1(X) = f-,'r(X)+ E,.,1(X) with a homogeneou� polynomial 

Er11(X) E o[XI of degree r + I which has yet to be determined. The 

congruences 

e(F,+1(X)) =e(F,(X)) +ITEr11(X) moddeg(r+2), 

F:+i {e(X)) = F,�(C(X)) + rr'"+
1 
E;'+1 (X) mod deg(r + 2) 

show that E, +l (X) has lo satisfy the congruence 

(2) Gr+I (X) + IT r:, +I (X) - rf1 +I "-)"+1 (X) = 0 mod deg(r + 2) 

with G,+1(X) = e(F, (X)) - F/(f(X)) E o[[XJJ. We have G, 1(X) = 0 

mod deg(r + I) and 

(3) Gr-1(X) = F, (X)" - F,"'(X'1) = 0 mod IT 
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because e(X) = C(X) = Xq mod n and a'P = aq mod n for a E o. 

Now let X' = x;1  X�' be a monomial of degree r + 1 in o[Xl- By (3). 

the coefficient of X
1 

in G,+1 is of the form -n/3, with fJ E o. Let a be 
the coefficient of the same monomial X' in E,+I· Then na - Jfa'P i5 the 

coefficient of X1 in nEr+l - ffE'f+i· Since G,.11(X) = 0 mod deg(r + I). 

(2) hold� if and only if the coefficient a of X' in Er+I satisfies the equalion 

(4) 

for every monomial X' of degree r +1. Thi� equation has a unique 5olution a 

in OR. which actually belongs to o. For if we put y = r-r 1ff
1

• 
1

, we obtain 

the equation 

a - ya'P = fJ. 

which is clearly 50Jved by the series 

a =/J+yfff +y
11

<Pj3<P
2 
+··· E 0 

(the series bccau:;.e Vf(Y) � I). If r.i is another �olution, 

then a - a'  - a''P), hence VR (a - a') = VR (y) + Vf< ((a - 

a')'P) = Vf?(Y) + vf<(a - a'), i.e.. Vf<(a - a')= oobecause Vf?(Y) � I, 

and therefore a = a'. As a consequence, for every monomial X' of 

degree r + I, equation (4) ha5 a unique solution a in o, i.e., there 

exists a unique Er11(X) E ofXl satisfying (2). This finishes the proof. 

C 

 
(2.3) Corollary. Let rr and ff be prime elements of K, and let e E En, 

C E En be Lubin-18te series with coefficient.� in o K . Let n = 11 IT, u E lJK, 

and u = c;<r-1, c: E UR. Then there is a uniquely detennined power series 

U(X) E Clf? l[X ]I such that0(X) = eX mod deg 2 and 

C(;0=0<Pnf. 

Furthennore, there i.� a uniquely determined power series [11 ](X) E OK [[X]l 

such that lu](X) = uX mod deg.2 and 

Co[ul=fu]oC. 

TI1cy salisfy 
 

 

Proof: Putting L(X) = FX, we have nL(X) = JfU'(X) and the first 

claim follow" immediately from (2.2). In the �ame way, with the linear 

for'.n L(X) = uX, one obt�lins the e.xi�tencc and ��iquenes� of the power 

senes [u](X) E OA [IX]]. Finally, definmg 111 = ()VJ  o 111], we get 
1 1 1 

e001 =(e00)¥'  o[u]=(0¥'0C)<P- cfu]=(()¥' 0[11])�',)C=&'('oC, 

and thw, 01 = 0 because of uniqueness. Hence (jif = 0 o fu I. D 
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(2.4) Theorem. Leta= upvr(a) E Q.� • and let ( be a primitive p11-th root of 

unity. Then one h:i.� 

 

Proof: As N is dense in z,,, we may a1-:c.umc that u E N, (u. p) = 1. 

Let K = Qp, L = Q,,((). and lel a E G(LIK) be the automorphism 
delincd by 

("=" (11-1 

Since Qp(OIQ\; is totally ramified, we have G(LIK) _ G(lli), and 

we view a as an clement of G(llK). Then a- = rT({!L E Frob(LIK) is an 

element such that dK(ir) = 1 and OIL= a. The fixed field E ofO is tolally 

ramified bccau<;e fi1K = dK(&) = 1 by chap. IV, (4.5). The proof of the 

theorem i5 based on the fact that lhc field E can be explicilly generated by 

a prime element Irr which is given by the power series 0 of (2.3). 

In order to do this. ai,.sume 6 and cp = ({!L have been extended continuously 

to the completion L of L, and consider the two Lubin-Tate polynomials 

e(X) =upX +Xfi  and l'(X) = (I +X)f'- J 

as well as the polynomial [u](X) = (I + X)" - I. Then l'([uj(X)) 

(I+X)"f' - I = ful(e"(X)). By (2.3), there is a power series 0(X) E Of:. [[Xll 

such that 

ec0=0'Po£'  and  (J<P=0�[u]. 

Substiluting the prime element )., = ( - 1 of L, we obtain a prime clement 

of Eby 

rrr =0(A). 

Indeed, ful(Aa) =(I+ A")" - I= (a11- I= ( - I= A, and therefore 

rr';; � U''(l."J � 0(ful(l."l) � 0().) � rrr, 

i.e., rr 2,· E E. We will show that 

P(X) = e"-1(X)fl I + up E z,;[X l 

is the minimal polynomial of rri:;, where e1 (X) is defined by e0(X) = X and 

e'(X) =c(c1
-
1(X)). P(X) is monic of degree p"-1(p- I) and irreducible 

by Eisen1-lein's criterion, as e{X) = XI' mod p, and so e11
-1(X)P-1 

Xl'"-1
{p-lJ mod p. Finally, e11(X) = e"-1(X) (up+ e11-1(X)l'-1) = 

e11
-
1(X)P(X), so that 

P(rrr)c"-1
(1T2,·) = e"(rrr). 

Since e' (rrr) = e1 (0(A)) = (J<P' (f' (A)) = 0<P
1 

((I+ ).)P' - I)= ()'+'
1 

1'' - I). 

we have en(rr.d = 0. e"-1(rrr)-/=-0, and thu� P(rr1:) = 0. 
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Observing thal NLid(-1) = (- 1/ p,d = IL : K J (see chap. II, (7.13)), 

we obtain 

Nx K(ni;) = (-l)J P(0) = (-1)" pu = u mod N1.wL* 

and therefore rLIK (rr) = 11 mod Nt.lK L *, i.e., (u, LI K) = (a, LIK) =a, 

required. D 

 

In order to really understand this proof of theorem (2.4), one ha� to 

read §4. Let us note that one would get a direct, purely algebraic proof, if 

one could show without using the power series 0 that the splilting field of 

the polynomial e11(X) is abelian, and that its elements are all flxcd under 

0 = rrtpL. This splitting field would then have to be equal to the fieldr 
and every zero of P(X) = e"(X)/e" 1(X) would have to be a prime 

clement nx Er  �uch that Nx,K(nr;) = u mod NL1KL*, in which ca�e 

l'LIK (rr) = u mod NL KL*, and so (11, L IK) = rr. 

 

Exercise l. The p-cla�\ field theory (d: (;IJ,, --+ Z/!, v: Q;,---+ Z) for the unramili.cd 

z,,-extcnsion of IQ,,, and the p-cla•� field theory (J: GQ,, --+ Z1,, D: Q�,---+ Z1,} for 

the cyclocomic Zp-exten•1on of Q , (�cc � 1, e;i;.erci�e 7) yield the same nomi residue 

,ymhol ( . LIK). 

Hint: Show that thi��tatemcnt is equivalent to fornmla (2.4): (u. Q
1
,((l lG1i,)( = (" _, 

Exercise 2. Let LIK be a 1011.lly ramified Gal01s e:w..te�ion, andjet [ (1-c.p. Ri be 
che completion of the mt1:i:.imal unramitied extensmn L (re•p. K) of /. (re•p. K) 

Show that Nt.1;[• = K•, and that c\ocry y E [� with Np1;(r) =Ii� ofthe form 

y=TT,:::;' 1.rr, EG(LIK). 

Exercise 3 (Theorem of D""oRK). Let LI K be a totally ramified abelian e:i:.temion of 

p-adie number liekk Let.( EK' and y EL• \ueh that Nr1k(y) = .1. Let::, E [• 
,.ind choose a1 E G(LIK) such that 

_vfl I =n<'' 
Putting rr = n, rr,, one ha� (t. LIKJ = rr-1. 

Hint: See chap. IV, §5, cxen:1�e 1. 

Exerei�e 4. Deduce from exere1�e� 2 and 3 the formula (u,iQ ,(()IQI')( = (" 
1

, fur 

wme p"-th romofunity (. 
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§ 3. The Hilbert Symbol 

Let K be a local field. or K = IR. K = C. We assume that K comains 

the group 1111 of n-th roots of unity, where 11 i� a natural number which 

i� relatively prime to the characteristic of K (i.e., 11 can be arbitrary if 

char(K) = 0). Over :c.uch a field K we then have at our dispo<,a], on lhc 

one hand, Kummer theory (sec chap.IV. §3). and on the other, class field 

theory. It is lhe interplay between both theoric<,, which gives rise to the 

"Hilbert �ymbol" Thi:-. i� a highly remarkable phenomenon which will lead 

u:c. to a generalization of the classical reciprocity law of Gaus�. ton -th power 

residues. 

Let L = K ( �) be the maximal abelian extension of exponent n. 
By ( 1.5), we lhen have 

NLIKL* = K*". 

and class field theory give� us the canonical isomorphi�m 

G(LIKI ""K'/K'". 

On the other hand, Kummer theory gives the canonical isomorphism 

Hom(G(LIK).1111);::::::K: */K*11
• 

The bilinear map 

G(LIK) x Hom(G(LIK),11,,)-----+ µ11,  (a.x) 1---+ x(a). 

therefore defines a nondcgenerate bilinear pairing 

(-t;-): Kx/K*" x K*/K*n-----+ 1111 

(bilinear in the multiplicative sense). Thb pairing i� called the Hilbert 

symbol. Its relation to the norm residue symbol i:-. dc5cribcd explicitly in 

the following proposition. 

 

(3.1) Proposition. Fora.h EK*, the Hilbert symbol (T) E µ11 is given 

(a, K(v,,h,,)IK) v""b~ p(a.h) v,,b,,. 

 

Proof: Theimageofaundertheisomorphi�mK*/K*11
;:::::::G(LIK)ofclas� 

field theory is the norm residue symbol a =(a.LI K).The image of h under 

the isomorphism K*/KM � Hom(G(LIK).1111) of Kummer theory i� the 

character Xh: G(LIK)--,)- f.Ln given by x1,(r) = rV"h;✓h. By definition of 

the I lilberi symbol, we have 

p(a,h) =x1,(a)=a"v"h/v"ICh. 

hence (a. K(✓b)IK)✓b = (a, LIK)✓h = (T) ✓h. □ 

hy 



TT 
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The Hilbert 5ymhol hm, the following fundamental properties: 

(3.2) Proposition. 

(i) (""/) �(¥)("/), 

(ii) (" ;h') � (¥)("Ph} 

(i) (¥) = 1-¢::=:}aisanormfromtheextensionK(✓h)IK, 

(iv) (¥)�("fr', 

(v) ("·Ip-a)� I and("·;")� I, 

(vi) If(¥)= I forallh EK*, then a E KM. 

 
Proof: (i) and (ii) arc clear from lhc definition, (iii) follows from (3.1 ), and 

(vi) reformulates the nomlegencrateness of the Hilbert symbol. 

If h E K* and x E K �uch that xn - h #- 0, then 

a-1 

x" - h �  (x - (' f), fi" � h, 
1=0 

for some primitive n -th root of unity (. Let d be the greatest divisor of n such 

that y" = h has a solution in K, and let n = dm. Then the extension K (fi)IK 

is cyclic of degree m. and the conjugates of_\ - ( 1 fi are the elements x - (J f3 

such that j == i mod d. We may therefore write 

 

-h= d

n
-1 

1=0 

 

NKun1dx-('f3). 

Hence x11 -his a norm from K(vfi)IK, i.e.. 
 

Choosing x = I, h = 1 - a, and \- = 0, h = -a then yield (v). (iv) finally 

follows from 

(a/)(\")�(a ;")("/)(h/)t· ;h) 



= (a. ;ah)(h, ;ah)= (ah, ;ah)= I. □ 



l, 
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In lhe case K = IR we have n = I or n = 2. For n = I one finds, of 

course, ( ¥-) = I, and for n = 2 we have 

 

(a/)=(-])�_ .,gntl 

 

because (a,IR(v'h)IIR) = I for b > 0, and= (-I) ,gn;-i forh < 0.Here 

lhe letter p �ymbolically stands for an infinite place. 

 

Next we determine the Hilbert symbol explicitly in the case where K is 

a local field(# IR.,C) whose residue characteristic p doe� not divide n. We 

call thi5 the case of the tame Hilbert symbol. Since fl,, s;; /lq  I one has 

11 j q - I in that case. First we establish the 

 

(3.3) Lemma. Let (n, p) = I and x E K*. The extem,,ion K(✓.\)IK is 

unramified if and only if"x E UK K*11
. 

 

 
Proof: Let,.= uyn with u E UK, y EK*, so that K(Vx) = K(0[). Let 

K
1 

be the splitting field of the polynomial X" - u mod p over the residue 

class field K, and let K'IK be the unramified extension with residue class 

field K' (�ee chap. II, §9, p. 173). By Hcnsel's lemma, xn - u splits over K' 
into linear factors, so K(::fu) s;; K' is unramified. Assume conversely that 

L = K ( ,VX) i5 unramified over K, and let t = 11rr
1

, where u E UK and 

rr is a prime clement of K, Then vL( vmr') = ¾ vJ.(rr') = � E Z. hence 

nlr, i.e.. rr' E K*n, and thu� ,1.· E UKK*". CJ 

 

Since UK = /.lq- I x ut1 
every unit u E UK has a unique decomposition 

u = w(11)(u) 

with (JJ(u) E f..Lq-1 and (u) E ut1
l, u-= tv(u) mod p. With thi� notation we 

will now prove the 
 

 

(3.4) Proposition. lf(n,p)= I anda,hE K*,then 

(a/)= w((-l)"/i; yq-l)/11, 

 

where a= VK(a), fJ = VK(h). 
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Proof: The function 

h" )lq-l)/11 
(a,h) :=u)( (-1)"/i� 

 

is obviou�ly bilinear (in the multiplicative sen�e). We may therefore assume 

that a and hare prime elements: a=  TC, h = -TC11, u E UK. Since clearly 

{;r, -TC)= (rr. ;Jr)= I,we may restrict to the case a=  IT, h = u. Let 

y =�and K' = K(y). Then we have 

 

{;r,u)=w(u)(q-l)/n  and  (rr,K'IK)y=(;r/).v- 

 

By (3.3), we see that K'IK is unramified and by chap. IV, (5.7), (;rr. K'IK) 

is the Frobenius automorphism tp = i/JK'1K, Consequently, 

I_! : !!_)= 1/!_=J_ 

p y 
yif-=l u(q-lJ/=n w(u)(q-lJ/=,, {rr.u) mod p, 

hence = {rr.u). because /.-lq Ii" mapped isomorphically onto K* by 

�➔ □ 
 

 

The proposition <,hows in particular that the Hilbert �ymbol 

( JT/1) = w(u)(q-1)/n 

 

(in the case (n, p) = I) i� independent of the choice of the prime element 

;r. We may therefore put 

 

(�):=(Jr/)  for UEUK, 

 

(�)is the root of unity detcnnined by 

(�) = u\q-lJ/n mod PK• 

 

We call it the Legendre symbol, or the n-th power residue symbol. Both 

names arc justified by the 

 

(3.5) Proposition. Let (n, p) = I and u E UK. Then one has 

( 



 



 

1 
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Proof: Let ( be a primitive (q - 1)-th root of unity, and let m = q � 
1
. 

Then (11 is a primitive m-th root of unity, and 

 
(;)  = w(ut1 =I{:=::} w(u) E µm {:=::'> cv(u) = ((11

)' 

{:=::'> u = cv(u) = (t Y' mod PK □ 
 

 
 

 

It i� an important, but in general difticulL problem to find explicit formulae 

for the Hilbert symbol ( ¥) also in the case pin. Let u� look at the case 

where 11 = 2 and K = :Op· If a E :Z2, then(-!)" means 

(-])" ~(-])', 

where r 1� a rational imeger = a mod 2. 

 

(3.6) Theorem. Let n = 2. Fora, h E io;, we write 

11 = rl,:11', h = p/Jh',  a', h
1 

E UaJ, ,. 

lfp # 2, then 

ah)~ (-l)Y">("')"(h'_)". 
p p p 

In particular, one/la.\ ( P/)  = (-l)(f' IJ/l mid( Ef) = ( %), i(u i8a unit. 

Jfp = 2 ,wda,h E l/42, then 

(2/) = (-l)(11
2_1)/X, 

CJ/)= (\a)= (-l)�Y. 

Proof: The claim for the case p # 2 is an immediate con�e4uence of (3.4), 

and will be left to the reader. So let p = 2. We put IJ(a) = 
02� 1 

and 

f'(a) = a;  
1
. /\n elementary computation shows tha( 

11(a1a2) = 17(ai) + 11(a2) mod 2 and t·(a1a2) = E(ai) + t(a2) mod 2. 

Thus both sides of the equations we have to prove are it 

is enough to check the claim for a set of generators of 

i� such a set. We postpone thi� for the moment and define (a, h) = ( ¥). 

( 
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We have  = I if and only if xis a norm from (b(R)l(f2, 

i.e., x =  +  v. z E  Since 5 = 4 + 1 and 2 = 1 + I, we find that 

(-1,2) = = I.  we had (-1, - 1) = L then it would follow that 

(-1.x) = 1 for all x, i.e., -1 would be a square in IQ2,, which i� not the 

case. Therefore we have (-1, - I) = - 1. 

We have (2.2) = (2. - 1) = I and (5,5) = (5, - I)= I. It remains 

therefore to Jetennine = I would imply (2, _\) = I for all x, 
which is not the case. Hence (2, 5) = -1. 

By direct verification one sees that the values we ju�l found coincide with 

those of (-1)'1("l, resp. (-If(aJi(hl, in the respective cases. 
It remains to show that U\hl Uj, j<; generated by {5, - I}. We <;et U = 

U.:;:,;,_, u(n! =utt By chap. IL (5.5)

2

, exp: 2nz?---+ U(nl j._ an isomorphism 

for n > I. Since a i----+ 2a defines an isomorphi<;m 22Z2 ---+ 2122, x i + 

defines an isomorphi�m um ----,. ur'1. It follows that ()(1
1 £ U2. Since 

\I, -1,5, -5} is a�y<;tem of representative<; of U/U('l, U/U2 is generated 

by-land5. □ 

 
It is much more difficult to determine the n-th Hilbert symbol in the 

general ca1se. It was discovered only in 1964 by the mathematician Hn.,\Wi 

BNUCK.','I N. Since the result has not previously been published in an easily 

accessible place, we state it here without proof for the case 11 = pv of odd 

residue characteristic p of K. 

So let Jlp'' £ K, choose a prime element Jr of K, and let W be the ring 

of integer� of the maximal unramified �ubextension T of K IIQ,, (i.e., the 

ring of Witt vectors over the residue class field of K). Then every element 

r E K can be written in the form 

X � f(rr), 

with a Laurent series /(X) E W((X)). 

For an arbitrary Laurent serie� f(X) = L _  a1X
1 E W((X)), let 

lP ( X) denote the �eries 

where I.{! is the Frobenius automorphism of W. Further, let Res(/'dX) E W 

denote the re�idue of the differential fdX, 

d log l := 

and 

 

 

;1 f E I+ pWl[XJJ. 



1 

§1. The Hilbert Symbol '.B9 

 

Now let ( be a primitive pl -th root of unity. Then I - ( is a prime 

clement of Q1, ( (). and thus 

 

 

for some unit £ of K, where c is the ramification index of K IQp((). Let 

l}(X) E W[IXl) be a power serie5 5uch that 

F = IJ(lr), 

and let h ( X) be the series 

 

hX  -�  1+(1-X'ry(X))I'' 

( ) -  2 I - (I - X'ry(X))P' 

 
With this notation we can now state 8RL'C/<..1v1,11's fonnula for the p1'-th Hilbert 

symbol (:½f), p = char(K) #- 2. 

 

 

(3.7) Theorem. lfJ.,Y EK* and f,K E W((X))� �uch that f(n) = x and 

g(rr) = y. then 

where 

w(x. y) = Trw ·�, Resh·( !_ log �d  log R- !_ log�  !_d log f P) mod p"'. 
I fl f,. f) f.:' f) 

 

 

 

For the proof of this theorem, we have to refer to [20] (see al�o 

[69) and [ 1351). B1wcKNFR has also deduced an explicit formula for the 

case n = 2"', but it is much more complicated. A more recent treatment 

of the theorem, which also include1- the case n = 2". ha� been given by 

G. Hr·NN!,111! [69]. 

It would be interesting to deduce from these fonnulae the following cla�sical 

result of hlAIMtA [801, A1111,\• and /faw· (5cc 19)) relative to the field 

 

where ( i1> a primitive p"'-th root of (p -=f. 2). Putting n = I - ( an<l 

denoting by S the trace map from <:P,, lo  we obtain for the pt' -th Hilbert 

symbol ( ¥) of the field <:P,, the 
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(3.8) Proposition. For a E and h E <tii one hm, 

 
(I) 

 

where D log h denotes the fomial logarithmic deriw1tive in IT of an arbitrary 

representation ofh as an integral power series inn with coefficients in Zp. 

Fora EU�,\ one has furthermore the two supplementary theorems 

 

(2) 

 

 
(3) 

 

 

The supplcmentmy theorems (2) and (3) go back to ART!•\/ and HAsst 191. 

The formula (I) was proved independently by AHii,',' [ 10] and H1tsst 161] 

in the case v = 1, and by /WA\AWA [80] in general. In the case v = I. for 

instance, one can indeed obtain the formulae from BRUCKNt.H's theorem (3.7). 

Since 

-
I
S((rr') � 

11 mod p. 

p Omodp, 

i = p-1. 

i -1-1,-1, 

 
and  log a= 0 mod p2, 

one may also inlcrpret the (-exponent in the formulae ( I )--{3) as the (p-  I)­ 

st coefficient of a rr-adic expansion of log a D log h. In this way it appears as 

a fonnal residue Res11 --;;r log a D log h. As to the '-upplcmentary theorems. 

one ha� to define also D log ( = -(-1
, Dlogn = rr-1. 

 

Exercise 1. For n = 2 the Hilbert symbol ha" the following concrete meaning: 

( ¥) = I <=:::'> u.1.2 + /1y" - :" = O ha� a nontrivial '-Olution m K. 

 
Exercise 2. Deduce proposition (3.8) from theorem (3.7). 

a lornl field of characteristic p. let K be it\ "eparable 

clo�ure. and let 

t,J: W,,(J<) ..... ;. 

that one has 

he the ring of Witt vectors of length n. wilh the operator 

= Fa - a (�ee chap. IV. § 3. exerci�c, 2 and 3). Show 

Excrcir.e 4. Ah�tracl Kummer theory IV.  

exlcn�ion LI K ot exponent II a ,urJectivc honmmocpl,,sm 

W,,(K) ,,. Hom(G(l,IK), W11(1�'1,)),  1 f--* X,, 

maximal ahehan 



where one ha, 

�uch that p� = ,(. 
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Exercise 5. Deline, for x E W"(K) and a EK*. the symbol [x.a) E W,,W1) by 

[r.a) := x,((a.LIK)), 

where (, LIK) i� lhe nonn rc�idue \ymbol. Show; 

(i) [x,a) = (a.K(!;)[K)!; -!;, iq EW
11
(i<) with r,Ji'; =X. 

(i1) [r+y,a)=lx,a)+fv.a). 

(iii) I-Lah)= [,1.,a) + [.1,h). 

(iv) = 0 -¢==} a E NkiOlkK(l;)*, where/; E W,,(i<) i� an ekment \Ueh 

that 

(v)[J,a)=OforallaEK* {=::} 1 E,pW,,(K). 

(vi) (r.a) = 0 for all .1 E W,,(K)-¢==} a E K*1'" 

Exercise 6. Let K be the re�iduc class field of K and n a prune elemcrn �uch that 

K = K((n)). Let 
d:K---;.Q11K"  jf ------ *df, 

he the rnnonical map to the differential module of K IK (�ee chap. Ill,* 2, p.200) 

For every f E K one ha� 

where  i� the formal derivative of/ 111 

with m K. Show that for r,J = 

Rescv:=a-1 

doe� not depend on the choice of the prime clement n. 

Exercir.e 7. Show that in the ca�c n = 1 the symbol [r.aJ i� given by 

[r.a) = Tr�11fi',, 

 
Remark: Su<.:h a tonnula can also be given for n:::: I (P. Koutt 1881). 

 
 
 

 

§ 4. Formal Groups 

 
The mo�t explicit realization of local cla�s field theory we have encoun- 

tered for the case of cyclotomic fields over the field i.e.. with the ex- 

where ( is a p" -th root of unity. notion of formal 

group us construct �uch an explicit cyclotomic theory over an ar­ 

bitrary local field K by introducing a new kind of roots of unity which are 

"division points" that do the same for the field K as the p11-th rooh of unity 

do for the field '!Jlp- 
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(4.1) Definiton. A (1-dirnen.�ional, commutative) formal group over a ring o 

is a formal power series F (X, Y) E o[f X, Y]] with the fol/owing properties: 

(i) F(X, Y) = X + Y mod deg 2, 

(ii) F(X,Y) = F(Y,X) '·commutativity", 

(iii) F(X. F(Y, Z)) = F(F(X, Y), Z) "as.rnciativity•·. 

 

From a fonnal group one gets an ordinary group by evaluating in a domain 

where lhe power series converge. If for instance o i<; a complete valuation 

ring and p its maximal ideal. then the operation 

x+y := F(x,y) 
j, 

defines a new structure of abelian group on the set p. 

 

Examples: 

I. !Ga(X, Y) = X + Y (the fonnal additive group). 

 

2. l[;,m(X, Y) = X + Y + XY (the fonnal multiplicative group). Since 

X + Y + XY �(I+ X)(l + Y) - \, 

we have 

So the new operation + is obtained from multiplication via the translation 
f;llt 

X f-+ X + 1. 

 

3. A power series f'(X) = a1X + a2X2 + E o[[X]J whose first 

coefficient a1 is a unit admits an "inverse'", i.e., there exi:-.ts a power series 

f'-1
(X) =ai1

X +  • E oLlX]], 

such that f 1 (,f(X)) = f'(f-1(X)) = X. For every <such power series, 

F(X, Y) � f '(f(X) + ((Y)) 

is a formal group. 

 
(4.2) Definition. A homomorphism/: F ➔ G hetwecntwoforma/groups 

i.�apowcrseries f'(X) = a1X +a2X2 + • • E o[fX]] such that 

f(F(X, Y))� G(f(X), {(Y)) 
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In example 3, for instance, the power series f is a homomorphism of the 

formal group F to the additive group Ga. It is called the lo;.:arithm of F. 

 

A homomorphism f : F ➔ G i:. an isomorphism if a1 = f'(O) is a unit, 

i.e., if there is a homomorphism g = /-1 
: G ----+ F such that 

/(g(X)) � g(f(X)) � X. 

If the power series f(X) = a1X + a2X2 + satisfies the equation 

f(F(X.Y)) = G(f(X), /(Y)), but its coefficients belong to an extension 

ring o', then we call this a homomorphism defined over o'. The following 

proposition j<, immediately evident. 

 

 

(4.3) Proposition. The homomorphisms f : F ----+ F o( a fonrnil group r 
over o form a ring End0(F) in which addition and multiplication are defined 

by 

Uj;xHX)�F(f(X),g(X)), (/og)(X)� /(g(X)). 
 
 
 

(4.4) Definition. A formal o-module is a formal group F over o together 

with a ring homom01phism 

o----+ End0(F),  a f----+ [aJ,. (X), 

8Uch that [a IF(X) = aX mod deg 2. 

A homomorphism (over o' 2 o) between formal o-modules F, G i1, a 

homomorphi.m1 f : F ➔ G of formal groups (over o') in the seme of (4.2) 

such that 

f([a[F(X)) � [alu(/(X))  focal/  a Ev. 
 

 

Now let o = OK be the valuation ring of a local field K, and write 

q = (OK : PK). We consider the following special formal OK-modules. 

 

 

(4.5) Definition. A Lubin-Tate module over OK for the prime element n is 

a formal oK -module F such that 

[n]F(X) = X<f mod n. 
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Thi� definition reflects once more the dominating principle of class field 

theory, to the effect that prime clements correspond to Frobenius elements. In 

fact, if we reduce the coefficients of some fonnal o-module F modulo rr, we 

obtain a formal group F(X. Y) over the residue cla�� field The reduction 

mod n of [rrlF(X) is an endomorphism of F. But on   other hand, 

f(X) = X" is clearly an endomorphism of F. its Frohenius endomorphism. 

Thu� F i� a Lubin-Tate module if the endomorphi�m defined by a prime 

element rr gives via reduction the Frobenius endomorphism of F. 

 

Example: The fonnal multiplicative group Gm i� a formal Zp-module with 

respect to the mapping 

Z1, -  Endz,,(G,,,).  u c, [alc,,,(X) �(I+ X)" - 1 � I; ('.'.)X' 
V=I 

:G111 is a Lubin-Tate module for the prime element p becau<;e 

[ph;,,,(X) =(I+ X)f! - 1 = Xfl mod p. 

 
The following theorem gives a complete and explicit overall view of the 

totality of all Lubin-Tate modules. Let e(X). C(X) E OK l[X]l be Lubin-Tate 

series for the prime element ;r of K, and let 

F,(X. Y) E oK[[X. Y II and Jal, c,(X) E vdlX]] 

(a E OK) be the power series (uniquely determined according to (2.2)) such 

thal 

F,.(X. Y) � X + Y mod deg 2.  e( F,,(X. YJ) � F,.( e(X). e(Y)). 

[<,], c,(X) � uX mod deg 2. e(La], 0(X)) � [al,c(c(XJ) 

If e(X) = C(X) we simply write [a],.,,;(X) = [a],,(X). 

 

(4.6) Theorem. (i) The Luhi11-Talc module.� fiJr JT are precisely the .-,cries 

F,,(X, Y), with tile fom1a/ OK -module structure given by 
 

 
(ii) For every a E OK tile power series [al,,.c(X) is a homomorphism 

La],,_c: Fr-----+ F,, 

of formal o-modulcs, and it i� an i.rnmorphism ifa is a unit. 
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Proof: If F is any Luhin~Tate module, then e(X) := [rr)F(X) E £71 

and F = F,, becam,e e(F(X, Y)) = F(c(X),e(Y)). and because of the 

uniqueness statement of (2.2). For the other claims of the theorem one has 

to show the following formulae. 

(I) F,(X, Y) � F,.(Y,X), 

(2) F,(X. c;.(Y, Z)) � F,.(F,.(X. Y). ZJ, 

(3) [a[,. ,(Fa(X, Y)J � F,.([a[,. a(X). [a],.,(YJJ, 

(4) [a+ hJc.o(X) � F,([u],..,(X). [h[,. ,(X)). 

(5) [ahl,J(X) � [al, ,([hi, i(X)J. 

(6) [,r [,.(X) � c(XJ. 

(I) and (2) �how that Fe is a fonnal group. (3), (4), and (5) 5how that 

OK.._ EndoK (Fe), a!-------'>- [a],,, 

is a homomorphi�m of rings, i.e., that F,, b a formal OK-module, and that 

[ale.<' is a homomorphi5m of formal 0K-module5 from Fe to F,,. Finally, 

(6) show� that F,, is a Lubin-Tate module. 

The proof5 of these formulae all follow the same pattern. One checks 

that both sides of each fonnula are solutions of the same problem of (2.2). 

and then deduces their equality from the uniqueness 5talcment. In (6) for 

instance, both power series commence with the linear fonn rr X and satisfy 

the condition e([rrl,.(X)) = rrrl,(e(X)), resp. e(e(X)) = e(f(X)). □ 
 

 
Exercise I. End0(G,,) consist\ of all aX such that a E ci. 

Exercise 2. Let R be a commuta1ive Q-algcbra. Then for every formal group F(X, Y) 

over R, there cx1stq a unique isomorphism 

log1 : F------>- G,,, 

such 1ha1 log1 (X) = X mod deg 2. the logarithm of F. 

Exercise 4. Let ,r a prime element of the local lield K, and le! f(X) = 
X + ,r IX'' + .. Then 

F(X.Y)=J 1(/(XJ+f(Y)), [a]1-(X)=/ 1(<1/"(X)), aEOK, 

define\ a Lubin-Tt-1tc module with logarithm log = 

 

 
 

Exercise 3. log,:_.:,,,(X) = 



346 Chapter V. Local Class Field Theory 
 

 

Exercise 5. Two Lubin-Tate module� over the valuat10n ring o� ot a local field K, 

but for different prnne clement� :rr and ff. are never isomorphic. 

 
Exercise 6. Two Luhm-Tatc modules F,, and Fe for pnmc clcmem� :rr and H alway� 

become H,omorphic o\-er  where K l\ the eomplellon of the maximal unramificd 

extension i!IK. 

Hint: The power �erie� Hof (2.3) yields an isomorph1�m H : h,---.,. F,.. 
 
 
 
 

 

§ 5. Generalized Cyclotomic Theory 

 
Formal groups are relevant for local class field theory in that they allow 

us to construct a analogue of the theory of the pn -th cyclotomic 

field :Qlp(() over  with its fundamental isomorphism 
 

 

(see chap. II (7.13)), replacing ([JP by an arbitrary local ground field K. 

The formal groups furnish a generalization of the notion of pn -lh root of 

unity, and provide an explicit version of the local reciprocity law in the  

corresponding extensions. 

 

A fonnal OK-module gives rise to an ordinary OK-module if we read 

the power series over a domain in which they converge. We now choose for 

this the maximal ideal p of the valuation ring of the algebraic clo�ure K of 

the given local field K. If G(X1,  ,X,,) E odfX1,  ., Xnll is a power 

<;eries with con<;tant coefficient 0, and if .t1, , \n E jj. then the series 

G(.t1,  ,xn) converges in the complete field K(x1, .....t,1) to an element 

in jj. From the definition of the formal o-modulcs and their homomorphism� 

we therefore obtain immediately the 

 

 

(5.1) Proposition. Let F be a formal OK -module. Then the .�er p with the 

operatiom 

,-+y=F(.\,}") and a•x=laJ,,(x), 
I 

x, y E jj, a E OK, is an CJK -module in the usual sense. We denote it by PF- 
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If f : F ----+ (J is a homomorphism (isomorphism) of fonnal OK-modules, 

then 

f:IJF-------+Pc,  xi -------- +f(x), 

is a homomorphism (bomorphism) of ordinary OK-modules. 

The opcralions in pF, and particularly scalar multiplication o • x = 

[a],. (x), must of course nol be confused with the usual operation� in the field 

K. 

 
We now consider a Lubin-Tate module F for the prime element n of OK. 

We define the group of n"-division points by 
 

This is an OK-module, and an oK/TrnOK-module because it i� killed 

by n"oK. 

 

 
(5.2) Proposition. F(11) i.\;1freeoK/TrnOK-moduleofrnnk l. 

 

 

Proof: An isomorphism f" F ----+ (J of Lubin-Tate module� obviously 

induce� isomorphi5ms f • IJF ----+ Pc and f F(n) � G(n) of OK­ 

modules. By (4.6), Lubin-Tate modules for the same prime element ;r are all 

i�omorphic. We may therefore assume that F = Fe, with e(X) = X'I +n X = 

lnlF(X). F(n) then consists of the q" zeroes of the iterated polynomial 

e"(X) = (e o • • o e)(X) = Ln"J,. (X), which is ea�ily shown, by induction 

on n, to be separable. Now if A,. E F(11) "- F(n - 1), then 

OK-------+F(n). of ------fa•An, 

is a homomorphi�m of OK-modules with kernel n"oK. It induces a bijective 

homomorphism OK /n"vK ----+ F(n) because both sides arc of order q".  fJ 

 

 

(5.3) Corollary. A.�.mciatingo f--+ lo]F we obtain canonical isomorphism.� 
 

 

 

Proof: The map on the left is an isomorphism since VK /nnoK � F(n) 

and End0K(oK/HnOK) = oK/n"oK. The one on the right is obtained by 

taking the unit groups of these rings. D 
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Given a Lubin-Tate module F for the prime element rr, we now define 

the field of 1r'
1-division points hy 

L,, � K( Fin)). 

Since F(n) s; F(11 + I) we get a tower of fields 

 

Ks; L1 s; L2 s; ... s; L;r := � l,n• 
1 1 

 

These !icld� arc also called the Lubin-Tate extensions. They only depend 

on the prime element rr, not on the Lubin-Tate module F. For if G i� 

another Luhin-Tate module for n, then by (4.6), there is an i�omorphism 

j : F---+ G. f E CJKl(X]I <;uch that G(11) = f(F(n)) s; K(F(n)), and 

hence K(G(n)) = K(F(n)). If Fis the Lubin-Tate module F,. belonging to 

a Lubin-Tale polynomial e(X) E Err, then e(X) = [rr 1,.-(X) and l.u IK is the 

splitting field of the 11-fold iteration 

,/'(X) = (e0 o e)(X) = lrr11l,.-(X). 

 

Example: If OK = Z1, and F is the Lubin-Tate module Gm, then 

So Gm(n) consists of the elements ( - 1. where ( varies over the pu -th roots 

of unity. Ln IK is therefore the pn -th cyclotomic extension iJJ:p(/Lp" )IIQ1,. The 

following theorem shows the complete analogy of Lubin-Tate exten�ions with 

cyclotomic fields. 

 

(5.4) Theorem.  L11IK is a totally ramified abelian extension ofdcgrccq"-1(q­ 

i) with G;ilois group 

G(l.11IK);:::::A::utci/((F(n)) ;::::::: UK Jut, 

i.e., for every a E G(lanlK) there is a unique cfass u mod U�'i, with II E UK 

such lhal 

A"= lu]F(A)  for A E F(n). 

Fwthermore the following is true: let F be the Lubin-Tate module F,, as�ociated 

10 the polynomial e(X) E Err, and let ).n E F(n) '-- F(n - I). Then A11 is a 

primeclementofl11, i.e., L11 = K(A11), and 

</) (X) = � =  Xlf/J-l(q-l) +···+Jr E OK[Xl 

n cn-l(X) 

isitsminimal polynomial. In particular one has NL,,IK (-An) =Jr. 
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Proof: If 

e(X) = X'I +rr(a" 1xq-l +··•+a2X
2)+rrX 

is a Lubin-Tate polynomial, then 

en(X) 

</Jn(X) = en l(X) 

=en-1(X)lf-l+rr(aq-1e11 1(X)'I 2+  +a2c"-1(X)) +rr 
 

is an Eisenstein polynomial of degree qn-1(q - I). If Fis the Luhin-Tate 

module associated toe, and A,, E F(n) "- F(n - I), then ).11 is clearly a zero 

of this Eisenstein polynomial, and is therefore a prime element of the totally 

ramified extension K(A11)IK of degree q11-1(q - I). Each a E G(LIK) 

induces an automorphism of F(n). We therefore obtain a homomorphism 
 

Il b injective because L,, is generated by F(n), and it i� surjective because 
 

This proves the theorem. '.] 

 

 

Generalizing the explicit norm residue "ymbol of the cyclotomic fields 

(see (2.4)), we obtain the following explicit formula for the 

�ymbol of the Lubin-Tate extemions. 

 

 
(5.5) Theorem. For the field L11IK of rr"-division points and for a 

un"K(a) EK*. u E UK, one has 

(a, LnlK)A = [u 1]F(A), A E F(n). 

 

Proof: The proof is the �amc a� that of (2.4). Let a E G(LnlK) be the 

automorphism <such that 

A"=  fu-1]F(A),  A E F(n). 

 

Let Ci be an element in Frob(L11IK) such that a- ;::c OIL,, a.!!d 1fKJO) =I.We 

view Ci as an automorphi"m of the completion L,, = L,,K of L,,. Let E he 

the fixed field of 0. Since  = I, EIK is totally ramified. It has 

degree q11 1\!j- IJ because = K and f = EK= L,,. Consequently 
IE, Kl� IL,,, Kl� fl,,, K]. 
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Now let e E En, e E Err be Lubin-Tate series over OK, where Jr=  urf, 

and let F = F,;. By (2.3), there exi&ls a power series 0(X) =EX+  E 

OR[[X]]. with EE UK, such that 

0'-P = 0 o [ulF and 0'-P ::iC = eo0 (tp = tpK}. 

Let An E F(n) "- F(n - I). i\.11 is a prime element of L11• and 

 

i5 a prime element of E because 

rrf = 0<f(A�) = 0q'( [u-
1
JrCAn)) = 0(An) = rrr;. 

 
Since ei(0(An)) = ()rf' (e"'(A,1)) = 0 for i = n, and# 0 fori = n - 1, 

we have JrJ; E F,,(n) "- F,,(n - I). Hence E = K(rrr;) is the field of rrn­ 

division points of Fe, and Nr;1K(-nr;) = Jr = urf by (5.4). Since rr = 
NLn1d-An) E N1.,,wL�, we get 

rL/JIK(a) = Nr:1K(-rrr;) = Jr a= 11 tnod NL,,1KL;. 

and thw, 
 

 

 

 
(5.6) Corollary. The field Ln IK ofrr11-divi.<,ion poinls i1> the class field relative 

tothegroup(rr) x ut1
s; K*. 

 

Proof: For a= urr''K(a) we have 

aEN1 wL;-<==}(a,LnlK)=i{::::::::}f11-1]F(A)=A forallAEF(n) 

{=::::} [u-1JJ, = idf"(n) -¢=:} ll-l EU¼!)-<==} a E (rr) XU¼,). 

□ 

 
For the maximal abelian extension K""IK, thb give& the following 

generalization of the local Kronecker-Weber theorem ( 1.9): 

 

(5.7) Corollary. The maximal abelian extension of K is the compo.�ite 

K"h= f<Lrr, 

where Ln is /he union LJ�1 Ln of the fields L,, ofrrn-division point.�. 
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Proof: Let LIK be a finite abelian extension. Then we have rrl E N1.1KL* 

for suitable f. Since NLIKL* is open in K*, and since the u;t fom1 a basis 

of neighbourhoods of I, we have (nf) xv¼') £ NL1KL* for a suitable 

n. Hence L is contained in the class field of the group (;r I) x urJ  = 

((rr) x U}t) n ((rrf) x UK). The class field of (Jr) x uini is L11, and that 
of (;rf) x UK js the unramified extension KI of degree f. It follow<, that 

L£K1L11£KLrr=K(lh. n 
 

 

 

Exercif.e I. Let F = F,, be the Lubin-Tale module for the Lubin-Tate e E 

with the endomorphi�m� [a]= la],. Let S = oKIIX]I and S¥ = 1g E  g(O) E 

Show: 

(i) If g ES 1s a power �eries �uch that g(F(l)) = 0, then Ii is div1�ihle by [Jr], i.e.. 

g(X) = [n](Xlh(X), h(X) ES. 

(ii) Let g E S be a power series such that 

g(XtA)=g(X) forall AEF(l), 

where we write tX  A=  F(X, A). Then there exi�t\ a um4ue power series h(X) in 

S such that 

g =hon. 

Exercise 2. If h(X) i� a power qerie� in S, then the power �cries 

h1(X)= n h(X+A) 
J,�/ (II F 

abo belongs to S. and one has h1(X ;A)= h1(X) fur all A E /<(I). 

Exercise 3. Let N(h) Es· be the power �erie� (uni4uely detennined by excn:i�c I 
and cxerci�e 2) quch that 

N(h)o[nl= n h(X+A) 
A�/ ill I 

Thi; mapping N : S ·-➔ S jq called Coleman's norm operator. Show: 

(i) N(h1h2) = N(h1)N(h!l- 

(ii) N(IIJ = h mod p. 

(Iii) h E: x·s- for i "::. 0 ⇒ N(h) E X1S*. 

(iv) h :cc: I mod p' fori C::: I==} N(h) = I mod p1~1 

(v) For the operators N11(h) = h, N/)(h) = N(N" 1 (h)), one ha� 

N"(h),,[;r"J= h(XtA),  fl:::_ 0. 

 

(vi) If h E X'S', i _:::-. 0, then N"-1(h)/N"(h) Es· and 

N"+1{h}� N"(h) mud p"-1
. fl:::: 0. 
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Exercise 4. Let A E F(n + I,)  F(n), n:;: 0. and A, = In" 

i::; n. Then A, is;;, prime clement of the Lubin-Tate extension 

and L\-,-1 = odA, l i� the valuation ring of L1-,-1• with maximal 
Show: 

lei f:l, En" 'p1o,+1, 0 :Si :S: n. Then there exist� a power serie\ li(X) ES �ueh 
that 

h(A,)=fl, for 0'.5:i �n. 
 

N11.1(11) = h().,) for O::: i::, n. 

where N,, , i� the norm from L,,1 1 to L,➔ 1- 

Remark: The \Olutions ofthe\e excrci\es arc di\CU��cd in detail 1n 179], 5.2. 
 
 

 

§ 6. Higher Ramification Groups 

 
Conr,idering the homomorphism 

,LIK), K' -  G(LIK) 

defined for an abclian extension tlK of local llelds by the nom1 re:,,1due 

�ymbol, it is striking that both groups are equipped with a canonical filtration: 

in the group K* on the left we have the descending chain 

of higher unit group:, ut1
, and on the right there i:- the der,cending chain 

(**I G(l,IK) 2 G0(LIK) 2 G'(LIKI 2 G2(1,IKI 2 • 

of ramification 1;roup� G1 (LI K) in the upper numbering (5ee chap. II, S 10). 

The latter arose from the ramification groups in the Inv.er numbering 

C,(LIK)=\aEG(LIK)l11L(aa-a)�i+l forall aEth\ 

via the strictly increa:-ing function 

 
'lLIK(S) = --- 

(Go: G.,) 
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by the rule 

 
where ifr is the inverse function of T/. We will now prove the remarkable 

arithmetic fact that the norm residue symbol ( . LIK) relates hoth filtratiom. 

(*)and(**) in a precise way. To this end we determine (generalizing chap. II, 

§ I0, exercise I) the higher ramification groups of the l,ubin-Tate extensions. 

 

(6.1) Proposition, Let /,11I K be /he field ofrr" -divi.�ion point�ofa Lubin-Tate 

module for the prime element Ir. Then 

G,(L,,IK) = G(L11ILd  for l-1 :::Si :::Sq" - 1. 

 

Proof: By (5.4) and (5.5), the norm residue symbol gives an isomorphi�m 

UKJui<_"J----+ G(LklK) for every k. Hence G(LnlLt) = W; "1.L,1IK). We 

therefore have to show that 

G1(L11IK) = (uf1,LnlK)  for q�-
1
::: i::: t/ - I 

Let er E G1(LnlK) and er=  (u-1,LnlK). Then we have nece�sarily 

u E U�
1 

because (,L,1IK): UKJut
1 
�  G(L11IK) maps the p-Sylow 

subgroup u)/1;u1;l onto the p-Sylow �ubgroup G1(L,,IK) of G(L11IK). 

Let u = I +c;r111
, e E lh. and A E F(n)" F(n-1). Then Ai� a prime 

element of Ln and from (5.4) we get that 

!c" � [ul, (!cl� F(J., lrn"'[F(!c)) 

If m :::_ 11, then er= I. so that - A)= oo. If m < 11, then A.11 ,,, = 

[rr"' J,, (A) is a prime element  and therefore also (Frr"' J,. (A) = 

A� Ln IL,-m is totally ramified of degree q111 we may write 

= F0A'I'" for <;ome c:0 E llt,
11

• Since 1-(X.0) = X, F(O, Y) = Y, 

we have F(X. Y) = X +Y +XYG(X. Y) with G(X. Y) E oK[[X. Y]]. Thu� 

Ac, - ). = FO.. t:o),'1"') - A= FoA'I"' +aA'fm+i, a E 01.,,, 

i.e.,  
_ -rr , lq"',  ifm < II, 
IL,,1K (er) := l'/.,, (A - A) = 

00,  ]fm ::'._ II. 

By chap. II, § 10. we have G1(L11IK) = {a E G(LnlK) I it rrlK(r:r) ::'.. 

i + I}. Now let :::Si::: i - I. If u E u; "1, then m:::: k. i.e.. 

iL,,1K(a) :=: t/ :=: + I, and w a E G,(LnlK). This proves the inclusion 

(U; "1.L11IK) s; G,(L,,IK). If conversely r:r E G,(LnlK) and a#- I, then 

iL,,1da) = q111 > i :=: l-1
. i.e., m ::'.: k. Con�equently u E ufl, and this 

shows the inclusion G,(L,,IK) £ Wf!,LnlK). □ 
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From this proposition we get the following result, which may be consid­ 

ered the main theorem of higher ramification theory. 

 

(6.2) Theorem. If LIK is a finite abc/ian extemion, then the norm residue 

1,ymbo/ 

,LIK), K' -  G(LIK) 

maps the group ut1onto the group Gu(L IK), for n 2:: 0. 

 
Proof: We may assume that /, IK is totally ramified. f<or if LOIK is 

the maximal unramificd subextemion of LI K, then we have on the one 

hand cn(LIK) = Gn(LIL0) because ifru11K(s) = � and 1/t!,w(s) = 

if.r1.1t.o(i/ru1w(�)) = if.rLllo(s) (see chap.II, (10.8)). On the other hand, by 
chap. IV, (6.4), and chap. V, (1.2), we have 

(v�7/,LiL
0

) = (Nu1wVl71
1
.LIK) = (ut1.LIK). 

so we may replace LIK by LIL0. 

If now LIK is totally ramified and TCL is a prime element of/,, then 

n = NLiK(IrL) is a prime element of Kand (rr) x u;;"1 � NL1KU form 

sufficiently big. Therefore LIK is contained in the class field of (rr) x u;;"l, 
which, by (5.6), is equal to the held Lm of nm-division points of some Lubin-

Tate module for rr. In view of chap. II, (10.9), and chap. IV, (6.4), we may 

even assume that L = Lm, By (6.1), the norm residue !,ymbol maps the 

group U t)  onto the group 

G(LmlLn) = G,(LmlK) for qn -I _:s i _:s q11- I. 

But we have (see chap. II, § I0) 

Y/1.1K(qn - 1) = _!_(1?1 + ··· + �q"-d 
Ro 

withR1 =#G,(LIK)=#G(L1111Ln)=(qm 1-qn-l)(q-l)forqn 1 _:si _'.:: 

qn -1. Thi:;. yield:;. lJLiK (q" -1) = n and thu:;. Wjt.!.IK) = G,,11-1(LIK) = 

G"(LIK), □ 

 
Higher ramification groups G1(LI K) were introduced for arbitrary real 

numbers / 2:. -1. Thus we may ask for which numbers they change. We 

call these numbers the 1ump� ot the filtration {G1(L IK )/1 1 of G(L IK). In 

other words, t is a jump if for all E > 0, one has 
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(6.3) Proposition (IIA\SI: -A11r). For a finite abelian exten.�ion LI K, the jumps 

of the filtration /G1(L IK)}1-,_1 ofG(L IK) are rntional integers. 

 

Proof: As in the proof of (6.2), we may assume (since G1(LIK) 

G1(LII.0
)) that LIK is totally ramified and contained in a Lubin-Tate 

extension L111IK. If nowt is a jump of {G1(L IK)}. then by chap. II ( 10.9), 

t is also a jump of {G1(Lm IK )}. Since by (6.1), the jump5 of {Gv(Lm IK)) 

are the number5 qn - I. for n = 0, ... , m - I (q = 2 is an  O is 

not a jump), the jumps of {G1(L,,,IK)} are the numbers - 1) = n, 

for n = ()_  ,m - I.   D 

 

The theorem of HASSE-Aki' has an important application to Artin L-series, 

which we will study in chap. VII (see chap. Vil, (11.4)). 



Chapter VI 

Global Class Field Theory 

 
§ 1. Ideles and Idele Classes 

 
The r61c held in local class field theory by the multiplicative group of the 

base lldd is taken in global class field theory by the idele class group. The 

notion of idele is a modification of the notion of ideal. It was introduced 

by the French mathematician CL,W/J/: CHt.\ALIYY (1909-1984) with a view 

to providing a suilable basis for the important local-to-global principle, i.e., 

for the principle which reduces problems concerning a number field K to 

analogous problems for the various completions Kp. C@YA111 Y used the tcnn 

"ideal clement", which was abbreviated as id. el. 

 

An adele of K - this curious expression, which has the strc,� on the 

second syllable, is derived from the original term "additive idele" - is a family 

a= (ap) 

of elements U'p E KP where p runs lhrough all primes of K, and U'p is integral 

in Kp for almost all p. The adClcs form a ring, which is denoted by 

AK�□K,. 
p 

Addition and multiplication are defined componentwise. This kind of producl 

is called the "restricted product" of the K p with respect to the 5ubring� 

Op� Kp, 

The idele group of K is defined to be the unit group 

 

 

Thus an idele i� a family 

 

 

of elements U'p EK; where is a unit in the ring Op of integers of Kµ, for 

almost all p. In analogy with we write the ide!e group as the restricted 

product 



358 Chapter VI. Global Clas\ Field Theory 

 

with respect to the unit groups o;. For every finite set of primes S, IK 

contains the rnbgroup 

1:: = TT K; x TT Up 
pcS p¢S 

of S-ideles. where lip = K; for p infinite complex, and 1/11 = IR*� for p 

infinite real. One clearly has 

IK =Ul}, 
.\ 

if S varies over all finite sets of primes of K. 

 

The inclusions K <; K p allow u� to define the diagonal embedding 

K*----+ IK, 

which associates to a E K* the idelc a E h whose p-th component is the element 

a in Kp. We thus view K* as a subgroup of IK and we call the elements 

or K* inh principal ideles. The intersection 

Ks=K*nJj 

consists of the numbers a E K* which are unih at all primes p 't. S, pf oc, 

and which are positive in K11 = R. for all real infinite places p ,j. S. They 

are called S-units. In particular, for the set S"° of infinite places, Ks_,, is the 

unit group oK of t)K. We get the following generalization of Dirichlet's unit 

theorem. 

 

(1.1) Proposition. If S contains all infinite place.�, then the homomorphism 

>:K'-, n!Fc.  ic(aJ�(loglalp)pcs• 
pE.'i' 

 

has kernel µ(K ), and its im:1ge is a complete lattice in the (s-1)-dimensional 

tr.ice-zero space H = \ (xp) E npec.\' IR I LP'=S' rp = 0), ,\ = #S. 

 

Proof: For the set S,...., = /p Ioo}, this is the claim of chap. I, (7.1) and (7.3). 

Let Sf = S " Se;c, and let J(S1) be the subgroup of JK generated by 
the prime ideals p E S1. Associating to every a E Ks the principal ideal 

ia = (a) E J (Si), we obtain the commutative diagram 

I  ,. oK ----------+ K'� � J(S1) 
 

 

 

o-n JR� nJR---'---+ n!Fc 
p,c\,,,_, pccS pE.\1 
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wilh exact rows. The map A" on the right is given by 

!c"( TT p''') � - TT <p log'Jl(p) 
p<c.'i1 ptS1 

(obr,erve that kilp = IJl(p)-,,,,ral), and maps J(Si) isomorphically onto the 

complete laUice spanned by the vectors 

ep�(o.  ,O.log'Jl(p),O.  ,0), 

forp E S1. It follows that kcr(A) = ker(A') = JL(K). and we obtain the exact 

sequence 

0---+ im(),..
1

) ---+ im(A) �  im(A"). 

 

where the groups on the left and on the right are lattices. This implies lhat 

the group in the middle is also a lallice. For if x E im(A).. and U is a 

neighbourhood of i (x) which contains no other point of im(A''), then -i 1(U) 

contains the cm.et x + im(A'), and no 01hcr.. ll is discrete since im(A') is 

discrete. 

For every p E S1, if h is the class number of K, then p" belong� to i(K5). 

i.e., 

J(S1/1 s; i(K ..\) s; J(Sr) .. 

The group5 on the left and on the right have rank #S1, hence so docs i(K5). 

In the sequence(*), the image of i therefore has rank #S1, and the kernel has 

rank #Sy  - I. Hence im(A) is a lattice of rank #S,,._, -1+ # S 1  = #S - I. It lies in 

the (#5-1)-dimensional trace-zero space H, <,incc np<c.'i Ialp= TIP Ialp = I 

fora EK·\.. □ 

 

(1.2) Definition. The clements of the subgroup K * of IK are called principal 

idf!les and the quotiem group 

CK= IK/K* 

is called the idf!le class group of K. 

 

The relation between the ideal cla55 group Cf K and the idele class group 
CK i� as follows. There is a �urjective homomorphism 

( ) : IK ---+ .IK,  a i-------+ (a)= n p''p(o-rl .. 

Pt"" 

from the idele group / K lo the ideal group .I K. Its kernel is 

1;0,., = n K; x n Up. 
l'l'Xl pj"CXJ 
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ll induces a sur:jcctivc homomorphism 

 

 

with kernel tf"' K*/ K*.We may also consider the surjective homomorphi5m 

h --+ 1 (0). a 1---------+ TT j'.IVp(O'p), 

p 

 

onto the replete ideal group J (0). Its kernel is 
 

(5cc chap. III, § 1). It takes principal idelcs to replete principal ideab and 

induces a wr:jcctivc homomorphism 

CK --+ Pic(O) 

onto the replete ideal cla"s group, with kernel If K */ K •. We therefore have 

the 

 

 

(1.3) Proposition. CfK � hJffC<.K*, andPic(V) � hJ!fK*. 
 

 
In contrast to the ideal cla% group, the idele class group is not tinite. But 

the llnitcncss of the fonner is reflected in terms of the latter as follows. 

 

 

(1.4) Proposition. h = tK K*, i.e., CK = tk K* / K*, it S is a suniciently 

big finite set of places of K. 

 

 
Proof: Let n1.  . n1i be ideals representing the h classes of JK /PK. They 

are composed of a finite number of prime ideals p 1, ... , j'.111. Now if S is any 

finite set of places containing these prime, and the places at inllnity, then one 

has IK = lKK*. 

In order to sec thi5, we use the isomorphism IK /I],.,, � J K. If a E / K, 

then the corresponding ideal (a) = TTpt-x p''p("p1 belongs to some cla"� n1 PK. 

i.e., (a)= n1(a) for some principal ideal (a). The idele a'= cu,-1 is mapped 

by / K --+ h to the ideal n1 = npj,x j'.IVp(a�), Since the prime ideals occurring 

in a, lie in S, we have Vp(a�) = 0. i.e., a� E Up for all p 'f. S. Hence 

a'= aa-1 E tJ::. and thus a E !]K*. □ 
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The ide!e group come5 equipped with a canonical topology. A hasic 

system of neighbourhoods of I E / K i5 given by the !>ets 

nwpxTTUp£:;;IK, 
P'=5 p¢S 

where S run!> through the finite sets of places of K which contain all ploc,, 

and W p i; K; is a ba:;,ic system of neighbourhoods of I E K;. The group:;, UP 

are compact for pf/. S. Therefore the same is true of the group Tipis Up, If 

the Wp, for ploc, are bounded, then npE5 Wp x npf".'i Up i!> a neighbourhood 

of I in I K whose closure is compact. Therefore / K is a locally compact 

topological group. 

 

(1.5) Proposition. K* i.� a discrete. and therefore closed. subgroup of!K. 

 

Proof: It is enough to show that I E IK has a neighbourhood which contains 

no other principal idele besides I. 

is such a neighbourhood. For if we had a principal idC!c x E U different from 

I, then we get the contradiction 

1 � n Ix - 11, � n Ix - 11, n Ix - 11, 
p p>-x, P"'- 

< n lx-11,s  m,n{lxl,.l) � I. 
Pt,x, PtN- 

That the subgroup i� closed follows for a completely general rea"on: :;,mce 

f---7, ty-
1 is continuous, there b a neighbourhood \/ of I such that 

i; U. For every y E /K, the neighbourhood y\/ then contains at most 
one x EK� Indeed, from x1 = yv1, x2 = yv2 EK*, with 11 -1- x2. 

deduce:-. x1x21 
= v1i,;1 

EU, a contradiction. D 

 
A!> K* i!> closed in / K, the fact that / K is a locally compact Hausdorff 

topological group carries over to the idele class group CK = I K / K*. For 

any idClc a = (ap) E h. it!> class in CK will he denoted by [a]. We detinc 

the absolute norm of a to be the real number 

\J1(a) = TT1J1(p)l'p(Uip) = n larlPI. 

p " 

If .r E K* i5 a principal idCle, then we find by chap. III, (1.3), that 

IJ1(x) = np Ir IpI = I. We thu:-. have a COillinuous homomorphism 

IJ1: CK --- + 
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It b related to the absolute norm on the replete Picard group Pie (0) via lhe 

commutative diagram 

 

 

Here the arrow 

CK------+ Pic(8) 

i� induced by the continuous surjective homomorphi<sm 

 

 

 

with kernel 

 

IK------+ ./(0).  (ap)i--------+ TTP''pic>pl, 

p 

 

tZ = I (ap) Eh I lap Ip = I for all p}. 

A,; to the kernel C� ofl)'t: CK--+ IR+, we obtain, in analogy with chap. III, 

( 1.14), the following important theorem. It reflects the finiteness of the unit 

rank of K as well as the finitcncs" of the cla�,; number. 

(1.6) Theorem. The group ct = {la] ECK I IJ1([a]) = I) is compact. 

 
Proof: The claim concerning the commutative exact diagram 

I ---+ c·i -------+ CK ----------;- ------+ I 

 

 

I ➔  Pic(0)0 -------+ Pic(O) -------+ R: ------+ I 

 

will be reduced to the compactness of the group Pic(8)0
, which wa� 

proved in chap. III, (1.14). The kernel of the vertical arrow in the middle 

i� the group l�K*/K* = tfj!f n K*, where we have /� = TIP 1;1, 

1i1 = {a11E Kp I  = I}, and If n K* = µ(K) by chap.III. (1.9). 

This kernel is compact. We obtain an exact �equence 

I-----+ tfK*/K*-----+ C¼-----+ Pic(i5)0 ------------- 
+I 

of continuom homomorphi5m:-.. Since Pie (0)0 is compact, and the same 

i� true for the fibres of the mapping ----+ Pic(0)0 (they arc cosets, all 

homeomorphic to tfK*/K�). hence so ::J 
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The idele clas5 group CK plays a 5imilar r61c for the algebraic number 

field K as the multiplicative group K; does for a p-adic number field Kp. 
It comes equipped with a collection of canonical subgroups which are to be 

viewed as analogues of the higher unit groups uinJ = I + pn of a p-adic 

number field Kp. Instead of pn, we take any integral ideal m = TTP ,.,,_,p""· 

We may also write it as a replete ideal 

 

 

 

with llp = 0 for ploc, and we treat it in what follow5 a� a module of K. For 

every place p of K we put U�Ol = Up, and 

1+µ"e, ifpjcc, 
uinpJ :=  IR: C K;,  if p is real, 

1 = K;,  if p is complex, 

for np > 0. Given ap E K; we write 
 

For a finite prime p and np > 0 thi� means the usual congruence; for a 

real place. it symbolize� positivity. and for a complex place it i� the empty 

condition. 

 

(I,7) Definition. The group 
 

fonncd from the idC/c group 

tK'=TT uinvi, 
µ 

i.� called the congruence subgroup mod m, and the quotient group CK ;er; 
i� called the ray class group mod m. 

 

Remark: This definition of the ray class group doe� correspond to the classical 

one, as given (in the ideal-theoretic ver�ion) for instance in Hasse\ 

·'Zahlhericht" [53]. It differs from those found in modern textbooks, and also 

from that given in [ I07] by the author: in the present hook, the components 

ap of ideles a in !JP are al\\-ays positive at all real places p, so we have here 

fewer congruence subgroups than in the other text�. Thi� choice does not only 

�implify maucr�. Mo�t of all, it wa� made �ub�lantially bccau�c of the choice 
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of the canonical metric (, ) on the Minkowski :-pace K1r.. (see chap. I, §5). 

In fact. we saw in chap. Ill, §3, that thi:- choice force:- the extem.ion ICIIR. to 

be unramificd. We will explain in § 6 below how tu interpret this situation, 

and how to reconcile it with the definition of ray classes in other texts. 

 

The significance of the congruence rnbgroup1> lie:- in that they provide an 

overview over all clo�cd ,;,ubgroup1> of llnite index in CK. More precisely, 

we have the 

 

 

(1.8) Proposition. The closed subgroups of finite index of CK arc precisely 

those subgroups that contain ;:1 congruence subgroup CK_. 

 

 

Proof: CK_ i:- open in CK because lf,;' = npuillp) is open in IK, 

II(' i� contained in the group ();_"'-- = Tiplcx. K; x Tipt-x, Up, and since 

(CK: !J"""K*/K*) =#CfK = h <cc.the index 

(CK: Cf()= h(li;"-'K�: l'/;'K*) :S h(lt"': l'J.:') 

= h TI (Up: u;"P ) TI (K;: U�"v ) 
pf,-x, p'Xl 

 

i:- finite. Being the complement of the nontrivial open cosets, which are finite 

in number, Cl( is closed of finite index. Consequently, every group 

containing  is also closed of finite index. for it i5 the union of finitely many 

co�ets 

Conversely, let }/ be an arbitrary closed subgroup of finite index. Then 

.A/ i� also open. being the complement of a finite number of clo�ed co1>ch. 

Thu� the preimage .l of.Vin h is also open. and it thus contains a �ub:-ct 

of the form 

w � n wp x nu,. 
p<c5 piS 

where S is a finite 5et of places of K containing the inlinite one�. 

and Wp i1, an open neighbourhood of I E K;.  If p E finite, 

we are liable tu choose Wp = u;"P
1
, because the group� <;; 

form a ba�ic system of neighbourhood� of I E K;. If p E  i5 real, 

we may choose Wp <;; IR.:. The open �ct WP will then generate the 

group IR.:. resp. K; in the ca5e of a complex place p. The �ubgroup of .I 

generated by W is therefore of the form /I(', <,o ./1./ contain'> the congruence 

subgroup C/t [J 
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The ray cla5s groups can be given the following purely ideal-theoretic 

dc5cription. Let Jf( be the group of all fractional ideals relatively prime tom, 

and let Pf( be the group of all principal ideals (a) E PK such that 

a = 1 mod m and a totally positive. 

The latter condition means thal. for every real embedding K � R, a tum� 

out to be positive. The congruence a  I mod m means that a is the 4uoticnt 

h/c of two intcw'n, relatively prime to m such that h = ( mod m. This 

i� tantamount to saying that a = I mod p"P in Kp, i.e., a E ui"P
1 

for 

all plm = npt-x,P""· We put 
 

We then have the 

 

(1.9) Proposition. The /10momorphi.�m 

( ):IK--------)'JK,  ctf--------+(a)= TTP"P(""1- 

* 
induces an isomorphism 

 

Proof: Let m = np p"P' and let 

,im) = la Eh  I O'p E uillp) forplmoc). 

 
Then IK = l};")K*. because for every a E /K, by the approximation 

theorem, there exists an a E K* such that ctpa = 1 mod pnp for Pim, 

and apa > 0 for p real. Thus f3 = (apa) E 1km), so that a = fJa-1 E Ij;"1
K*. 

The element� a E !}011 n K* arc precisely those generating principal ideals 

in PK, Therefore the correspondence a I-+ (a) = npj-x, p1
'µ(t>:µ) defines a 

surjective homomorphi�m 

CK = !km) K* /K* = Ii") //km) n K*--------)' J{(JP{(• 

Since (a) = I for a E If(. the group('�' = l;'K*J K* is certainly contained 

in the kernel. Conver�ely, if the class [al repre�entcd by a E 1km) belongs 

to the kernel, then there is an (a) E Pf(, with a E !}011 
n K*, such that 

(a) = (a). The componenl� of the idele fJ = cw -I sati�fy /Jp E Up for 

p 1 moo, and /3p E ut''1 
for Plmrxi, in other words, f3 E 1;', and hence 

[al= 1,8] E 1;'K*/K" = Cl(. Therefore Cf! i� the kernel of the above 

mapping, and the proposition is proved. D 
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The ray class groups in the ideal-theoretic version Cl�= JK'/PK were 

introduced by HnNR!CH WEH.tH (1842-1913) as a common generalization of 

ideal class groups on the one hand, and the groups (Z/mZ)* on the other. 

These latter groups may be viewed ai,, the ray class groups of the field Q: 

 

(1.10) Proposition. For any module m = (m) of the field Q, one has 

C,;;:/C"J � ClQ � (7./mZ)*. 

 

Proof: Every ideal (a) E .!(; has two generators. a and -a. Mapping 

the positive generator onlO the residue class mod m, we get a surjective 

homomorphism .l(T' ---+ (Z/mZ)* whose kernel consists of all ideals (a) 

which have a positive generator = I mod m. But these are precisely the 

ideals (a) 1,,uch that a= I mod p11
1' for pl moo, i.e., the kernel of PJi'-  □ 

 
The group is canonically bomorphic to the Galois group 

G(Q(µm)IQ) of m-th cyclotomic field Q(Jt,,,). We therefore ohtain a canonical 

isomorphism 
 

It b clasi,, field theory, which provide<; a far-reaching generalintion of this 

important fact. For all modules m of an arbitrary number field K, there will 

he Galoi<; exten�ions KmlK generalizing the cyclotomic fields: the so-called 

ray dass fields, which satisfy canonically 

G(KmlK) � CK ;er; 

(see *6). The ray class group mod I is of particular interest here. It is related 

to the ideal class group Cf K - which according to our definition here, is m 

general not a ray class group - a<; follows. 

 
(1.11) Proposition. There is an exact sequence 

I-----+ o*/o:-----+ n IR.*/IE:-----+ Ct_k.-----+ ClK-----+ 1, 
prr,d 

where o� i8 the group of totaJJy positive units of K. 

 

Proof: One has Ct_k. ;; CK/Ck = h/I}K* and, by (1.3), CIK � 

IK/!f"'K*, where I} = npuP and ,;'"" = TTPt=UP X np,C>JK;. 

We therefore obtain an exact sequence 

1-----+ 1J...,.,K*/l}K------+ CK/Ck-----+ ClK-----+ I. 
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f-lor lhc group on the left we have the exact !',Cquence 

1- !f""'nK*/tk nK
4 

1;""/tk- t%""K*/tkK* -  I. 

But ti'"'- nK*  = o*, lk nK*  = 0�, and 1Jx'/lk = nPl'X,K;/up = 

TT,,eo,ll'/ll:. □ 
 

 

Exercise 1. (1) A:;i:, = (Z @"J, Qi) x IR. 

(1i) The quotient group A::,,/Z is compact and rnnncctcd. 

(i11) A::.,/Z i� arb1tranly and uniquely divi•1hle, i.e., the e4uat1on ,u = y has a 

uni4ue �olul1on, for every n EN and y E A(;/Z. 

Exercise 2. Lei K be a number field, m = 2' m' (m' odd), and let S be a fimtc \Cl 

of prime�. Let a EK* and a EK;"', for all p ¢ S. Show: 

(i) If K((2, JIK h cyclic. where(,_, i� a primitive 2' -th root of unity. then a EK*"'. 

(i1) Olherwi�c one has at least that a E K*"'/2_ 

Hint: U�e the following fact, proved rn (:UI): if LIK i� a linitc cxtcn�ion in which 

almo�t all prime ideal� split comple!ely. then L = K. 

Exercise 3. Write /J = Ji x 1},_,, with 1/ = npt,,_ U,. I},_,= nplc,. Up. Show that 

takmg integer power� of 1deles a E: ii' extend� by continuity to exponentiation u' 

with x E Z. 

Exercise 4. Let 1:1, ... ,t·, E o� he independem units. The image� i:1, ...• f, in Ji 

are then independent units with respect to the exponentiation with clements of Z, 
i.e., any relation 

 

imphe� t, = 0, 1 = I, 

= 1.  r, EZ, 

1<:xercise 5. Let 1:· E o� be totally po�11ive, i.e.,< E Ii:. Extend the cxponcntiat1on 

z ➔ !i: II f--,- e", by continuity to an exponentiation  X IR---+  = Jr' X !},_,. 
1: f--+ 1,', m such a way that 91(1:l) = 1 

Exercise 6. Let p1•.... ph,e the complex prime� of K. For y ER, let ef;1 (y) he 

the idele havint component e2'm at p1, and components I at all other place•. Let 
.... F1 be a Z-ha�1� ot the group of totally po�llivc units of K. 

(i) The 1dele\ of 1he fonn 

u=fi' ¢1(}'1)· ¢,()\), ;,, EZ°xlR., y, ElR, 

form a group, and have ab�olutc nonn 91(a) = I. 

(11) ct I\ a principdl ideal if and only it A.1 E :Z s:;; r_, x IR. ,md y, E Z <;; R. 

Exercise 7. Sending 

define� a continuou\ homomorphi�m 

/ (:f:: x 1Rl x R' ----- + c� 



into the group C� = (la) ECK I 91(1111) = 1), with kernel Z1 x Z'. 
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Exercise 8. (1) The image LJ� of f is compact. connected and arbitrarily divi\ihle 

(ii) f yield� a topological isomorph1�m 

/ : ((Z X R)/Z)' X CiR/Z)'  ::: ,. [)� 

 
Exercise 9. The group [)�. is the mtcr�1.x:tion of all 

in ci, and it is the connected component of I in 

 
suhgroups or finite mdcx 

Exercise 10. The connected component Dx or l III the 1dclc r.:la\\ 

dm:ct product or t cop1e� of the '\olenoid" (Z x s circle� 

hnc. 

CK i\ the 

and a real 

Exercise 11, Every idectl clas� of the  cla..,.., group Cl�' can be repre�entcd by an 

integral idcal which i� prime to an fixed ideal. 

Exercise 12. Let ,, = uK. Every cla�� in 

po�itive numher in o which is prnne 10 an 

can be represented by a totally 

fixed ideal. 

Exercise 13. For every module m, one has an cxac1 �equence 

I ➔ o:/d.!..'----;. (o/mf----;. Cl�'----;. Cl� ..-,. I, 

,�here re\p, 1s the group of totally po,.1tive umh of o, rc�p. of totally 

po�1tive  = I 

Exercise 14. Compute the kemeh of Cit--+ Cl;. and C/�1 
➔ C'!t tor rn'lm 
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We �hall now study the behaviour of idClc'i and idC!c cla..,ses when we 

pa'>� from a field K to an extension L. So let LI K be a finite extcn..,ion of 

algebraic number fields. We embed the idele group I K of K into the idele 

group ft. of L by sending an ide!e a= (ap) E / K to the idele a'= (a::pl E ft 
whose components a:l-l are given by 

a�= ap EK;<; L\1 for �Ip. 

In this way we obtain an injective homomorphi�m 

,K--➔h. 

which will alway� be tacitly used to consider h a� a subgroup of IL. An 

element a = (aq:;) E IL therefore belongs to the group I K if and only if its 



components aq:; belong to Kp (�IP), and if one ha.., furthennore a,:p = a,:p, 

whenever� and�- lie ahove the �ame place p of K. 

 

Every isomorphi�m a : L ➔ a L induce� an isomorphi�m 

a: ft. --➔ lc,l 
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like this. For each place q3 of L, a induces an isomorphism 

a: L;,.1---+ (aL)<T'l-1· 

For if ½e have a = q]-lim a,. for some sequence a, E L. then the �cquence 

aa, E aL converges with re�pect to I l<T'l-J in ((JL)<T'.lJ, and the isomorphism 

is given by 

a= q]-lim a, 1-----+ aa = aq]-lim (Jct,. 

For an idele a E IL, we then define au E IL to be the idele with components 

(aa)<T':P = am:p E (aL)<T'l-)· 

If LjK is a Galois exten<,ion with Galoi� group G = G(LIK). then 

every a E G yields an automorphism a: ft.---+ IL. i.e.. IL is turned into an 

G-module. As to the fixed module 12 = \a E h I (Ja = a for all a E G). 

we have the 

 

(2.1) Proposition. ff LI K is a Galois cxtcmion wir/J Galois group G, then 

1E = IK 

 

Proof: Let a E IK �IL.Fora E G, the induced map a: L:p---+ L0i1 i� a 

Kp-i1>omorphism, if qJlp. Therefore 

(aa)<T'l.J = aaii = ai1 = a(T,;p, 

so that aa = a, and therefore a E 12. If conversely a= (a,l.J) E If, then 
 

for all (J E G. In particular, if a belongs to the decomposition group 

Gi1 = G(LplK p), then a$=  q3 and aa.;,_1 = a.:µ so that a,:p EK;. If a E G 

i� arbitrary, then a: L,:p---+ L(T,:p induce� the identity on Kp, and we get 

a'l-1 = (Ja,ll = a(T'.J.l for any l¼O places q3 and aq] above p. Thi� show� that 

aEIK, � 

 

The idClc group ft is the unit group of the ring of adClcs A,. of L. It i.� 

convenient to write this ring as 

 

 

where 
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The re�lricled product I]pLP consists of all families (aµ) of elements ap E Lp 

�uch that aµ E Op= TT,:µ1µ0,,µ for almost all )J. Via the diagonal embedding 

Kp-----+ Lµ, 

the factor Lp is a commutative Kµ-algebra of degree L'+llP[L,;p: Kp] = 

[L : K ]. Thc�e embeddings yield the embedding 
 

whose restriction 

IK =AK  c. ....... ::,.f.if_, =IL 

turns oul lO be the inclusion considered above. 

 

Every ap EL� defines an automorphism 

ap: Lp-----+ Lp,  x ,--,. aµ.\, 

of the Kµ-vcctor space Lp. and as in the case of a field extem,ion, we define 

the norm of ap by 

N1.r1K,,(aµ) = det(U'p). 

In this way we obtain a homomorphism 

N1,,1KP :L�-----+ K;. 

It induces a norm homomorphbm 

NL K : 11. -----+ h. 

between the idelc groups Ii.= I]PL; and h = []PK;. Explicitly the nom1 

of an idele i� given by the following proposition. 

 

(2.2) Proposition. If LI K i� a finite extem,ion and a = (a,p) E IL, the local 

componenfa of the ide/e N1.w (a) arc given by 

NL1da)p = n Nt.•i•IK�(a,:p). 
'+1P 

 

Proof: Putting aµ= (a<p)•:plp E Lp, the Kµ-automorphi�m aµ: Lp----+ Lµ i� 

the direct product of the K p-automorphi�ms m,µ : L,:p ----+ L:p. Therefore 

NL,,IKp(ap) = det(ap) = n dct(a,:p) = TT N1.i,1Ki (a,:p). □ 
'VIP '+lip 

 

The itlClc nonn enjoys the following properties. 
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(2.3) Proposition. (i) For :1 tower of fields K £; L £; M we have 

N,'111K = NLIK o N.w1L• 

(ii) IfLIK iscmbcddedintotheGaloi.�extensionMIK andifG = G(MIK) 

and H = G(MIL), then one ha� fix a E h: N1.1K(a) = flrrEG/H aa. 

(iii) NL·K(a) = alL.KI fora E IK. 

(iv) The norm of the principal ide/e x E L• is the principal idele of K 

defined by the uwwl norm NL1K(,-). 

 

The proofs of (i), (ii), (iii) are literally the same a� for the nom1 in a field 

extension (:-.cc chap. I, *2), (iv) follows from the fact that, once we identify 

Lp = L ®K Kp (sec chap. II, (8.3)), the K11-automorphism f1 : Lp--+ Lp, 
y i----+ ari�es from the K -automorphi�m , : L --+ L by tensoring with K p· 

Hence = det( r). 

 

Remark: For fundamental as well as practical reason�. it i:-. convenient to 

adopt a formal point of view for the above considerations which allow� us to 

avoid the constant back and forth between idele� and their components. Thi� 

point of view is based on identifying the ring of adClcs AL of L as 
 

which results from the canonical isomorphism� (see chap. II, (8.3)) 

K p ®K I, �  L11= ,f,l ,L,lJ, a110 a i--------+ a11 (T'+1a). 

Herc r,:p denote� the canonical embedding r'l-1 : L --+ /,'lJ, 

In this  the inclusion by components h £; h i� simply given by the 

embedding  c........, A1 , a i----+ a ® I, induced by K £; L. An i�omorphism 

L --+ a I. then yields the i�omorphism 
 

via a(a ® a) = u ® aa, and the norm of an L-idt'le a E A,:;, i:-. simply 

the determinant 

NLIK (a) = del,1R (a) 

of the endomorphi:-.m a : AL --+ AL \\>hich a induces on the finite AK­ 

algebra A.1 = AK ®K l. 

 

I lcre are consequences of the preceding investigation:-. for the idele class 

groups. 
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(2.4) Proposition. If LI K is a finite extension, 1hcn rhc homomorphism 

I K -----+ IL induces an injection of idelc clm,s groups 

CK---+ CL, aK* i----+ al*. 

 

Proof: The injeclion / K -----+ IL clearly maps K* into L *. For the injcctivity, 

we have to show that IK n L* = K*. Let MIK be a finite Galois extension 

with Galois group G containing L. Then we have / K <;; Ii. <;; IM. and 

IK n L* i;;h n M* <;; (h n M*f  = IK n M*G =h n K* = K*.  □ 
 

 

Via the embedding CK -----+ CL, the idCle cla'>s group CK become� a 

subgroup of Ci.: an elemental* E CL (a E Ir,) lies in CK if and only irthc 

class aL * has a representative a' in IK. It is important to know that we have 

Galois descent for the idele class group: 

 

(2.5) Proposition. If L IK is II Galois ex/cm.ion and G = G(L IK), then CL 

is canonically a G-module and Cf =CK. 

 

Proof: The G-module /L contains L• as a G-submodule. Hence every 

a E G induce� an aulomorphi'>m 

C1�CL,  aLi --- +(arx)L*. 

This give� u� an exact se4uence of G-modules 

1 ---+ L *---+ IL---+ CL---+ I 

We claim that the sequence 

I ---+ L xG ---+ If ---+ Cf ---+ 1 

deduced from the first is �till exact. The injectivity of L*c; -----+ tf i� trivial. 

The kernel of tf'" -----+ is tf n L* = IK n /,* = K� = L*c;_ The 

surjectivity of t2 ➔ not altogether straightforward. To prove it, let 

alx E cf. For every a E G, one then has a(af.*) = al�, i.e., aa = ax1r 

for some X1r EL'. Thi� x,.,. is a "crossed homomorphism'', i.e., we have 

 
 

Indeed, Xr,r = 

the form X1r = 
and era'= 

surjeclivity. 

= aarary, �=er(�)� = O.\rX,r. By Hilbert 90 in 

chap. IV, (3.8)) ,;uch a cro%ed homomorphi�m is 

of 

Et,•. Putting a'= ay I yields a'L * = alx 

= ay 1 = a', hence a' E 1£'". This prove� 
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The norm map Ni IK : h  ,. IK sends principal idele� lo principal ideb 

by (2.3). Hence we get a norm map also for the idclc cla'>� group CL, 

NLIK : CL-----+ CK. 

It enjoys the same properties (2.3), (i), (ii). (iii), a� the norm map on the 

ide!e group. 

 

Exercise I, Let w1. 

l,tFhKµ;;, n'J'.llPLp 

 

 

be a ba�1s of 

for almo�t all prime 

l01(Jpffi ··EBw,,np � n 0,:i.,, 

'VP 

 

 

Then the 1�omorphi\m 

p of K, an i\omorphi\m 

where op, resp. O\Jl, i� the valuation ring of KP· re�p. L73. 

Exercise 2. Let LI K he a finite exten\ion. The ab�olutc norm '.TI of idele\ of K, 

resp.!,, hehave\ a\ follows under the inelu�ion i1IK !K ---,. l1. re\p. under the 

nom1 N1.1K: Ii,-,.!;,-: 

'.'11(11.1K(a)) = '.TI(a)IL Kl  for a E IK, 

'.TI(N11do-)) = '.TI(a) for a E /i. 

Exercise 3. The corre�pondem:c between idClc� and ideal�. a f---l- (a), \ati\fie� the 

follov.ing rule. in the Ca\c of a Galoi� cxtcn�mn LIK, 

(N1.:K(a)) = N1 K·((a)). 

(For the norm on ideals.. \ee chap. III, §1.) 

Exercise 4. unlike the idClc class group, doe\ not have 

(ialo1� a Galoi� extensmn l. IK, the homomorphism 

CIK---,. i\ in general neither inJcctivc nor suqect1ve 

Exercise 5. Define the trace 

endomorphi�m A f---l- a,1 of the 

(i) Tr1.1K(a)p = L\JllP Tr1,,,1Kp(a,:p). 

hy Tr1,K(LY) = trace or the 

�how: 

(ii) Fora tov.er of field� K <;::: L ,;; M, one ha¾ Trw1K = "fr1. A" "1)-M 1. 

(iii) If LIK is emhedded into the Gal01s cxtcn�ion and if G = G(MIK) and 

H = G{MIL). then one ha� for a E A1, Tr1 da) = 

(iv)"fr11da)=IL:K]LY  foraEAK. 

adCle _\ E L I\ the principal addc in A.K dctincd hy the 
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Our goal now is to show that the idClc cla�s group !-.atisties the etas� 

field axiom of chap. IV, (6.1). To do thi� we v.ill llN compute its Herbrand 
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quotient ll is constituted on the one hand by the Herbrand quotient of the 

idClc group, and by that of the unit group on the other. We study the idele group 

first. 

 

Let LI K be a finite Galois extension with Galois group C. The G-module 

h may be described in the following simple manner, which immediately 

reduces us to local field:,. For every place p of K we put 

L;=  nL$  and UL_p= nu13. 
',J}lp 'Pip 

Since the automorphisms a E G permute the place� of L above p, the groups 

L� and VL.p are G-modules, and we have for the G-modulc h the 

decomposition 

h �IJL;, 
p 

where the restricted product is taken with re:,pcct to the �ubgroups U1. p � L;. 

Choose a place 1,P of L above p. and let G-i1 = G(L,vlKp) � G be 

its decomposition group. As a varic<; over a system of representatives of 

GjG,;,3, aqJ runs through the various places of Labove p, and we get 

L; = i:iL�'+l = ga(L$), UL.p = gu"'+l = ga(U,-JJ). 

In terms of the notion of indur ed module introduced in chap. IV*, 7, we thu:, 

get the following 

 

(3.1) Proposition. /,; and Ut.. p are the induced G-modu/es 

L� = Ind�;-v(l.$),  U1 ,p = Ind�/(U,:p). 

 

Now let S be a finite :,ct of places of K containing the infinite places. We 

then define I{= 1}, ½here S denotes the set of all place:, of L which lie 

above the place� of S. For Jl_' we have the G-module decompo:,ition 

if=  n L; X n UL.p, 
pd piS 

and (3.1) give,:, the 

 

(3.2) Proposition. If LI K is ,1 cyclic extemion, and if S contains a// prime:, 

rnmified in L, then we /Jave for i = 0, - I th:.it 

H'(G,I}) � ffiH1(G,;13.L'.ii) and H
1
(G,l1.) � ffi//'(G,:p,/,;_,). 

p<c.', p 

where for each p, 1} is a chosen prime of L a/Jove p. 
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Proof: The decomposition If=  <EBp<c.\ L;) ffi V. V = np\i"S u,.p, gives m, 

an i:-.omorphism 

ll1(G,l}) = ffi lli(G,L;) ffi H'(C. V), 
pE:S 

and an injeclion H'(G, V) ➔ np,t'i" H'(G, UL.p). By ('.U) and chap. IV, 

(7.4), we have the isomorphisms H1(C,L;)  ::::::; H'(C,-.p.L;_1) and 

H'(G.lh.p) ::::::; /-l'(G'J.l,U,+1). For p <t S, L'J.llKp is unramified. Hence 

H'(C,v,ll;;p) = I, by chap.V, (1.2). This shows the llr�t claim of the 

proposition. The second is an immediate consequence: 

Hi(C,ft.)= �  H'(C.lfJ -  �  ffiH'(Gq:i,L;p)=ffiH'(G'J.l,Lii), 
'i" S  pcS P 

□ 
 

The proposition says that one has //-1(G,IL)= /I}, because /-I 1 (Gti, L1J) 

= {I} by Hilbert 90. Further it says that 

IK/NL!Kh = 
 

where ,:P is a chosen place above p. In other words: 

An idele a E IK b a norm of an idC!e of L if and only if it is u norm 

everywhere, i.e.. if every component ap is the nonn of an element 

 

As for the Herbrand quotient h(G, ii) we obtain the rc�ult: 

 

(3.J) Propo�ition. If LI K h, a cyclic extension and if S contains all rnmified 
primes, then 

h(G,lj�) = n np, 

p<cS 

where llp = /Lti: Kpl- 

 

Proof: We have 1-1-1(G, ii)= npES 1-1-1(G,v,Lii) = I and 

H0(G,if)= n H0
(G,v,ClJ). 

pd" 

By local cla�s field theory. we find #/-1°(G'J.l, L;) = (K; : NL,JJIK,,L�) 

= np. Hence 

[J 

 

 

Next we determine the Hcrbrand quotient of the G-module Ls= L n 12', 

For this we need the following general 
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(3.4) Lemma. Let \I he an s -dimen.�ional �-vector .�p.:1ce, and let G be a 

finite group of automorphism� of\/ which operates as a permutation group 

on the clement.� of a basi� v1.  . v.,: ov, = 

I[ I' is .'l G -invariant complele lattice in \/, 

/here exists a complete sublatticc in I', 

r'=Z:w1 +  -+Z:w,, 

such tlwtaw, = w,,.(,l fora/la E G. 

a r s; r for all a, then 

 

Proof: Lel I I be the sup-nom1 with respect to the coordinates of lhe basis 

v1, ... , v.,·• Since I' is a lattice, there exists a number h such that for every 

x E \I, there is a y E r satisfying 

lx-yl <h. 

Choose a large positive number t ER, and a y E r such that 

ltv1 - yl < h, 

and define  
w,=  Lay, i=l, 

,-,.(ll=i 

i.e., the wmmation is over all a E G wch that a(I) = i. For every r E G 
\\-'e then have 

TW1 = L ray= L PY=ll'r(,)· 

a(l)=I p(l)--r(1) 

It i), therefore enough to check the linear independence of thew,. To do this, 

let 

Lc,w,=0,  c;ElR. 
1=1 

If not all of the c, = 0, then we may assume le,I :Sc I and c1 = I for some j. 
Let 

y = tv1 -y, 

for some vector y of absolule value I y I < h. Then 

IL',= ay = t  
 

where IY,I .:S gh, for R = #G, and n, = #[a E GI a(I) = i}. We 

therefore get 

 

 

with lzl .:S sih, i.e., 

0 = L c,w, = l Lc,n,v, - z. 
l=l 1=1 

 

z=tn1vJ+Ltc,n,v,. 
i-f1 

If t was chosen �ufllciently large, then : cannot be written in thi), way. This 



contradiction proves the lemma. [l 
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Now let LI K be a cyclic extemion of degree II with Galois group 

G = G(LIK), let 5 be a finite set of place� containing the infinite places, 

and let S be lhe set of places of L that lie above the places of S. We denote 

the group L.� of.�-units 5imply by L5. 

 

(3.5) Proposition, The Herbnmd qt1otienl of the G -module L'"' sati8fies 

 
h(G,I,�) = !_TI !Ip, 

n pc\ 

wheren11= [L'+l: K111. 

 

Proof: Lel {c,,p I 'l} E SJ be the standard basis of the vector space 

V = fl'+Jc� IR. By (1.1), the homomorphism 

A: L8----+ V,  A(a) = L_ log lal'+lc,p, 

 

ha� kernel µ(L) and its image is an (.I' - I )-dimensional lattice. .S =#I.We 

make G operate on V via 

ac,:p = c,-,-,:µ. 

Then A i� a G-homomorphism because we have, for a E G. 

A(au) = L log laaj'-+lc,;p = L log lala 1'+_1ac,,. 1,,p 
'jJ 'jJ 

= a(Llog lal,,. 1,.pC,-,--1'+l) = aA(a). 

"' 
lacticer in \1. 

and A(Ls) generate a G-invariant complete 

G-isomorphic lo Z, the exact sequence 

0------+ 7-c0------+r------+ I'/Zc0----------------- +0, 

together with the fact that I' /Zc0 = A(L5), yield5 the identities 

h(G, Ls)= h(G.),(L'')) = h(G. Z:)-1/z(G, I')= f /,(G, I'). 

We now choose in I' a sublattice r', in accordance with lemma (3.4). Then 

we have 

I"= EBZw'+l = EB EB Zw'+l = EB r� 
'+l pcS'l-llP P'=S 

and aw'+-1 = w,-,-':JJ· This idenlilie� r; as the induced G-module 

r; = =  EB a(7::w'+\i) = lnd��(Zw'+Jo)· 
oEG/(,'p 
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where 'Po ii- a chosen place above p, and Gp is its decompoi-ition group. The 

lattice I" has the same rank as I', 50 is therefore of finite index in r From 

chap. IV, (7.4), we conclude that 

h(G, L5) = �h(G. r') = � TT h(G,r;) = � TT h(Gµ.Zw'+_i,,) 

n n pd' n pFS 

� -
I 

TT i,(G,,Z). 

n P'=-'i 

Thus we do find that /i(G, L'") =* nµE.S· np, where 11p =#Gp= [L:p: Kp]. 

lJ 

 

From the Herbrand quotient of IJ:.' and L�· we immediately get the Herbrand 

quotient of the ide!e dai-1> group CL. To do it choose a finite set of places S 

containing all infinite onei- and all prime� ramilied in /,, such that Ir.= IZL*. 

Such a set exisb by (1.4). From the exact �e4uence 

J-----,,.L·"-----,,.JZ------+li."L*/L� --------+l 

arises the identity 

h(G,Cr.) = h(G. !J:.')11(G. L·�)-1 

and from (3.3) and (3.5) we obtain the 

 
(3.6) Theorem. If LI K is a cyclic exlcnsion of degree n with Galois group 

G = G(LIK). lhcn 

 

 
In particular (CK : Nr KCr.):::: 11. 

 

From lhi� remit we deduce the following interesting con�equence. 

 

(3.7) Corollary. 1f LIK is cyclic of prime power degree n = p'' (v > 0), 

then there are infinile/y nwny places of K which do not split in L. 

 

Proof: Assume that the set S of nonsplit primes were finite. Let M IK be the 

subextension of LI K of degree p. For every p <j. S, the decomposition group 

Gp of L IK is different from G(LIK). Hence Gp t;: G(LIM). Therefore every 

p <j. S �plits completely in M. We deduce from this that NMIKCM = CK, 

thm, contradicting (3.6). 
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Indeed, let a E /K. By the approximation theorem of chap. II, (3.4). 

there exi�ts an a E K* such that is contained in the open subgroup 

for all p E S. If p ,f_  then a11a- 1 is automatically contained 

because M<:p = K p· Since 
 

the idele lHl-
1 is a nonn of some idele fl of IM, i.e., a= (NMwfl)a E 

NMIK/lvfK*. This shows that the class of a belongs to NM,KC1vt, so that 

CK=  NM1KC'Af. □ 
 

 
(3.8) Corollary. Let LIK be a finite extension of algebraic nwnber fields. 

1f almost all primes of K split completely in L, then L = K. 

 

 
Proof: We may a&sumc without loss of generality that LI K b. Galois. In fact, 

let MIK be the nonnal clo:;.ure of LIK, and write G = G(MIK) and H = 
G(MIL). Also ]cl p be a place of K, q3 a place of M above p, and 

let Ci-:µ be it� decomposition group. Then the number of places of L above p 

equals the number #H\G /G'J3 of double cosets Ha Ge;µ in G (�ee chap. I, *9). 

Hence p �plit� completely in L if #H\G /G'J3 = [L : K J = #H\G. But this 

is tantamount to  = I, and hence to the fact that p splits completely in M. 

So w,umc LIK  Galoi<,, L #- K, and let a E G(LIK) be an clement 

of prime order, with fixed Held K'. If almo&t all prime� p of K were 

completely split in L, then the <,amc would hold for the primes p' of K'. Tiiis 

comrndict& (3.7). □ 
 
 

 
Exerci:;.e 1. If the Galoi� cxtcmion LI K is not cyclic. then there arc at most finitely 

many prime� of K which do not \plit m /.. 

1<:xercise 2, If /,IK i\ a finite Galoi\ then the Cialois group G(LIK) 1� 

generated by the Frobcniu� automorphi�m� if''l-1 prime idcab ,P of L which arc 

unramitied over K. 

Exercise 3. Let 
�uch that Kx/J is 

Exercise 4. Let 

L,nL, =K for1 
completely in L1, 

be a finite abelian exten�ion, and let D be d subgroup of I;. 

in/Kand D s::; N1_1KL'. Then L = K. 

.... L,I K he cyclic extension� of prime degree p such that 

Then there arc infinitely prime� p or K whJCh \p!it 

_.,. 1, hut which are non�plit m 
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§ 4. The Class Field Axiom 

 
Having determined the Herbrand quotient h(G,CL) to be the degree 

11 = [L: Kl of the cyclic extension LIK, it will now be enough to show 

either H-1(G,CL) = I or H0(G.CL) = (CK : NLIKCL) = 11. The first 

identity is curiously inaccessible by ½ay of direct attack. We are thus stuck 

with the <,econd. We will reduce the problem to the case of a Kumrne1 cxtemion. 

For such an extension the norm group NL1KCL can be written do'.¼n 

explicitly, and this allows us to compute lhe index (CK : NL1KCL). 

 
So let K be a number field that contain;, the 11-th roots of unity, where n 

is a fixed prime pmrer, and let LI K be a Galois extension with a Galois 

group of the forrn 

G(l,IKJ "' (Z/nZ)', 

We choose a finite set of places S containing the ramified place'>, tho;,e that 

divide n, and the infinite ones, and which is wch that / K = I J:: K •. We ½rite 

again Ks= Ii: n K* for the group of S-units. and we puts= #S. 

 

(4.1) Proposition. One has 1 ?. r, and there exist.� a set T of s - r primes 

of K that do not he/ong to S such that 
 

where L1 is the J...cmc/ 0{1hc map Ks----+ npcT K�/K;". 
 

 

Proof: We show first that L = K(n) if L1 = f,*"nKs,and then that L1 is 

the ;,aid kernel, By chap, IV, (3.6), we certainly have that L = K (':JD), with 

D = L*"nK. lfx E /J. then Kp(,v't)IKp isunramifiedforall p (j. S because 

S contains the  ramified in L. By chap. V, (3.3), we may therefore 

write x = with 11µ EUµ. Yµ EK;. Putting Jp = I for p ES. we get 

an idele y = (yµ) which can be written as a product _r = a: with a EI{, 

Z EK*. Then x:::-/1 � llpO'� E Up for all p (j_ s, i.e., .t: 11 E  n ,f� = K5, 

;,o that xz-11 E Ll. Thi;, �how<, that fJ = L1K*", and thu� L = K( n  ). 

The field N = K ( W) contaim the field t because L1 = L *,, n K·� <; 

K·". By Kummer theory. chap, IV, (3.6), we have 

G(NIK) � Hom(Ks/(Ks)'1,Z/11Z) 

 

Hy (I.I), Ks is the product of a free group of rank .1 - 1 and of the 

cyclic group 11(K) whose order is d1vi;,ibk by n. Therefore Ks/(Ks)" 
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i� a free (:Z/n.'.2)-module of rank s, and so is G(NIK). Moreover, 

G(NIK)/G(NIL) ;:;::: G(LIK) ;:;::: (Z/11Z)'" is a free (:-£/112)-module of 

rank r so that r S s, and G(N jl) ii> a free (Z/ nZ)-module of ranks -r. Let 

a1, .. ,a.,, be  ofG(NIL),andlctN, bethefixedficldofa,, 

i = I, ... ,s -r. L = n;'=;· N,. For every i = I, ,s -r we choose 

a prime 131 of N, which is non5plit in N such that the primes p 1, • • , p, _, 

of K lying below 131, , 13.,-, arc all distinct. and do not belong to S. This 

is poi>sible hy (3.7). We now show thal the set T = {p1, .,p,_,} realize-; 

the group L1 = L*n n K5 as the kernel of Ks -----f TTp<cT K;JK;'1• 

N1 is the decomposition field of NIK at the unique prime 13; above 

$;, for i = I.  . s - r. Indeed, this decomposition held Z, is contained 

in N, heeausc $1 is nonsplit in N. On the other hand, the prime p, 
is unramified in N, because by chap. V. (3.3), it is unramihed in every 

extension K(::/ii), u E K5. The decomposition group G(N IZ,) 2 G(N jN1) 

is therefore cyclic, and necessarily of order n since each element of G (NIK) 
has order dividing n. Thii> shows that N, = Z,. 

From L = n;:; N, it follows that LI K is the maximal i>ubextension of 

NIK in which the primci'I p1, ,Pv-r split completely. 1--ior l EK-� we 

therefore have 

rE.d{==>K(,v'\)�L{==>K11,(�)=K11,,i=I,  .�-r, 

{==> .t EK;;, i = I, . ., s - r. 

Thi:-, shows that L1 is 1hc kernel of the map K5 ------ T;,T,'":;· K;JK;,'1. □ 

 
(4.2) Theorem. Let T be ;:1 set of places a8 in (4.1), and let 

CK(S, T) � h(SJ)K'/K' 

 

h(S,T) = TT K;" X TT K; X Up. 
ptS pE/ 

Then one h:1.� 
 

In particular. if L IK i8 cyclic, 1/Jcn N1.wCL = CK (S, T). 

 

Remark: It will follow from (.5..5) that NLIKC1. = CK(S, "f') also holds in 

general. 

 

For the proof of the theorem we need the following 
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Proof: The inclusion (K•'>Uf)n s; IK(S, T) n K* is lrivial. Let 

IK(S, T) n K*, and M = K(v1Y), It suffices to show that 

for then (3.6) implies M = K, hence y EK*" n IK(S, T) c;: Let 

[a] ECK= !�'K*/K*, and let a E l';j be a representative of the clas" fa]. 

The map 

K·" ----+ TT Up/ U�1 
p,cT 

is surjective. For if .cl denotes ilr,, kernel, then obviously K *" n .cl = (Ks )11, 

and LlK*11/K*" = d/(Ks)'1. From (I.I) and Kummer theory, we therefore 

get 

 

 
Thir,, is also the order of the product because by chap. II, (5.8), we have 

#Up/ U�1 = n since p f n. We thus find an element x E K '> such that 

= xu;, Up E Up, for p ET. The idele a'= ax- 1 belong� to the same 

a5 a, and we show that a' E NMIK ht- By (3.2), this amounts to 

checking that every component a� is a norm from M13IKµ. For p E S thi� 

holds because y E K;n. Hence we have M,:p =  for p ET since a�= u; 
is a n -th power. For p ft. S U T it holds because  is a unit and M,:p I K p is 

unramified (see chap. V, (3.3)). This i� why [aJ E q.e.d. lJ 

 

Proof of theorem (4.2): The identity (CK : CK(S.T)) =IL: Klfollow� 

from the exact sequence 

1----+ tfuTnK*/IK(S.'f)nK* ----------- + tk'H/IK(S,T) 

----+ tt'  K*/IK(S,T)K*----+ I. 

Since I k_U'I K* = I K, the order of the group on the right i� 

(/(i,TK' c IK(S,T)K') � (!KK'/K' c IK(S,T)K'/K') 

� (CKC CK(S,T)) 

The order of the group on the ieft is 

(lf!T n K*:  IK(S, T) n K*) = ( K.',UT : (K'\vft) = 112, I 

because #(SU T) = 2s - r, and Jln s; KSuT. In view of chap. II, (5.R), the 

order of the group in the middle is 

(!}UT: /K(S, n) = n(K;: K;") = n !!:_ = 112., n lnlpl = n2s. 

pES pd' lnlp p 
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Altogether this gives 

,K n'' 
((  :CK(S,T)) = n _ 

28 1 
=lz'°=[L:K]. 

We now show the inclusion CK(S, T) s;;; NL1KCL, Let a E IK(S, T). 

In order to show that a E NLIKh all we have to check. by (3.2), is again 

that every component aµ is a norm from L<p IK p· For p E S this is true 

because ap E K;n is an n-th power, hence a norm from Kµ((�) (�ee 

chap. V, ( l.5)), so in particular also from Lq,IKµ. For p E T it hold� becau�c 

(4.1) give� 6. s;;; K�", and thus L'lJ = Kµ. Finally, it hold� for p ¢.SU T 

since ap is a unit and L:p[Kµ is unramified (�ee chap. V, (3.3)). We therefore 

have IK (S, T) <;; NLIK 11, i.e., CK(S, T) s;;; NL1KCL. 

Now if /,IK i� cyclic, i.e., if r = I, then from (3.6). 

IL' Kl:' (CK 'NL KCLl :' (CK 'CK(S,T)) �IL' KI' 

hence NLIKCL = CK(S, T). □ 

 

Now that we have an explicit picture in the case of a Kummer field, the 

rc�ult we want follows also in complete generality: 

 

(4.4) Theorem (Global Class Field Axiom). IfLIK is ;1 cyclic exrcmion 

of algebraic number fields, then 

#H'(G(LIKJ,CL) � jIL'  KJ  ro,, �o. 

I fori =-I. 

 

Proof: Since h(G(LIK),Ci,) = [L: Kl, it is clearly enough to show that 

#H0(G(L IK),Ci,) I [L : KI. We will prove this by induction on the degree 

n = [L: K]. We write for �hort H0(LIK) instead of H0(G(LIK),CL). Let 

MIK be a �ubextcnsion of prime degree p. We consider the exact sequence 
 

i.e , the exact �cqucncc 

H0(LIM)------;J. t\LIK)------;. H0(MIK) --------- ,I. 

If p < n, then #H0([,IM) I [L : M], #H0(MIK) I [M: Kl by the induction 

hypothe�i�, hence #H0(L I K) I [L : Ml[M : KI= [L : K ]. 

Now let p = n. We put K' = K(µp) and L' = L(µp)- Since 

d = [K' : K] I p - I, we have G(LIK) ;:: G(L'IK'). L'IK' i� a cyclic 
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Kummer extem,ion, "o by (4.2), #H0(L'IK') = [L' : K'] = p. It therefore 

:-.ufllce:c. to show that the homomorphism 
 

induced by the inclusion CL ----+ Cc is injective. H0(LIK) has expo­ 

nent p, because for .1 E CK we always have x/! = N1.w(x). Taking 

d = [K': KJ-th powers on H0(LIK) is therefore an isomorphi�m. Now 

let X = x mod NL1KCL belong to the kernel of(*). We write X = y'
1

, 

for some mod NL KCL, Then Y al'-O is in the kernel of (*), 

i.e., y =  z' E Cc, and we find: 

yd= NK-,K(Y) = NL'1K(z
1

) = NL1dNc1dz')) E NLIKCL 

Hence X = y'
1 = I. 

 
An immediate consequence of the theorem we have just proved is the  

famou� Hasse Norm Theorem: 

 

(4.5) Corollary. Let LIK be a cyclic extension. An c/cmcm x E K* i,\ a 

norm if and only if it i� 11 nonn locally everywhere. i.e., ;:1 norm in eve1y 

completion L,plKp ('fJlp). 

 

Proof: Let G = G(l.lK) and G,p = G(L:plKp). The exact sequence 

1   ,. L*   ,.ft  ,. CL---+ I 

of G -modules gives, by chap. IV. (7. I), an exact sequence 

Fr1(G,CL)---+ H0(G,L*)   ,. H0(G.ft.). 

By (4.4), we have H 1(G.CL) = I, and from (3.2) it follows that 

H0(G, ft.)= EBP ll0(G<p, Lq]). Therefore the homomorphism 

K*/NL1KL*--------;. 
 

is injective. But this i� the claim of the corollary. □ 

 

It should be noted that cyclicity i� crucial for Has:c.e \, nom1 theorem. In 

fact, whereas it i� true by (3.2) that an clement .\ E K * which is everywhere 

locally a norm, is always the norm of '-Orne idele a of L, this need not he 

by any means a principal idele. not even in the case of arbitrary abelian 

extension�. 



, 
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Exercise 1. l)ctermme the norm group 

m a way analogou, to the ca�e treated in 

Exercise 2. Let  be a primitive m-th root of 

N,z;li:I J]Cr, the ray da�, group mod m = 

 

 
Kummer cxtcn�1on 

(Z/p"Zl'. 

Exerci1>e 3. An e4uation .1 
2 

it 1, ,olvable everywhere 

= h, a. h ec K '. has a solution in K if and on!} il 

i.e., 111 each completion K p· 

Hint: ,1
2 

- U\'
2 

= NKl-.;<1)IK(,1 - -Jay) 1t ll rf_ K*2
. 

 

repre,ent, ..:ero over a field K with 

= 0 has a nontrivial �olut1on in K ). 

all.1.1f=O. 

Hint: It a/;2 = }, f= 0, h f= 0, then there arc non-7ero elements a and fi �uch that 

aa2 +hji2 = },. To prove th1,. multiply the identity 

(I - 1)2 4t 

(t+ 1)2 +(I+ ll2= I 

hy a/;2 = A and msert 1 = Use 

thi� to prove the claim by 

Exercise 5. A 4um.!ratic form ,u:2 + c:2 a, h,c E K". rcprc�cnt, 7ero if and 
only irit represents 7eroeverywhcrc 

Remark: In complete generality, one ha, the followmg "local-to-glohal prme1ple"': 

Theorem of Minkowski-Hasse: A 4uadratic form over J number held K repre,ent� 
7ero 1!" and only 1f II repre,enL, zero over every completion KP 

The proof follow� rrorn the rc�ult stated m exercise .5 hy pure Jlgebra (�cc 11131). 
 
 

 

§ 5. The Global Reciprocity Law 

 
Now that we know that the ide!e cla�s group satisfies the cla% field axiom, 

we proceed to determine a pair of homomorphi\m1> 
 

obeying the rules of abstract cla1>s field theory a� developed in chap. IV, 

*4. For the Z-extension of  given by d, we have only one choice. It i1> 

described in the following: 

 

(5.1) Proposition. Lei Q l(Q be the field obtained by adjoining all root.� of 



unity, <md let T be the torsion subgroup ofG(DIK) (i.e., the group of all 

element.� of fiuite order). Then the fixed field ij l(Q of T is a Z-extension. 



dK = Z, 
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Proof: Since Q = Un .1::](1111), we llnd 

Gi!?l(!I ��  G(l!(1,,,JIG) � �  (:Z/n:Z)' � z· 

But Z = TT" ZI', and z;, � Zp x Z/(p - l)Z for p -=I- 2 and 

z; � Z2 x Z/2Z. Consequently, 

G(QIQ) � Z* �ix f,  where f = TT Z/(p- l)Zx Z/2Z. 
/Jci-2 

 

Thi1> shows that the tor5ion 5ubgroup T of G(Q IQ) i� iwmorphic 

to the tor�ion subgroup of f Since the latter contains the group 

ffip_t-2Z/(p - I)� ffi Z/2Z, we see that the closure T of Tis iso_'.?lorphic 

to T. Now, if Q is the fixed field of T, this implies that C(Qll!Ql) = 
GWIQJ/T c, Z. LJ 

 
Another description of the Z-extension QIQl is obtained in the following 

manner. For every prime number p, let !11, IQ he the field obtained by 

adjoining all roots of unity of p-power order, Then 

G(S?plQl) = l!!!! G(Q(p1,,)IQ) = l!!!! (7,/p''Y..)* = z;,. 
" ' 

and z;, � ZI' x Z/(p - l)Z for p -=I- 2 and z; � Z2 x Z/2Z. The torsion 

subgroup of z;, is isomorphic to Zj(p - l)Z, resp. Z/2Z, and taking its 

fixed field gives an extemion ij(pJIQ with Galois group 

G(ij'''
11(!l c, :z,,. 

The 2-extension Q1:QJ i1, then the composite fj_, = TTI' ij<1
'
1
. 

We fix an isomorphism G(IQ IQ) � :5:. There j.., no canonical choice a5 in 

the case of local fields. However, the reciprocity law will not depend on the 

choice. Via G(QIQ) � Z, we obtain a continuous surjective homomorphism 

d: G:"t----+ Q 

of the absolute Galois group Gru: = G(QIQl). With this we continue a� in 

chap. IV, §4, choosing k = Q as our base field. If KIQ is a finite extension. 

then we put fr = rKn Q : Ql and get a suijective homomorphism 

1 - 
y;d:GK ----- + 

which defines the Z-extension K = Kij of K. i<IK is called the cyclotomic 

Z-extension of K. We denote again by 'PK the elemenl of G(K IK) which i� 
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mapped to I by the i�omorphism G(i<IK) ;:::; Z, and by (/ILIK the restriction 

({!KIL if LIK i� a suhextension of K1K. The automorphism ({JI.IK must nut be 
confused with the Frohenius automorphism corresponding to a prime ideal 

of L (sec *7). 

 

For the G{;-module A, we choo�e the union of the idele elm,� group� 

CK of all finite extensions KIQl. Thus AK= CK. The henselian valuation 

v : C(; ➔ 2 will he obtained a� the compo�ite 
 

where the mapping [ , Ql:Qll will later tum out to be the norm residue symbol 

( ,ijl(Ql) of global cla�s field theory (sec (5.7)). For the moment we merely 

define it a� follows. 

 

For an arbitrary finite ahelian extension LIK, we define the homomor­ 

phism 

[ ,L[K[: IK -  G(LIK) 

by 

[a,L[K[ � TT(a,,L,[Kp), 
p 

where Lp denotes the completion of L with respect to a place �Ip, and 

(U'µ, LplKµ) i� the noon residue symbol of local class lield theory. Note that  

almost all factors in the product are I because almost all exten�ion5 /,plKp 

are unramified and almost all ap are units. 

 

(5.2) Proposition. If LIK and L'IK' are two ;1belfan extensions of finite 

algebrnic number fields .�uch that K s; K• and L s; [.', then we have the 

commulillivc diagram 
 

l l 
lK � GU.IK). 

 

 

Prnof: For an idkle a = (a'+-i) E / K' of K ', we find by chap. IV. (6.4), that 
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and (2.2) implies 

[NK'1da). LI Kl= Q(NK'1da)p. LplKp) = Q,IJP(NK:+iKP(m_p), LplKp) 

 

� TT(a�,L:,,IK�)IL � [a,L'IK'IIL D 
� 

 
 

 

If LI K is an abelian extension of infinite degree. then we define the 

homomorphism 

I ,LIKI 'IK -  G(LIK) 

by its restriction5 [ ,LIK]IL' := [ .L'IK] to the finite subextensions L' 

of LIK. In other words, ifa Eh.  then the elements fa,L'IK] define, 

by (5.2). an element of the projective limit �  G(L'IK), and la.LI KI is 
L' 

precisely this element, once we identify G(LIK) = � G(L'IK). Again 

one has the equation 

[a,LIK] � TT(a,,L,IK,J. 

' 
where Lp does not denote the completion of L ½ith respect to a place 

above p, but rather the localization, i.e., the union of the completions 

L�IKp of all linite subextem,iom, (sec chap. II, §8). Then /.plKp is Galois, 

G(LplKp) � G(LIK), and the product nP(ap,LplKp) converge5 in the 

prollnitc group to the element [a,LIKJ. Indeed, if L'IK varies over the llnitc 

subextensiom of /.IK, then the 5ets SL'= {p I (ap,L�IKp) -=I- I) are all 

finite, �o that we may write down the finite products 

al,= n(lip.LplKp)EC(LIK>. 
p<c.'1'1· 

TI1ey converge to [a, L IK J, for if [a, L IKlG(L IN) is one of the fundamental 

neighbourhoods (i.e., NIK is one of the finite subextensions of LIK), then 
 

for all L' 2 N because 

aL' IN� TT(a,,N,IKµ) � Ja,NIK] � Ja,LJKI l,v. 

' 
Thi5 shows that [a, L IK] is the only accumulation point of the family {a,_,}. 

 

It is clear that proposition (5.2) remains true for infinite extemions L 

and L' of finite algebraic number fields Kand K'. 
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(5.3) Proposition. For every rootofw1ity ( and every principal ideJea E K* 

one hw, 

[u, K(ntKJ � I 
 

 

Proof: By (5.2), we have = la.K(()IK]k,(o- Hence 

we may assume that K = Q. 

power order tm -# 2. Now let a E let vp be the normalized exponential 

valuation of for p -# xi  and write a = u ,p1·,,(a!. For p -# £. xi. 

is unramificd and (p, 1Jlp(01Qll') is the Frobenim, automorphism 

'-Pp : ( ----+ From chap. V, (2.4), we thus get 

 
 

 

 

Hence 

 

 

with 

p'•;'"' 
np = up 

sgn(a) 

for p #- f..00. 

for p = i'. 
forp=OC. 

fu,Q(sJIQI( � n(u.Q,.(()IQ,.)( � (" 
)' 

where ()' = Tin/! = sgn(a) n p''1,lalu/1 = sgn(a) n p1'/l(a)a-
1 = I. 

I' 11.,i.f,r,o p'f'cx 

□ 

 
Since lhe extension KIK is contained in the field of all roots of unity 

over K, lhe propo�ition implies 
 

for all a EK*. The homomorphism [ .f<IK]: IK - G(f<IK) therefore 

induces a homomorphism 

 

and we consider its compo<site 

VK: CK ----- 4- z 
with dK: G(i<IK)----+ Z. The pair (dK,vK) i� then acla'>� field theory, for 

we have the 

 

(5.4) Proposition. The map VK : CK - Z is surjective and is a hcnsclian 



valuation with respect to dK. 
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Proof: We first show surjectivity. If l.lK is a tinite subextension of K1K. 

then the map 

[ ,LIKI � n< .L,[K,): IK----+ G(L[K) 
p 

i� surjective. Indeed, since ( ,l.plKp) : K; ----+ G(LplKp) i� �urjective, 

[IK,LIK] comains all decompo�ition groups G(LplKp)· Thm all p �plit 

completely in the !hcd tield M of [/ K, I. I K ]. By (3.8), this implie" 

that M = K, and so [/K,l,IKI = G(LIK), This yield� furthermore that 

f/ K, K IK l =[CK, ii Kl is dense in G(K I K ). In the exact sequence 

I ------+ C¼ ------+ CK � ------+ I 

(see* I) the group C¼ is compact by (1.6), and we obtain a splitting, 

if we identify R.: with the group of positive real number� in any infinite 

completion Kp, Thus CK = ci x f!t�. Now, fR:.KIKJ = I, for if 

x E then [x,K.IKJIL = [x.LIKl = I for every !inite �ubextemion 

LIK KiK, because we may alway� write x = with y ER: 

and n = fL: K]. Therefore [CK,ilK] = [C¼,R'IK) is a closed, dense 

subgroup of G(KIK) and therefore equal to C(ilK). This prove� the 

surjectivity ofvK =dK c [ ,KIK]. 
In the definition of a hensclian va!.!!ation given in chap. IV, (4.6), condition 

(i) i� sati5tlcd because vK(C K) = ?., and condition (ii) follows from (5.2) 

because for every finite extension LI K we have the identity 

vK(NL1KCLl = vK(N, ,Kfi) = ddNL1Kh,ilK] 

=fL1KddtL,LILI= tfwv1.(C1.)=.hwi. CJ 
 

 

In view of the fact that the idelc cla�� group CK satisfies the class field 

axiom, the pair 

(dQ: G.:;_,----+ 2, :C:;;:, ---- +i) 

comtitutcs a clas� field theory, the "global field theory". The above 

homomorphism t'K = th 8 f, R'IK]: CK ----+ for finite extensiom K IQ, sati�fies 

the formula 

~ I 
1'K = 0 ! ,QIQ] 0 NK11:,, = y;v-:.:_, o NK1,:;_ 

 

and is therefore preci�ely the induced homomorphism in the �cmc of the 

abstract theory in ch:tp. IV, (4.7). 

 

As the main result of global class field theory we now obtain the Artin 

reciprocity law: 
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(5.5) Theorem. For every Galois cxlension LI K of finite algebraic number 

fields we have a canonical isomorphism 

rt1K: G(LIKfh �  CK/NL1KCL. 

The inverse map of rLIK yield� a su1jective homomorphism 

. LIK), CK - G(LIK)"" 

with kernel  The map ( , LI K) is called the global norm residue 

symbol. We it also as a homomorphism /K -------- + G (LI K )'11,. 

For every place p of K, we have on the one hand the embedding 

G(LplKp) c.._--,,. G(L IK),  and on the other the canonical injection 

( ) : K; --- + CK, 

which �ends up E K; to the cla�s of the ide!e 

(ap) = (... ,1,1.1,ap, I.LI. ......... ). 

The�e homomorphisms expres<, the compatibility of local and global clas� 

field theory. a� follows. 

(5.6) Proposition. If LI K is an abelian extension and p i.� a place of K. 

then the diagram 

K; � G(LplKp) 

CK� G(LIK) 

 
is commutative. 

 
Proof: We !irst show that the propo�ilion holds if LI K is a .;.ubexten�ion of 

KiK, or if L = K(i), i = R, and ploc. Indeed, the two maps [ , K1K ], 
(, KiK): IK---+ G(iJK) agree because from chap. IV, (6.5), we have 

dKo( ,KIK)=VK=dKo[  ,KIK]. 

Thuo.. if L IK is a subextemion of K IK and a. = (aµ) E / K, then 

(a.LIK) � [a.LIKI � TI(a,.L,IK,). 
p 

In particular, for ap E K; we have the identity 

((ap),LIK) = (ap.LplKp)- 

which �hows that the diagram is commutative when re�tricted to the finite 

!->uhextension� of KI K. 
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On the other hand, let L = K(i), i.,loo, and Lp -=fa Kp, Then K; = IR�, 

j<, the kernel of ( , Lp IK ), and (-1, L 1K ) is complex conjugation in 
11 11  11 

= G(CIIE.). Thus, all we have to show i� that ((-1),LIK) -=fa I. 

If we ((-1). L IK) = I, then the class of (- 1) would be the norm of a 

class of CL, i.e., (-l)a = NL1K(a) for some a EK* and an idClc a Eh- 

This would mean that a = for q -=fa p and -a = i.e., 

(a,LqlKg) = I for q -1- p =I.By (5.3), we have 

I =[a,LIKl=nq(a,LqlKq)= sothat(-1,LplKp)= I.and 

therefore -IE N1.pwp(L;) =  a contradiction. 

We now reduce the general ca<,c to these special cases as follows. Let 

L'IK' be an abclian cxtcn5ion, so that Ks; K', Ls; L'. We then con<,ider 

the diagram 

 

 

 

I 1,;fN,,,,,,L; 

 

/'j(L',I,'J--[� 

 
G(LIK) --�C'1-,/!V111-,C'1, 

 

where Lp = KpL, K� = KpK', t� = KpL'. In thit-. diagram, the top and 

bottom arc commutative by chap. IV, (6.4), and the sidet-- arc commutative 

for trivial reasons. If now L'IK' it. one of the t-.pccial extemions for which 

the proposition is already established, then the back diagram is commutative, and 

hence also the front one, for all elements of G(Lp IKp) in the image of 

G(L�IK�)----+ G(LplKp)- This makes it cle<1r that it is enough to find, for every 

a E G(LplKp), some 5pccial extension L'IK' such that a liet-- in the image of 

G(L�IK�)- It is even sufficient to do this only for all a of prime power order, 

hecause they generate the group. Pas'>ing to the fixed field of a we may assume 

moreover that G(L IK) i5 generated by a. 

When Ploo and Lp -1- Kp, i.e., Kp = Ill, Lp =  we put L' = L(i) s; C, 

and choot--e for K' the fixed field of the restriction of complex conjugation 

to L'. Then L' = K'(i) and K� = R, L� = so the mapping 

Ci(l,�IK�)----+ G(LplKp) is surjective. 

When pf oo, we !ind the cxten�ion L'IK' asfollows. Let a be of p-powcr 

order. We denote by Ki K. resp. LIL, the Zp-extension contained in K IK. 

resp. LIL. and consider the field diagram 
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L,-- 

L/1 

1/L 
}(--- 

 

 

with localintiom .RP= Kpf, LP= Lpf� (all field� arc considered to lie in 

a common bigger field). We mily now lift o E G(LplKp) = G(LIK) to an 

automorphism Cl of LP such that 

(I) Cl E G(LplKp), 

(2)6-IR =rpR K forsomen EN. 
1 

Indeed, '>im:e RP=  Ki)( -I- Kp, the group G(RplKµ) -I- I, and thus i� 

of finite index if viewed as subgroup of G(flK) ;;::: 'LI'. It is ,!_herefore 

generated by a natural power ifr = <pf IK of Frohenius <"PiiK E G(K IK). A� 

in the proof of chap. IV. (4.4). we may  lift o to a CT E G([p IKµ) such 

that CTIRP = vrm. m EN. so that CTIK = 

We now take lhe tixed field K' of CT I [, and the extension L' = K'L. As 

in chap. IV. (4.5), conditiom (ii) and (iii), it then follows that [K' : KI < oc 

and R' = L. L'IK' is therefore a �ubexten�ion of f'IK'. and o is the image 

of 6-lcp under G(L�IK�)----+ G(LµIKp)- This finishes the proof. □ 

 
(5.7) Corollary. ffLIK is an abeli.m extension and a= (aµ) E IK, then 

(a,LIK) � TT(apJ,IK,). 
p 

In particular. for a principal ide/e a E K� we have the produc/ formula 

TT(a,LplK,J�l. 
p 

 

Proof: Since I K is topologically generated by the idelcs or the form 

a = (oµ), op E K;, it is enough to prove the fir�! formula for the�e 

idele�. But thi� i� exactly the statement of (5.h): 

(a.LIK) = (\ap),LIK) = (oµ.LplKp) = n,,<aq,LqlKq). 

The product formula i� a consequence of the fact that (a.LI K) depends only 

on the idele cla�s a mod K*. □ 
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Identifying K; with its image in CK under the map ap i-----;- (ap), we obtain 

the following further corollary, �here we u<;c the abbreviations N = NLIK 

and Np= NLplKµ• 

 

(5.8) Corollary. For every finite ahelian exte11.�ion one has 

NCL n K; = NµI,;. 

 

Proof: For Xp E we see from (5.6) that ((xp).LIK) = (xp,LplKp) 

= I. Thus the class b contained in NCL, Therefore NpL; c;: NCL. 

Conversely, let ii E  n K;. Then a is represented on the one 

hand hy a norm idele a = Nfl,  E h, and on lhc other hand 

by an idele (xp), Xp E K1�. TI1b (xp)a = Nfl with a E K*. 

Pa:-,:-,ing to components shows that a is a norm from L,11Kq for every 

q -1- p, and the product formula (5.7) shows that a i:-, also 1l nonn 
from LµIKp. Therefore ,-P E NµL;. and thi:-, proves the inclu-;ion 

NCL n K* £;; Npl�. □ 
 

 
Exercise I. If D� i, the connected component of the unit element and 1t 

K"1'1K i, the maxim.ii abelian exten,ion of K. then CR /DR � 

Exercise 2. For every pla<.:e p of K one ha\ K(�h = K"1' K p• 

Hint: Use (.5.6) and (.5.8). 

Exercise 3. Let p he a prune number, and let M1,IK be the maximal abelian p­ 

exten\1011 unram1tied oubidc of (pip). l·urther, let //IK be the maximal unrarnified 

,ubexten,ion of M1,IK 111 which the mtinite place� �plit completely. Then there 1s an 

 
Pl11 Pl/I 

where [ is the clo�ure of the (diagonally embedded) um\ group F = in TTP11, l'µ• 

!S a Z1,·lllOdulc of rank 

11,(F) := 
unit rank. 

r1.(t,"J i� called the p-adic 

Problem: For the p-adJC umt rank. one ha, the famou� Leopoldt conjecture: 

r1,(L.:,") =r +s-1 

where 1. re�p.. 1. i, the number of all real. re�p. complex. place�: 111 other words. 
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§ 6. Global Class Fields 

 
A:,, in local class field theory, the reciprocity law provide" al�o in global cla�5 

llcl<l lheory a complete classification of all abelian extensions of a finite algebraic 

number field K. For this it is nccc��ary lo view the idele cla�s group CK 

as a topological group, equipped with it5 natural topology which the valuations 

of the various completions KP impre% upon it (:,,ee § I). 

 

(6.1 ) Theorem. The map 

LI----+ JV/.= N1.1KCt. 

is a I -1-corre.\pondence between the finite abelii:W extemion.� LI K and the 

closed subgroup,\ of finite index in CK. Moreover one lws: 

L1 s; L2 {::::::::} .VL1 2 }\(Le' A�.,1.2 = .V1, n.VLc,· )l,/L1nL2 = ,,vl1•''1i.2- 

The field LI K corre.�ponding to the .�ubgroup JV of CK is called the class 

field of.V. ll satisfies 

 

 
Proof: By chap. IV. (6.7), all we have to show is that the subgroup:,, JV ofC K 

which are open in the nonn topology are precisely the closed :,,ubgroup:,, of 

!inite index for the natural topology. 

If the :,,ubgroup JV is open in the norm topology, then it contain:,, <1 

norm group N1_1KCi. and i� therefore of tlnite index. because from (5.5), 

(CK : NL1KCL) = #G(LIK)ah_ To show that ;Vi:,, closed it is enough to 

show that NLIKCL i:,,. For this. we choo"e an infinite place p of K and 

denote hy I'K the image of the subgroup of po�itive real numbers in K p 

under the mapping ( ) : K; ➔ CK. Then I'K is a group of repre-;entative:,, 

for the homomorphism 91 : CK -----+ ��  with kernel ci  (see � I), i.e., 

CK = ci x rK. By lhe same token. I'K i:,, a group of repre:,,entatives for the 

homomorphi�m 91: CL -----+ JR:. We therefore get 

N1 ,KCL = NL1KCr X NL,K I'K = N1.1KCj
1

_ X l'f: = NLIKC2 X I'K. 

The norm map is continuom, and cz i� compact by (1.6). Hence NLIKC2 i:,, 

clo�ed. Since rK is clearly also clo:,,ed in CK, we get that N1.1KCL i� closed. 

Conversely let _t,,/ be a closed subgroup of CK of finite index. We have 

to <,how that JV i:,, open in the norm topology, i.e., contains a nonn group 

For thi-; we may assume that the index 11 b a prime power. For if 

p/'' . and J'v·: s; CK is the group containing .V of index then 

.V =  1 .\1�, and if the J\•� arc open in the norm topology, then \O 



NK•1K<CK,(S )) 
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Now let J be the preimage of.V with respect to the projection I K ---- + CK. 

Then J is open in / K bccau"e JV is open in CK (with respect to the natural 

topology). Therefore J contaim a group 

Ui: � n\!) X n Up. 
pES p¢.\ 

where S i<; a �ufliciently big finite set of places of K containing the 

infinite ones and tho,;e primes that divide n, such that h = JkK•. Since 

(h : J) = 11. J al"o contain:-, the group np<c\ K;11 X np_,.dl), and hence 

the group 

IK(S) = n K;
11 

X n Up. 
pd P!i'-\ 

Thus it is enough to show that CK(S) = I K (S)Kx / K* c; JV contains a norm 

group. 1t;,the n-th roots of unity helong to K, then CK(S) = NLiKCt with 

L = K (':J7<I ), bccau,;e of the remark following (4.2). If they do not belong 

to K, then we adjoin them and obtain an extension K'IK. Let S' he the set 

of primes of K' lying above prime,; in S. If S wa� chosen sufficiently large, 

then fK, = Jf_K1
� and CK,(S

1
) =  with L' = K'(�). h) 

the above argument. Using chap. V. this give� on the other hand that 

NK' KUK·(S')) c; h(S), sothat 

NcwCu = NK'1K(N1·1K·C1.') = 
1 

t; CK(S). 

Thi-. 1lni,;he\ the proof. □ 

 

The above theorem is called the ''existence theorem" of global clas� field theory 

becau�e ib main assertion is the exi"tence, for any given closed subgroup 

.I\/ of finite index in CK, of an ahelian extension l.lK wchthat NLiKCL = 
JV. Thi:- exten�ion L i� the class field for .,V. The exi.�tence 

theorem gives a clear overview of all the abelian extensions of K once we 

bring in the Cl( of CK corrc:-,ponding to the modules 

m = nPt"- P11
" are clo�ed of finite index by (1.8), and they 

prompt the following definition. 

 

(6,2) Definition. The class field K "'I K for the congruence subgroup Cl( i.� 

called lhe fa) class field mod m. 

 

The Galois group of the ray cla:-s field i� canonically isomorphic to the 

ray class group mod m: 

G(K"'\K) "'CK/C�' 
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One has  
mlm' =;>  Km<;; Km', 

hecau�e clearly C!,! 2 er;/. Since the closed subgroups of llnilc index in CK 

are by ( 1.8) prec1�ely those subgroup� containing a congruence subgroup 

Cl(, we get from (6.1) the 

 

(6..3) Corollary. Every finite abelian extension LIK is comained in a ray 

c/a.�s field KmlK. 

 

(6.4) Definition. Let LIK be a finite abelian extension, and let )'v't. = 
N, 1KCl• The conductor f of L IK (or of.1'viJ i.� the gcd of all modules m 

such that L <;; K"' (i.e., C/2 <;; .VL). 

 

K)I K is therefore the :-.mallc�t ray class field containing LI K. But it is 

not true in general that mi� the conductor of K"'IK. In chap. V, (1.6), we 

defined the conductor fp of a p-adic extension Lp IKp for a finite place p, to 

be the smallest power fp = pn such that U�'l c;; NL,,IKpL�. For an infinite 

place p we define fp = I. Then we view fa� the replete ideal f TTplcx, p0 and 

obtain the 

 

(6.5) Proposition. !ff is the conductor of the abe/ian extension LIK,1:md fp 

is the conductor of the local exten.�ion Lp IK p, then 
 
 

 

Proof: Let J\,' = NLIKCt, and let m = TIP p11P be a module (11p = 0 

for PIX). One then has 

C/(<;;JV{=::}flm and TTfplm{=::}fplP"P forallp. 
p 

So to prove f = TIP fp, we have to show the equivalence 

C�-' <;; J\l {==} fplp"P for all p. 

It follow� from the identity JV n K; = NpL; (�ee (5.8)): 

Cl( <;; .V {=::} (a E If ⇒ ii E ."../) for a E h 

-<===;, (ap = I mod p"P ⇒ (Cl'p) E JV n K; = NµL;) for all p 

{=::} (ap E utp1 ⇒ ap E NpL�) {=::} u;""1 c;; NpL; {=::} fplP//p. 

□ 



* 
1

; " 
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By chap. V, (1.7). the local extension LplKp, for a finite prime p, i:-. 

ramified if and only if its conductor fp is -1- I. This continue� to hold al�o for 

an infinite place p. provided we call the extension LplKµ unramified in this 

case, m, we did in chap. III. Then (6.5) yield� the 

 

(6.6) Corollary. Lei L IK be a finite ;.ibelian extension and f its conductor. 

Then: 

pisramitiedinl {=:::::} Plf- 

 
In the case of the base field Q, the ray class fields are nothing but the familiar 

cydotomic fields: 

 

(6.7) Proposition. Let m be a natural number and m = (m). Then /he ray 

c/as.� field mod m of (fJ is 1hc field 
 

of m -th roots of unity. 

 

Proof: Let m = nf't/h.. Pn". Then (8' = nl'rl'.., , u?1
') x IR�. Let 

m = m'p11
11_ Then u 11 1 

is contained in the norm group 

of the unramitied extension  but also in the norm group 

according to This means, 3, that every 

is a norm of 5ome idele of Q(/L111). Thu� C� £;  On the 

C:;,;c;' ;::: (Z/mZ)* by (1.10). and therefore 

(Co, c0)� [ll(M,,,), G] �(Co, NC0"'"'1)- 

so that C1) = NCo_,(1,,,,), and thi5 proves the claim. n 

 

According lo thi� proposition. one may view the general ray clas� fields 

KmlK as analogues of the cyclotomic fields Q(µ111)1:{]. Nonetheless, they 

arc not made to take over the important r61e of the latter because all we know 

about them i� that they exist. but not how to generate them. In the case of 

local fields things were different. There the analogues of the ray das� field� 

were the Lubin-Tate extensiom, which could be generated by the division 

points of formal group� - a fact that can-ies a long way (�ee chap. V, *5). 

This local discovery docs, however, originate from the problem of generating 

global cla�s fields, which will be discussed at the end of this section. 

Note in pas�ing that the above propo�ition give� another proof of the 

theorem of Kronecker and Weber (sec chap. V. ( 1.10)) to the effect that 
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every finite abclian extension 

by ( 1.8) the norm group 

m = (m), so that L � Ql(/l111). 

is contained in a field Q(11111)IQl, because 

lie� in �ome congruence �ubgroup CQ, 

 

Among all abclian extensions of K, the ray class field mod I occupies a 

special place. It is called the big Hilbert class field and has Galois group 

G(K11K) � Ctk 

By (1.11), the group Cll, is linked to the ordinary ideal class group by the 

exact sequence 

I-----+ dJo:-----+ TT R*J!H::-----+ Cll,-----+ C{K-----+ I. 
prcal 

The big Hilbert class field has conductor f = I and may therefore be 

characterized by (6.6) in the following way. 

 

(6.8) Proposition. The big Hilbert class field is the maximal unramified 

abelian extension of K. 

 
Since the infinite places are always unramified, this meam that all prime 

ideals are unramitled. The Hilbert class field, or more precisely, the ''small 

Hilbert class field", is defined lO be the maximal unramified abelian extension 

H IK in which all infinite places <;plit completely, i.e., the real places stay real. 

It satisfies the 

 

(6.9) Proposition. The Galois group of the .�maJJ Hilbert class field HI K is 

canonically isomorphic to the ideal class group: 
 

In p<-1.rticular. the degree [H : K J is the class number hK of K. 

 
Proof: We consider the big Hilbert class field K 11 K and, for every infinite 

place p, the commutative diagram (see (5.6)) 

K; ( 'Ki!Kpl  G(K� IKp) 

II 1 1 
IKJl}K*� G(K11K). 
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The &mall Hilbert cla�s held HI K is the fixed field of the subgroup G 'XJ 

generated hy all G(K� IKp), PIXJ, Under ( . KI IK) lhi5 i5 the image of 

(n K;)t}K'/I}K'�Ii;�K'/t}K', 
p� 

 

where /;,,., = TTp1,-,.K, ; x TTPt= Up· Therefore by (1.3), 
 

 

 

 

Remark: The small Hilbert class field is in general not a ray da�� field 

in tenns of the theory developed here. But il i& in many other textbooks 

where ray class group� and ray class field:,, arc defined differently (�cc for 

imtance [1071). Thi:,, other theory is obtained by equipping all number liclds 

with the Minkow:,,ki metric 

(X,Y)K = (r E Hom(K,C)), 

 

a,= I if r = T, a, = { if r # T. A ray cla:,,:,, group can then be attached 

to any replete module � 

m�np"•·, 
p 

 

where np E Z. np 2: 0, and nµ = 0 or= 1 ifploo. The groups utpJ attached 

to the metrized number field (K, ( , )K) .ire defined by 

for lip> 0,and Up for nµ = 0. if p 1Xl, 

if p is real and l!p = 0, 

ifp j., real and llp = 1, 

if p is complex. 

The suhgroup mod m of (K. (, )K) b then the subgroup 

of CK fom1cd with the group 

r; = TI u,;11
p
1
. 

p 

 

and the factor group is the ray l fas.1 group mod rn. The rav ( los,1 

{tcfd mod m of (K. ( , again the clas5 field of K corresponding to 

the group  s;;; C«.  As explained in chap. Ill, QJ. the infinite plilcC� p have 

to be comidcrcd as ram!fied in an extension LI K if Lp # K p· Likewi�e. 
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the conductor of an abclian extension LIK, i.e., the gcd of all module� 

m = np ))11
P such that Cl( 5:;:; NL1KCL, is the replete ideal 

f � f1fp. 
p 

where now for an intinite place p, we have fp = pn� with np = 0 if Lp = Kp, 

and np = I if Lp #- Kp, Corollary (6.6) then continues to hold: a place pis 

ramified in L if and only if p occurs in the conductor f. 
This entails the following modifications of the above theory, as far as ray 

cla1,s field:-. arc concerned. The ray cla5� field mod I is the .1mafl Hilbert 

class field. It is now the maximal abelian extension of K which is unramitied 

at all places. The big Hilbert class field is the ray clas� field for the module 

m = nPI""' p. In the case of the base field Q, the field IQ(t) of m-th roots 

of unity i1, the ray class field mod mpcx,, where pc,c is the infinite place. The 

ray cla�5 field for the module m become� the maximal real subextcn�ion 

IQ((+ (-1), which was not a ray class field before. This is the theory one 

find1, in the textbooks alluded to above. It corrc�pomb to the number field'> 

with the Minkowski metric. The theory of ray class llcld� according to the 

treatment of this book is forced upon u� already by the choice of the standard 

metric {x, y) = Lr.,r.Yr on Ki,: taken in chap. I. S 5. It is compatible �ith the 

Riemann-Roch theory of chap. III, and has the advantage of being simpler. 

 

Over the field Q, the ray class field mod (m) can be generated, according 

to (6.7), them-th root� of unity, i.e., by special value1, of the exponential 

function The que�tion 5uggested by this observation is whether one 

may con�truct the abelian extensions of an arbitrary number tield in a 

similarly concrete way, via special values of analytic functiom. Thb was 

the historic origin of the notion of cla55 field. A completely sati�factory answer 

to thi� question has been given only in the ca�e of an imaginary tJUadratic 

tield K, The result<, for thi1, case are sub5utned under the name of 

Kronecker•� Jugendtraum (Kronecker'1, dream of hi� youth). We will briefly 

describe them here. For the proof�, which pre�uppose an in-depth knowledge 

of the theory of elliptic curves, we have to refer to [96] and [28 ]. 

An elliptic curve is given as the quotient E = CJ I' of C hy a complete 

lattice I' = :Z(J)1 + Zcv2 in  This is a toru5 which receive1, the �tructure of 

an algebraic curve via the Weierstrass p-function 
 

where I"= I'"- {OJ. p(:::) i� a meromorphic doubly periodic function, i.e., 

1;,,(z+(J))=1;;i(z) for all  wE /', 
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and it salisllcs, along with its derivalive p'(:), an identity 
 

 

The constants g1, g1 only depend on the lallicc r, 
g2 = g2(I') = 60I\,c;eo �, g3 = g,(I') = 140Lw#O 
thus be interpreted a� functions on C/ I'. If one takes 

S i; r:; I' of poles, one gets a bijection 

are given by 

p and,;/ may 

the finite set 

 

 

onto the affine algebraic curve in  by the equation y1 = 
4x1 - - g1. This give" the torus the structure of an algebraic 

curve over of geom I. An important r61c is played by the j-invariant 

 

with Ll = gi - 27g{. 

It determines the elliptic curve E up to isomorphism. Writing generator" 

w1,w2 of I' in '-UCh an order that r = o>1/<o1 lies in the upper half­ 

plane H, then )(£) becomes the value j(r) of a modular function, i.e., 

of a holomorphic function j on lHl which is invariant under the substitution 

r i---+ :';:; for every matrix (;  : ) E Sl,2 (.?'.). 

Now let K £: C be an imaginary quadratic number held. Then the ring 

OK of integers forms a lattice in C, and more generally, any ideal a of OK 

doe� as well. The tori C/a constructed in this way are elliptic curves with 

cvmple.t multipllmtion. Thbmeans the following. An endomorphism of an 

elliptic curve E = IC/ I' b given as multiplication by a complex number : 

such that zr £: r. Generically, one has End(£)=  If this is not the case, 

then End(£) @ IQ i� necessarily an imaginary quadratic number lleld K, 

and one �ay� that this is an elliptic curve with complex multiplication. The 

curve� IC/a are obviously of thb kind. 

The con�equences of these analytic investigations for cla-.� field theory are 

the following. 

 

(6.10) Theorem. Let K be an imagimlfy quadratic number field and a an 

idea/ of o K . Then one has: 

(i) The 1-invariant i(a) of IC/a i� an algebraic integer which depends only 

on the ideal c/as.� J'l of a. 11nd will therefore be denoted by j (ft). 

(ii) Every j(a) generate.� tile Hilben cla'>'> field over K. 
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(iii) If a1,  . a1i are rcpre1,entatives of the ideal class group CIK, then 

the numbers j (a,) are conjugate to one another over K. 

(iv) For almosl all prime ideals p of K one has 
 

where (/Jp E G(K ( j(a))IK) is the Frobenius automorphism of a prime ide,ili:j] 

of K(j(a)) above p. 

 

 

Note that for a totally imaginary field K there is no difference between 

big and small Hilbert class field. In order to go beyond the Hilbert class field, 

i.e., the ray class field mod I, to the ray cla�� fields for arbitrary modules 

m cf. I, we form, for any lattice I' i;  the Weber function 

-2'3' Pr(,).  if X2.<q' 0, 

r,,(z) =  -2936�pj'(:). if,R2 =0, 

12HJ4 if g, = 0. 

Let .It E C/ K be an ideal cla% chosen once and for all. We denote by W the 

classes in the ray class group Cl{( = .!'//! P;' which under the homomorphism 

Cf!(_ --- ,. CIK 

are sent to the ideal class (m).fl-1. Let 11 be an ideal in .It, and let b be an 

integral ideal in Ji*. Then 11bm-1 = (a) is a principal ideal. The value r.,(a) 

only depends on the class yt•, not on the choice of a, b and a. It will be 

denoted by 

With the�e conventions we then have the 

 

(6.11) Theorem. (i) The invariants r(.lt�), 

c/a�s fl, are distinct number.\ 

llilbert class field K 1 = 

... , for a fixed ide:il 

arc conjugate over the 

(ii) For m1 arbitrary .W, the field K (j(fl), r(.W)) is the rny ci,-1.ss field mod m 

over K: 



K"' � K( iUO. r(Jl'J) 



  
For 

= 2;Xp(Ll'p, K PIK p)- 
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Exercise J, Let 
G(K1]11):;,: 

he the big, and HIK the small Hilbert field. Then 

'. where r 1� the number of real place�. and  : drl- 

Exercise 2. Let d > () be s4uarefree, and K = Let f he a totally 

fuml:tmental unit of K. Then one ha� [K 1 :  = or = 2. according a� 

= -I or=\. 

Exercise ]. The group (CK)" = 
N1 IKCL of all abel1an exten�ion� 

Exercise 4.  For a number field K. local Tate dudiity ("cc chap. V, � I, exere1"c 2) 

yield� a ,o,-d,,<eo,cmc pairing 

(*) OH1(Kp,Z/nZl x IJ!11(Kp./I,,)--;. '£/n.'Z 

 
arc taken with re�peet to 

x = (Xp} in the fir�1 and 

 
 

 

(i1) If LIK ha linilc extension. then one ha� a commutative diagram 

x 0H1
(/.<:JJ,/1,,) 'Z'./nZ 

� 

 

 

 x 0,,H
1(Kp,µ,,J Z/112. 

(iii) The images o( 

H\K,Z/nZ)--,. 

 

and  

ll'(K.11/1)--;. 0H1(Kp.µ") 

" 
are mutual orthogonal complement� with rc�pec1 to the pairing (*). 

Hint for (iii): The 

ha" H1(K,Z/11Z) = 
exten"ion of exponent n. 

�econd map 1�  and one 

where LI K 1." maxima! abelian 

Exercise 5 ((ilobal Tate Dualit�'). Show that the statement" 

an arbitrary finite (;A•-module ;\ m�tead of Z/nZ. and A'= 

ofµ,,. 

Hint: u�e exercise" 4-8 of chap. IV, *3, and exercise 4 of chap. V*, 1. 

Exerci�e 6. It S is a linite "et of place� of K, then the mdp 

H1(K,Z/nZ) --,. 0 H1(Kp.Z/117'..) 



P'.1 

is �urject1vc if and only 1f the map 

H1(K,µ,,)--;. II H1(Kp,µ,,) 

•-' 
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ifc1thcr the exten"mn 

not contain all place� pl2 
llK i, cyclic, 

arc nonspl1t in 

 

1<:xercise 7 (Theorem of GRLNw111J). If the la�l condiuon of exercise 6 i\ \ati�lied 

for the triple then. extensions l,µI KP for p E S, there 

ex1\ts a has tplKµ a� a completion for p ES, 

whJCh 

 

(�ee abo [!OJ. chap. X, *2) 

Note: Let G be a finite group of order prime to #µ(K), let She a finite \et or 

places, and let LµI K µ, p E S, be given Gal01s exten�1on, whose Galoi� groups c;P 

can he embedded into G. Then there exi�t\ a Galo1., cxlcmion LI K which on the 

one hand has Galois  isomorphil· to G. and which on the other hand has the 

given extensions .i.., completion� ("ee 1109]). 
 
 

 

§ 7. The Ideal-Theoretic Version of Class Field Theory 

 
Class field theory has found its idele-theore1ic formulation only after it 

had been completed in the language of ideals. f-irom the very start, it was 

guided by the desire to clas"ify all abelian exten"ions of a number field K. 

But al first, instead of the ide!e class group CK, there wa� only the ideal 

ela�:c. group CIK at hand to do thi�. along with its subgroups. In tenn� of 

the insights that we have gained in the preceding section, thil> means the 

restriction to the subfields of the Hilbert class field, i.e., to the unramificd 

abelian cxtcnsionl> of K. if the base llcld is Q, this restriction il> of course 

radical, for Q ha� no unramitied extension:c. at all by Minkow"ki\, theorem. 

But over 1:Q. we naturally encounter the cyclotomic fields Q(Jlmll:Ql with 

their familiar isomorphi�ms G(Q(11m)IIQ) ;,:  Hut,'R1(·11 WF11n1 

realized, a� was already mentioned, that the groups and (Z/111Z)* are - 

with a grain of salt - only different in�tances of a common concept, that of 

a ray c]a�., group, which he defined in an ideal-theoretic way a� the quotient 

group 

CfK = J'tt/ P;' 

of all ideals relatively prime lo a given module m, by the principal ideals (a) with 

a = I mod m, and a totally positive. He conjectured that this group 

Cl�, along with its ._ubgroup�. would do the same for the �ubextemions 

of a "ray class field" K"'IK (which at first \¼a� only po<,tula!cd lo exist) 



al> the ideal dal>s group CIK and ih �ubgroups did for the wblield� of the 

Hilhert cla�., (icld. Moreover. he �tated the hypothesis that every abclian 
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extension ought lo be captured by such a ray cla5s field, as wa� rngge�ted 

by the case where the ba�e field is Q, whose abelian extensions are all 

contained in cyclotomic fields  by the Kronecker-Weber theorem. 

After the seminal work of the mathematician P111ut'I' FcRnVANG!FR 

144], these conjecture� were confirmed the Japanese arithmetician Tn.11 

TAKA<a ( 1875-1960), and cast by EMIL  ( 1898-1962) into a 

definite, canonical form. 

 

The idelc-theoretic language introduced by Cm v.1LLH brought the 

simplification that the idcle da�s group CK encapsulated all abelian 

extcn�ion� of LI K at once, avoiding choosing a module m every time 

such an extension was given, in order to accommodate it into the ray cla�f> 

field KmiK, and thereby make it amenable to class field theory. The classical 

point of view can be vindicated in term5 of the idele-theoretic version 

by looking at congruence �ubgroup5 CK in CK, which detlne the ray clasf> 

field5 KmlK. Their wbfields correspond, according to the new point of view, 

to the groups between CK and CK, and hence, in view of the isomorphism 

CK/CK �Cl';_. 

to the subgroups of the ray class group Cl!(. 

 
In what follows, we want to deduce the clas5ical, ideal-theoretic ver5ion 

of global class field theory from the idcle-theoretic one. Thi� i� not only an 

obligation towards history, but a factual necessity that If, forced upon ut, by 

the numerous applications of the more elementary and more immediately 

accessible ideal group�. 

 

Let LI K be an abelian extension, and let p be an unramified prime 

ideal of K and 'l3 a prime ideal of L lying above p. The decompo�ition 

group G(L<+1IKp) £ G(LIK) i� then generated by the cla�5ical Frobenius 

automorphism 

where Jtp is a prime clement of Kp. As an automorphism of L, (,Op is 

obviou�ly characterized by the congruence 

(,Opt.I = c/f mod 'l3 for all a E OL 

where q is the number of element� in the re1>idue class field of p. We put 
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Now let m be a module of K such that L lies in the ray class field mod m. 

Such a module is called an module of definition for L. Since by (6.6) each prime 

ideal pf mis unramilied in L, we get a canonical homomorphism 

(
L- IK) ,Jm,-G(LIKJ 

from the group 1;1 of all ideal:;. of K which are relatively prime to m by 

putting, for any ideal a= ITP p'"r: 

(�J�rH�r 
( �) is called the Artin symbol. If p E l'JF is a prime ideal and JTp a prime 

element of Kp, then clearly 

(PLIK) 
�(lrr,),LIK). 

if {rrp) ECK denotes the class of the idt'le (...  I, l,rrp, I, I. .. ). 

The relation between the idele-theoretic and the ideal-theoretic fonnulation 

of the Artin reciprocity law is now provided by the following theorem. 

 

(7.1) Theorem. Let LI K he an abelicm extension, and let m be a module of 

definition for it. Then the Artin symbol induce.� a sur:fective homomorphi.�m 

(�) ,c1; -  G(LIK) 

with kernel Hm/P;', where Hm = (NL1Kl?')P"'J:', and we have an exact 

commutative dil.Jgrnm 

I -----+ NL1KCt ---------,)- CK � G(LIK) -'> I 

 
1 

l -  Hm/Pf/' � C!'J;  j-=L.., G(LIKJ �  l. 

 

Proof: In* I, we obtained the isomorphism (): CK/Cf!---+ CtK = .IJ!'/PJ!' 

by �ending an idele Cl = (ap) to the ideal (a) = nPt= PVp(Up). Thi5 

isomorphism yields a commutative diagram 

CK/Cf!� G(LIK) 

I ,1 l•0 

CIK --'--+ G(LIK), 

and we show thal l i� given by the Artin symbol. 
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Let p be a prime ideal not dividing m. JTp a prime clement of Kp, 

and c ECK/Cf.! the cla�s of the idClc (rrp} = (.  I, l.JTp, l, I, ... ). Then 

(c) = p mod Pt and 

i((cJ)�(c,LIKJ�((rr,).LIK)�(
LpIK. ) 

Thi� shows that f: JK/PJF--+ G(LIK) is induced by the Artin symbol 

( !c..lK) : Jf(--+ G(L IK), and that il is surjective. 

It remain� to �how that the image of NL KCr. under the map 

( )  CK ➔  JK / Pf  is the group H'n/ Pp. We view the module 

m = Tiptc,., pnP m, a module of L by wbstituting for each prime ideal p 

of K the product p = n''.1-llP 'P''•+<i". As in the proof of (1.9). we then get 

CL= I{m)L*/L*, where t},m) = {a E IL I U<,p E for 'Plmcx:i}. The 

clements of 

NLIKCL = Nr.1Kulm
1
)K*/K., 

are the classes of norm idelcs NLIK (a). for a E t{ml. As 

NL K(U)p = TI NL,+, K,,(a13) 
':PIP 

(see (2.2)), and since vp(NL'll Kµ(ai;p)) = (.�cc chap. III. (1.2)). 

the idele Ni.iK (a) is mapped by ( ) to the 

(N11K(a))= =NLK( n -.µv,p(a,pl). 

'+Jt,x. 

Therefore the image of N1.1KCL under the homomorphism (  : CK ---+ 

J'f//Pr;, is precisely the group (NL1KlfJPR'JP;1
, q.e.d. D 

 

(7.2) Corollary. The A1ti11 symbol ( L/), fi_1r a E 1;-, only depends on 

the c/as� a mod P'JF". It deJincs an isomorphism 

(IJ.".) • Jt/Hm  ::_, G(LIK). 

 

The group Hm = (N1.1KJt)P;' is called the "idea{ group defined mod m" 

helonging to the extension tlK. From the existence theorem (6.1). we sec 

that the correspondence /, i---+ Hm is 1-1 between subcxtensions of the ray 

cla% field mod m and c.;uhgroups of 1;;' containing P;'. 
 

The most important consequence of theorem (7. l) is a precise ana[y5i5 

of the kind of decomposition of any unramified prime ideal p in an abelian 

extension LI K. It can be immediately read off the ideal group Hm s; 
which determines the field L as class field. 
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(7.3) Theorem (Decomposition Law). Let LIK be an abelian extension of 

degree n, and let p be an unramified prime ideal. Let m be a module of definition 

for LI K tlw.t is not divhible by)) (for instance the conductor), and let Hm be 

the corre.�ponding ideal group. 

!ff is the order o(p mod um in tile class group l!J' / Hrn, i.e., the sma/lc�/ 

po�ilive integer �uc/J that 

p1 E Hm, 

then p decompose., in I, inw .i product 
 

ofr = 111.f distinct prime ideals of degree f overp. 

 

Proof: Let p = �1 • �, be the prime decomposition of p in t. Since 

p is unramified, the �' are all distinct and have the same degree .f. This 

degree is the order of the decomposition group of ,P, over K, i.e., the order 

of the Frobcniw, automorphism tpp = ( \K). In view of the i�omorphism 

.IJJ'/Hrn ;,, U(LIK), thi� is also the order of p mod H"' in J';.'/Hm. Thi� 

linishes the proof. D 

 

The theorem �hows in particular that the prime idcab which split 

completely arc precisely those contained in the ideal group //f, if f is 

the conductor of LI K. 

Let us highlight two  
at the cyclotomic field the conductor i� the module m = (m), 

and the ideal group cocccsr,on,Jmg to (Q(/.Lm) in JQ_' is the group PB'· A� 

JJ','/P�\ ;,, (Z/mZ)* (sec we obtain for the decomposition of 

ra'rionl'l primes pf m, the law which we had already deduced in chap. I, 

( 10.4), and in particular the fact that the prime numbers which �plit completely 

are characterized by 

p= I modm. 

 

In the case of the Hilbert class field LI K, i.e., of the field in�idc the 

ray class field mod I in which the infinite places �plit completely, the 

corresponding ideal group H � Jk = JK i:-. lhe group PK of principal ideals 

(�ee (6.9)). This give� us the strikingly simple 

 

(7.4) Corollary. The prime idcah of K which split complc!Cly in the Hilbert 

c/:.1ss field arc preci.�ely the principal prime ideals. 
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Another highly remarkable property of the Hilben class tield is exprc'>Sed 

by the following theorem, known as the principal ideal theorem. 

 

(7.5) Theorem. In the Hilbert class field every ideal a of K becomes a 

principal ideal. 

 
Proof: Let K1 iK be the Hilberlclass field of Kand let K21K1 be the Hilbert 

class field of K 1. We have to �how that the canonical homomorphism 

h/PK----+ JK1/PK1 

is trivial. Hy chap. IV, (5.9), we have a commutative diagram 

-  L'K1/NK2'K1CK2  -  G(K,iK1) 

T, 
Tv" 

-  CK/NK1'KCK1  - G(K,IK), 

 

where i i5 induced by the inclusion CK s; CK1• It is therefore enough to 

show that the transfer 
 

is the trivial homomorphism. Since K1 ]K is the maximal unramified abelian 

extension of K in which the infinite places split completely. i.e., the maximal 

abelian subex.temion of K2IK, we -.ee that G(K21K1) is the commutator 

subgroup of G(K21K). The proof of the principal ideal theorem is thus reduced 
to the following purely group-theoretic result. D 

 

(7.6) Theorem. Let G be a finitely generated group, G' its commutator 

subgroup, and G" lhc commutator subgroup of G'. ff (G : G') < oo, then 

the transfer 

Ver: G/G'--+ G
1

/G" 

is the trivial homomorphism. 

 
We give a proof of this theorem which it-. due to ERNST W1 r1 1141 ]. In the 

group ring ZfGI = ILrrE(; nrra Ina E Z}. we consider the augmentation 

ideal le;, which is by definition the kernel of the ring homomorphism 

Z[G]--+ Z, Lnaa i--------a. Lna, 

For every subgroup H ofG, we have Ju s; I(;, and {T - 11 TE H. r #, I) 

is a Z-basis of /ff· We tirst establish the following lemma, which also has 

independent interest in that it gives an additive interpretation of the transfer. 
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(7.7) Lemma. For every subgroup H of finite index in G, one has a 

commutative diagram 

 

G/G' ---� H/H' 

bl C bl C 

lc;/ll,, � U11 + lc;IH)llr;IH, 

 

where the homom01phirn1s 8 are induced by a i----+ 80 = a - I, and the 

homomorphiMn S i� given by 

S(.i. mod tl,,) = x L p mod lc;IH, 

w,R 

for ;:1 system of representatives of the Jell cosets R 3 I of G / H. 

 

Proof: We first show that the homomorphism 
 

induced by r r+ 8 r = r - I has an inver5e. The elements p8 r, r E H, 

r #- I, p E R, fonn a Z-basb of IH + le IH. Indeed, it follows from 

pOr =Sr+ 8p8r 

that they generate / H + Ic I If , and ii 

0 = L np,rp8r = L np.r(P'r - p) = L np.rPT - L(Lnp_r)P, 
p.t f!.T f!,T p  T 

then we conclude that = 0 because the pr, p are pairwise distinct. 

Mapping p8r to r mod  , we now have a surjcctive homomorphism 

111 + lu/11-------+ H/H
1 

It sends  E /r;IH to r1rr1 1r-1 == I mod H' because O(pr')dr = 
p8(r'r) - - Or. It thus induces a homomorphism which is inverse to 

(*). In particular, if H = G, we obtain the isomorphism G/G' � lc;/l<�-- 

The transfer is now obtained a1- 

Ver(o mod G') = flap mod H
1

• 

/!€CR 

where op E H is defined by op = p'ap, p' E R. Ver thu� induces the 

homomorphi�m 
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given by S(8cr mod I[;) = LpecR Sap mod le I H • From ap = p'a1) follows 

the identity 

8p + (8a)p = 8ap + 8p
1 + 8p

1

8ap. 

Since p
1 

runs through the <;et R if p doe�. we get a:-. claimed 

S(8p mod tj) = L, 8ap = L,(Oa)p = Oa L, p mod fc;/11 CJ 
fHCR p<=R f!e'I? 

 

 

 

 

Proof of theorem (7.6): Replacing G hy G/G'', we may as:-.ume that 

G
11 = {I}. i.e.. that G' is abclian. Let R 3 I be a system of representatives 

of left cu�ct� of G/G'. and let a1,  ,an be generators of G. Mapping 

c1 = (0, ....0. 1. 0.....0) E zn to r,1• we get an exact sequence 

 

Q .,;z"�z11-G/G
1-------------

+ I. 

where l is given hy an n x n-matrix (m1A) ½ith det(m,i.) = (G : G'). 

Consequently. 

TT rr;11 
T� = I with r� G

1 

!=I 

The formulae 8(xy) = ()x +8r+Ox8y, 8(-\ 1) = -(Ox)x-1 yield by iteration 

that 

 
where fl,!,. = m,1,. mod le;. In fact, the r1. arc product� of commutator-, of the 

01 and 0 -
1 We view (µ1d a;. a matrix over the commutative ring 

Z[G/G'J � ZIG]/ZIGl/c;', 

which gives a meaning to the detenninant µ = det(µ,1,.) E Z[G /G']. Let (A1.J) 

be the adjoint matrix of (111d. Then 

= 0 mod /c;Z[G lie;•, 

 

so that (8a)/L =c O mod lc;Z[G]lc;• = l0lc• for all a. This yields 

tL= L pmodZ[GJlc;•. 
pECR 

For if we putµ= LpFN npP, where P = p mod G
1

, then for all a E G/G', 

aµ =L,n, 1,i3P= 
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This implies that all nf' are equal, hence /L = m L,P"'R p mod Z[GJ/c;, and 

µ, =det(m;A} = ((J: G
1
) = m(G: C.;') mOO le;, 

we even have m = I. Applying now lemma (7.7). we sec that the transfer i� 

the trivial homomorphism since 

S(8a mod !J) = Ocr L, p = (!ia)tL = 0 mod /GIG'• D 
pct/ 

 

 

 

A problem which i� closely related to the principal ideal theorem and 

which wa� first put forward by P1111 II'!' FvRrnAi'H;U:R is the problem of the 

class field tower. This i� the question whether the class field tower 

K =Ko£" Ki£" K2 £" K, £". 

where Ki+i is the Hilbert class field of K,. stops after a finite number of 

sleps. A positive amwer would have the implication that the last field in the tower 

had cla�s number I w that in it not only the ideals of K. but in fact all its 

ideals become principal. Thi,; perspective naturally generated the greate�t 

intere�t. But the problem. after withstanding for a long time all attempts to 

�olve it, was finally decided in the negative by the Russian mathematicians 

E.S.Gmon and I.R. S,11ARn1t in 1964 (see [48). ]241). 

 
Exercise 1. The deeompo.\ition Jaw for the prime ideals p which arc 1w11(fied m an 

abelian L IK can be torrnulated like this. Let f be the conductor of LI K, 

Hr the ideal group for L. and //p the \Jnalle�t ideal group containing // f ot 
prime top. 

It r = (Hp : // f) and p1 i\ the smallc�t pov.-er or p which belong\ to Hp, then 

p � ('!l, .. ·'!l,J'' 

where the �' are of deg-rec f over K. and 1 =  11 = IL : KI. 

Hint: The etas� tield for Hp i� the inertia tield above p. 

 

The rollowing exercbe� 2-6 concern a non-abdian example of E. Au11.�·- 

Exercise 2. The polynomial = X'  X + ! i\ irreducible. The dt�criminant of 

a root a (1.e., the d1\cnmirnmt  i\ d = 19 • 151. 

Hint: The d1�criminant of ,1 root of X' + aX +hi\ S'h4 + 28u1
. 

Exercise J. Let k ={):'(a). Then Z[a] i� the rmg o, of integer\ of/.:.. 

Hint: The d1�ernnin,m! of Zia I e4uab the di�crirnmant of  because on the 

one hand, both differ only hy a and on the other 11 1., ,4u.1rel'rec. 

The tran�ition matrix trom 1.a,  to an intcgrnl ba�i, w1, or c1
, is 

therefore invertible over 
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Exercise 4. The dccompo�ition field K 10' of {(X) ha� as G;;lois group the symmetric 

group61, i.e.. it i� of degree 120. 

Exercise 5. K has cla�� number I. 

Hint: Show, using chap. 

ideal a with \Jt(a) < 4. 

'Jt(p) = 2 or 3. Hence 
which is not the case. 

exercise 3. that every ideal c!a�s of K contains an 

then a ha� to be a pnme ideal p such that 

or = Z/3Z, so r ha� a root mod 2 or 3. 

Exercise 6. Show that K I Qi( v'197sf) i� a (non-abclian!) unramilied extension. 

Exercise 7, For every Glllois cxten�ion LIK of finite 
exist infinitely many finite exten�1on� K' �uch that 

LK1IK' 1� unramified. 

num her field.�. there 

K' = K. and �uch that 

Hint: Let S be the �et of  ramified in LIK. and let = Kp(ap). By the 

approximation theorem, an algebraic number a  every p E S, is 

clo�c to  when embedded into Kr· Then  ,;;; Kp(a) by Kra�ncr'� lemma, 

chap. 11, exerci�e 2. Put K' = K(a) and that LK'IK' is unramified. Tu 

�how that a can be chmen �uch that L n K' = K use CU). and the fact that G(LI K) 

i� generated by elements of prime power order. 

 
 
 

 

§ 8. The Reciprocity Law of the Power Residues 

 
In cla�s field theory Gaus:;.'s reciprocity law meets its mo�t general and 

definite formulation. Let n be a positive integer :::_ 2 and K a number field 

containing the group JL11of 11-th roots of unity. In chap. V, �3, we introduced, 

for every place ).J of K, then-th Hilbert �ymbol 

 

( �)  : K; x K; -+  JL11• 

 
It is given via the norm residue symbol by 

(a,Kp(
,
v
,
h
,,
)!Kp

) ,
v
,
h
,,
= p("·h) ,

v
,
h
,,
. 

Thc�e symbols all fit together in the following productfonnula. 

 

(8.1) Theorem. For a, h E K* one has 
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Proof: From (5.7), wc find 
 

and hence the theorem. □ 
 

 
In chap. V, S3, we defined then-th power residue symbol in terms of the 

Hilbert symbol: 

where p is a prime ideal of K not dividing n, a E Up, and rr is a prime 

element of K11. We have seen that this definition does not depend on the 

choice of the prime element n and that one has 
 

and more generally 

 
(�)=a(q-l)/nmodµ, q=IJl(µ). 

 

 

(8.2) Definition. For eve1y ideal b = npfn µ1
'µ prime to n, 1111d every 

number a prime to b, we define then-th power residue symbol by 
 

 

Here (;)vp = I when l!p = 0. 

 

 

The power residue symbol ( *) is obviously multiplicative in both 

argument�. If bis a principal ideal (h), we write for �hurt(*) = (Ti). 
We now prove the general reciprocity law for then-th power residues. 

 

 

(8.3) Theorem. lf a, h E K * are prime to each other and to n. then 
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Proof: If p is prime to /moo, then we have 
 

where JT i'> a prime element of Kµ. Fur if we p_ut a = un"µia\, then ( ¥) = I 

because u.h E Up. For the same reason, we find 

 

 

 

(8.1) then gives 

p("·") = I 
 

,!or p prime to a/moo. 

 

 
Here t:il(h) mcam that p occurs in the prime decomposition of (h). n 

 

Gauss's reciprocity law, for which we gave an elementary proof using 

the theory of Gau�s sums in chap. I, (8.6), in the case of two odd prime 

number� p, l, is contained in the general reciprocity law (8.3) as a 

case. For if we substitute, in the case K = ::]), n = 2, into formula the 

explicit description (chap. V, (3.6)) of the Hilbert symbol(¥) forp = 2 

and p = oo, we obtain the following theorem, which is more general than 

chap. I, (8.6). 

 

(8.4) Gauss's Reciprocity Law. Let K = Ql, n = 2, and let a ;md h be 

odd, relatively prime integers. Then one ha.� 
 

and for positive odd integer.� h, we have the two ·\uppleme11t:1ry thcorem8" 
 

 
For the last equalion we need again the product fommla: 



 



6365 =  1887 =  1887 =  1887  1887 = -  II  = 
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The symbol ( *) is called the Jacobi symbol, or abo the quadratic 

residue symbol (although, for h not a prime number, the condition that the 

symbol ( *) = I is no longer equivalent to the condition that a i� a quadratic 

re�idue modulo h). 

In the above formulation, the reciprocity law allows us to compute simply 

by iteration the quadratic residue symbol ( *), as is shown in the following 

example: 

 
40077)  ( 65537)  ( 25460)  (  2" ) ( 6365 )  ( 40077) 

65537 =  40077 =  40077 =  40077  40077 = 6365 = 

( 
1887)  (6365)  ( 704)  (  4'  )(  II ) ( 1887) 

-(�) �-(�)(M � (M �-(*)�-w � 1 

Clas� tield theory originated from Gauss's reciprocity law. The quest 

for a similar law for the n -th power residues dominated number theory 

for a long time, and the all-embracing an�wcr wa� finally found in Artin\, 

reciprocity law. The above reciprocity law (8.3) of the power residues now 

appears as a simple and special comequence of Artin 's reciprocity law. But 

to really settle the original problem, class tield theory was still lacking the explicit 

computation of the Hilbert �ymbols (¥)  for plnoc. Thi� was 

tinally completed in the I 960s by the mathematician Hi 1.Aw1 B1u CK,\•JoR, 

chap. V, (3.7). 

( 
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Chapter VII 

Zeta Functions and L-series 

 
§ 1. The Riemann Zeta Function 

 
One of the most astounding phenomena in number theory consists in the 

fact that a great number of deep arithmetic properties of a number !ield are 

hidden within a single analytic function, iu, zeta function. This function ha5 

a simple shape, but il is unwilling to yield its mysteries. Each time, however, 

that we succeed in stealing one of thc5c well-guarded truths, we may expect to 

be rewarded by the revelation of some wrprising and significant relation�hip. 

This b why zeta functionf>, as well as their generalizations, the L-series, have 

increasingly moved to the foreground of the arithmetic scene, and today arc 

more than ever the focm of number-theoretic re�earch. The fundamental 
prototype of such a function is Riemann's zeta function 

((,<)� I:-, 
n=In1 

 

where s is a complex variable. It is to this important function that we tum 

first. 

(1.1) Proposition. The !>Cries ((s) = L�1 f is absolu1cly and uniformly 

convergent in the domain Re(s) 2: 1 + Ii, for every Ii > 0. It therefore 

represent.� an analytic function in tiJe h,1lf-pl:me Re(s) > I. One hw, Euler's 

identity 

,1.n �TT-'-_,, 
[! 1- p 

where p runs through the prime numbers. 

 

Proof': ForRe(s) =a 2: l+li,theseriesL;:-'=1I1/n'I = L:;-�1 1/n" admits 

the convergent majorant L:;-� l/111
+
8, i.e., ((s) i� absolutely and unifonnly 

convergent in this domain. In order to prove Euler"s identity. we remind 

ourselves that an infinite product an of complex number�011b said to 

converge if the �equence of partial products P11= a1•••On ha" a nont:ero limit. 

Thi� is the case if and only if the ,;erie,; L;;---'=1 log011converges, where log 
dcnote5 the principal branch of the logarithm (see [2]. chap. V. 2.2). The 



�  I 

420 Chapter VII. Ze1a Functions and L-�crie� 
 

 

product i,- called absolutely convergent if the series converge:-. absolutely. 

In this case the product converges to the same limit even after a reordering 

of its terms a,,. 

Let us now formally take the logarithm of the product 
 

We obtain the :-.erie:-. 

log nn � L L ------ c • 
f' 11=1 np11

' 

It converges absolutely for Re(.,)= a 2: I +0. In fact, 5ince lp'1' I= p"" ::': 

µi1+hln, one has the convergent majorant 

� (  I  )" I 2 I 

�l�I p1+b =� pl+h_ J :'.:: � pi+i', 

 

This implies the ab�olute convergence of the product 

£(.,) � n-1
-_, �exp ( I:( I:�)) 

" I - p I' "=1 np 

In this product we now expand the product of the factors 

I I I 

I - 1r'  = I +  p'+ t0 + 

for all prime number� p1, ... , p,. :S N. and obtain the equality 
 

where I:' denotes the sum over all natural numbers which arc divi�ible only 

by prime numbers p ::: N. Since the sum L' contain� in particular the term� 

corresponding to all n :'.:: N. we may also write 
 

Comparing now in (*) the sum L:' with the 5erie� ((s), we get 

 
I             n    � -    ,1.,11  :c I 

p:c_N 1 - p 

 

where the right hand side goes to t:ero a5 N --+ oo because it b the remainder 

of a convergent :-.erie�. Thi<, proves Euler's identity. D 
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Euler's identity expresses the law of unique prime factorization of natural  

number1, in a 1,inglc equation. Thi1, already demonstrates the number-theoretic 

&ignificance of the zeta function. It challenge,; us to study its propertie" more 

clo5ely. By its definition. the function is only given on the half-plane 

Re(s) > I. It does, however, admit an analytic continuation to the whole 

complex plane, with the point s = 1 removed, and it satisfies a functional 

equation which relate1, the arguments to the argument I - s. The1,e crucial 

fact<, will be proved next. The proof hinge<s on an integral formula for the 

zeta function ((s) which arises from the well-known gamma function. This 

latter is defined for Re(s) > 0 by the absolutely convergent integral 
 

and obcy1, the follo\\--ing rules (,;cc [341, vol. I, chap. I). 

 

(1.2) Proposition. (i) The gamma function is analytic and admits a 

merommphic continuation to all ofC. 

(ii) II is nowhere :-ero and has 1,imp/c poles al s = -n, n = 0, I, 2, .. , with 

residues (-1)"/ n !. There are no poles anywhere else. 

(iii) 11 sati1,fies the fonclional equations 

I) r(-1 + 1) =-1I'(s), 

2) I'(s)I'(I - s) = �i��"ri·, 

3) I'(s)I'(s + ½) = 
2f  I'(2s) (Legendre's duplication formula). 

(iv) JI ha1, the special values I'(l/2) = fa, I'(I) = I, I'(k + 1) = k!, 

k � 0, 1.2, 

 
To relate the gamma function to the Leta function. start with the 1,ubstitution 

y f----;- rr112 y, which gives the equation 
 

Now sum over all II E N and get 
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Observe that it is legal to interchange the sum and the integral because 

 

J' n�I 

0 

�"  "'1'1r(Rc(.1))((2Re(.1)) < oo. 

Now the series under the integral, 

 

g(v) �Le 
11=1 

arise:- from Jacobi's classical theta series 

0(,) �L e""'
0

' � I+ 2 I: ,,,,,,,,, 

ne=::'. n=I 

i.e., we have R(Y) = ½ (0(iy) - 1 ). The function 
 

is called the completed zeta function. We obtain the 

 

 

(1.3) Proposition. Tile completed zet:1 function Z(s) admits the integrnl 

representation 

 

 
The proof of the functional equation for the function Z (s) is based on the 

following general principle. For a continuous function f : Ill� ---+ C on the 

group [R� of pm,itivc real number&, we define the Mellin transform to be 

the improper integral 

 

L(f ..1)� 

 
d1· 

(f(y)-f(oo))y'-t· 

0 

provided the limit f(oo) = lim,----,cx, f(y) and the integral exi�t. The 

following theorem is of pivotal importance, also for later application�. 

We will often refer to it as the Mellin principle. 
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(1.4) Theorem. Let .f,g: 11:J;.�--+ C be continuous functions such that 

f(y) = ao + 0(<,-n" ), g(_v) =ho+ O(e-cy"), 

for y --+ oo, with positive com.rant.� c,a. ff these functions 1,atisfy the 

equation 

r( {:J�chcvl, 

for some real number k > 0 and some complex number(' #- 0, then one has: 

(i) The integrafa L(f,s) and L(f:, s) converge absolutely and uniformly ifs 

varies in an :irbitnuy compact domain contained in {s E CI Re(s) > k). 

They are lhercfore holomorphic functions on {s EC I Re(.l) > A). They 

admit holomorphic continuations to ,  {0,k). 

(ii) They have .�imple poles at s = 0 ands = k with residues 

Rcs.,=ol(.f,s)=-a0,  Res,=1-L(j,s)=Ch0,  resp. 

Res,-=nL(i,s) = -ho, Rc1,_,=� L(g,s) = c-1a0. 

(iii) They satisfy the functional equation 

L(f,.,)�CL(g, k - .,) . 

 

Remark I: The 1,ymbol ,p(y) = O(1/!(y)) means, a� usual, that one has 

,p(y) = r(y)ijr(y), for ,;ome function c(_v) which stays hounded under 1he 

limit in question, so in our case, a1, y--+ oo. 

 

Remark 2: Condition (ii) is to be understood to say that there is no pole 

if a0 = 0, resp. ho = 0. But there i5 a pole, which b simple, if a0 #- 0, 

re,p. ho#- 0. 

 
Proof: If., varie5 over a compact 1,ubset of C, then the function 

a = Re(s), is bounded for y 2:: I by a constant which is independent a. 

Therefore the condition f(y) = ao + O(e-cv") the following upper 

bound for the integrand of the Mellin integral 

 

!(f(y)-ao))'"' II::': Be-,v"ya+ly-'.' ::': B'�, 
)' 

forall y 2:. 1. with comtanb B. 81
• The integral fi•..,U(y) - ao)y'-1 dy 

therefore admit1, the convergent majorant Ji"• �dy  which i1, independent 

of s. It therefore converge,; absolutely and unifofmly, for all .1 in the compact 

1,ubset. The same holds for fi'0
(g(y) - h )y1 1 dy. 
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Now let Re(s) > k. We cut the interval of integration (O,oo) into (0, lj 

and (I, oc) and write 

~ ' 
L(f .. s) � j(f(y) -a,,)y' '1_,!_ + f ( {(y) - a,,)y' d_.y • 

\' \' 
l , 0 

For the 5econd integral, the t-,ubstitution y i----+ I/ y and the equation 

f(l/y) = Cig(y) give: 

! y-.i_:_ 

= - �
ao + CI (g(y) - ho)Y-t -,. I dy - --Cho 

l k-� 
' 

By the above, it also converges ab5olutely and uniformly for Rc(.1) > k. We 
therefore obtain 

 

 

where 

L(f ..,) � -- 
ao 

+ -
C
-
ho 

+ Ft,). 
s  .1 -k 

 

 

F(.1)= /[ (j(y)-a0)y'+C(g(y)-h0)y '']�_y ,·. 
1 

Swapping land g, we see from g(l/y) = c-1if(y) that: 

ho  c-1a0 

L(u.s) = -� +� + G(s) 

where 
 

The integral<, FC<,) and G(s) converge abt-,olutcly and locally unifonnly on 

the whole complex plane, at-. we saw above. So they represent holumorphic 

functions, and one obviom,ly ha� F(.1) = CG(k-s). Thut-. L( f",s) and l.(g, s) 

have been continued to all of C '- {0, ,q and we have L(f ..1) = C l.(g, A-�). 

This finishes the proof of the theorem. 

 

The remit can now be applied lO the integral ( 1.3) representing the 

function Z(s). In fact, Jacobi\ theta function 0(::) is characteri1cd by the 

following property. 
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(1.5) Proposition. The series 

ecn� 2= ,"'"'' 
11c2 

converges absolutely and uniformly in the domain /z E C I Im(:) 2: 8), 

for every !5 > 0. II therefore represents an ,malytic function on the upper 

half�plane 1-11 = {z EC I lm(z) > 0), and �alisiie.\ the transformation fommla 

0(-1/c) �#  0(,). 

 

We will prove this propo1>ition in much greater generality in 93 (1,ee (3.6)), 

so we take il for granted here. Ob\erve lhat if z lies in TI-l[ then so does - I/:. 

The square rool ../z7T is understood to be the holomorphic function 

h(z) = e!log:/1, 

 

\\'here log indicates the principal branch of the logarilhm. It is determined 

uniquely by the condition:-. 

h(z)2 = z/i  and h(iy) = ..jy > O for y E 

 

(1.6) Theorem. The completed zeta function 

Z(s) = n-'12r(s/2)(,(s) 

admib an analytic continuation lo C,  {0, I}, /Jas simple poles at s = () 

and .1 = I with residues - I and I. respectively. and salislies the functional 

equation 

Z(.,J � Z(I -.<). 

 

Proof: By ( 1.3), we have 
 

1.e., Z (2.,) is the Mellin transfonn 

Z(2.,) � Li(,.<) 

of the function f(y) = !0(iy). Since 

 

O(iy) = I+ 2c-:r"( I+ ,�2 c-:rc11c-111·), 



I 
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one has f(y) =}: +O(e-rr1). From (1.5), we get the transfonnation formula 

By (I .4), L( f, s) ha:,, a holomorphic continuation to C, {0, 1/2) and simple 

poles at s = 0, 1/2 with residues -1/2 and 1/2, respectively, and it satisfies 
the functional equation 

 

L(/,,)�L(! �-,) 

Accordingly, Z(s) = L(f,.1/2) has a holomorphic continuation to C, {0, I} 

and simple pole� at ,1 = 0, I with residue:- - I and I, respectively, and "atisties 
the functional equation 

 

L(s)=L(t,�)=L(f,l-&)=Z(l-.1). L 
 

 
For lhe Riemann zeta function itself, the theorem give" the 

 

(1.7) Corollary. The Riemann zew function ((s) admits an analytic 

continuation to C,  {I}, has a simple pole at s = I with residue I and 

:,,:.His/Jes the functional equation 

((\  -s)  =2(2n)-'r(1)cos(¥-)((s). 

 

 

 

Proof: Z(s) = JT-,f2rc�J2)((s) ha:,, a simple pole at s = 0, bu! :,,o does 

r(s/2). Hence ((s) has no pole. Al .1 = I, however, Z(s) ha:,, a "imple pole. 

and so does ((s), as r(l/2) = ..jii. The residue come� out to he 

Re:,,,=1 ((.1) = rr1nro;2)-
1 

Re",=i Z(s) = I 

The equation Z( I - s) = Z(s) translate:,, into 

I  rn) 
((1-s)=;-rJ • I'(�)((s). 

 

Substituting ( I -1)/2, resp. s/2, into the formulae (1.2), (iii), 2) and 3) gives 
 



ln 

f � 
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and after taking the quotient, 

r (·')/r (!--.-,) = ,2...,m cos rr.,r(s). 

2 2 2 2 

Inserting this into(*) now yields the functional equation claimed. n 

 

At �ome point during the first month5 of studies every mathematics student 

has the supri�e to discover the remarkahle fonnula 

2 

,�I�= • 

 

It is only the beginning of a sequence: 

= _!_n6 etc. 
11=1 n6   945 • 

The�e are explicit evaluations of the special value� of the Riemann Leta 

function at the points .1· = 2k, k EN. The phenomenon j., explained via the 

functional equation by the fact that the values of the Riemann .t:eta function 

at the nexative odd integer5 are given by Bernoulli numbers. The�e arise 

from the function 
tc' 

F(r)�-­ 
e1 -  I 

and are defined by the series expansion 

�  r' 
F(f)�E/'0' 

Their relation to the t:eta function give� them a special arithmetic significance. The 

lir�t Bernoulli numbers are 

Bo= I, B1 = 2. B2 = 6' H, = 0, 84 = -30, B� = 0, 81:, = 42· 

In general one has 82..+1 = 0 for I! 2'.:: I. because F(-f) = F(f) - !. In the 

cla�sical lite�ature, it i, u\ually the fu�ction �,  which '>erves for defin'.ng 

the Bernoulli numbers. As F(t) = 7--=--i- + t, this docs not change anythmg 

except for B1. where one flmb - � instead of j. But the above definition i� 

more natural and better �uitcd for the further development of the theory. We 

now prove the remarkable 

 

( 1.8) Theorem. For cvc1y integed > 0 oneha., 

 
((I -kl� 
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We prepare the proof proper by a function-theoretic lemma. For f > 0 

and a E [E, ocl, we com,idcr the path 
 

which first follows the half-line from a to F:, then the circumference 

K, = /z I 1:1 = e} in the negative direction. and finally the half-line 
from f toa: 

 

 

 
(1.9) Lemma. Let U be an open subset of C rlwt contains the path C'i-.a 

and afao the interior of K,. Lee G(z) be a holomorphic fonc1ion on U, /0) 

with a pole of order m al 0, and let G(t)r"·' 1 (n EN), forRc(s) > �- be 

integrable on (0. a). Then one ha� 

f G(::)z'"-1dz = (e2,rrn.i - l) jG(t)t"'-1dt. 

(� () 

 
 

 

Proof: The integration doc� not actually take place in the complex plane but 

on the universal covering of:::::�, 

X={(x.a)EC*x  iargx==amod2;r) 

z and ::'-1 arc holomorphic functions on X, namely 
 

and C,." i::, the path 

 

where le�"= (a.Pj x {O), K, = {n,-11 It E [0.2;rl}, !,\, = [F,a) x (2;r) 

in X. We now have 

I G(z)::',, I dz= -I G(t)t111-1 dt. 

11-,i I 

f G(z)::n'-1dz = e2
'u

11 .!G(l)tu' 1dt, 

/,+,, I 
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lJT 

C(.:).:11,-1 dz= G(c:e ''k11,-l c ,1(n,-l)ee ,, dt 

K, o 
 

 

Since Re(s) > !;f, i.e.. Re(ns - m) > 0, the la:o.t integral/ (c) tends to zero 

as e ➔ 0. In fact, one has = 0. Thi.., give� 

f G(z)z11
·' 

1dz = (c2
;r,n, - If)   G(t)r11

·' 
1dt + l(e), 

t, ' 

and �ince the integral on the left is independent of E. the lemma follows by 

passing to the limit a� e -----,. 0. CJ 

 

Proofof(l.8): The function 

F(.:) = c:�I = 1.t1 B1. tr 
is a meromorphic function of the complex variable z, with poles only at 

: = 2niv, v E ;z, v -=fa 0. B1:/k it. the re�idue of (k -1)! F(z)z-J.-I at 0, 

and the claim reduce.� to the identity 
 

for O < c < 2rr, where the circle I: I = t it. taken in the positive orientation. 

We may replace it with the path -C, = (-x, - Fj + K,. + [-1', - ::xi), 

\\--hich tracct-- the half-line from -ex; to -F, followed by the circumference 

Kc = /z I [:[ = e) in the posith·c direction, from -F to -F,  and finally 

the half-line from -F  to -x.  In fact, the intcgrab over (-oc, - F] and 

[-F, - ::xi) cancel each other. We now consider on IC the function 

 

H(.1)� 

-Ci 

d, 
F(cJc'- � 

Here the integrals over {-oo. - F] and 1-t, - ocd) onot cancel each other 

any longer because the function :·' 1 it. multivalued. The integration taket-­ place 

on the universal covering X = {(\,a) E  x JR I arg., = a mod 2rr} 



� � 
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of as in arc the holomorphic function� z(x, a) = x, 

z'-1(t,a) = The integral converge� absolutely and locally 

uniformly for alls EC. It thus defines a holomorphic function on C, and we 

find that 

Res:=oF(z)z-�-I = :iH(l -k). 
2 

Now substitute  i-+ -z, or more precisely, apply the biholomorphic 

transformation 

rp: X-----+ X,  (x,a) i---+ (-A.a -n). 

Since z o rp = -z and 

(z'-1 orp)(x,a=)  :·' 1(-x.a -;r) = /1-l)(l<>gl•l+1a rnJ 

= -e-m'z' 1(x,a), 

we obtain 

H(s) = -e-,::rsf F(-z)z'·-I �, 

C 

where the path Cc= rp-1 o(-C,) follow� the half-line from ootof', then the 

circumference K,. in negative direction from P to E, and finally the half-line 

from e to oo. The function 

 

G(z) = F(-z)z-1 = I�-:-: = 1 -le-: - I= ,t1 c 

has a �implc pole at z = 0 so that, for Re(s) > I, (1.9) yield� 

H(s) = -e-'"f'  G(z)z·' 1dz 

C 

= -(errn - e-::r,s)[ G(f)t' !if = -2i sinns[ G(t)r" !if· 
 

The integral on the right will now be related to the zeta function. In the 

gamma integral 

! 1 

we sub&titute r i-+ nt and get 
 



I 
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Summing this over all n E .N yicldr, 

I'(s)((s) � JG(r)r'f· 

0 

The interchange of summation and integration ir, again justified hecaur,c 

,�J le-n1t5I!!.!_< oo. 

0 

From this and (1.2), 2), we get 

2n:i 
H(s) = -2i sinn:�r(s)((s) = - r(l _ s) ((s). 

 
Since both side� arc holomorphic on all of C, this holds for alls E C. Putting 

s =I-A we obtain, since r(k) = (k-  I)!, 

Res�=oF(z)z-k-l= _!_H(l-k)=-((1-k), q.e.d. □ 
2ni (k - I)! 

 

 

Applying the functional equation (1.7) for ((s) and observing that 

I'(2k) = (2k - I)!, the preceding theorem gives the following corollary, which 

goes back to Evu11 

 

(1.10) Corollary. The values of ((s) at the positive even it1tcger.� s = 2k, 

k = 1,2,3, ... , are given by 
 

 

The values ((2k - I), k > I, at the positive odd integer� have been 

elucidated only recently. Surprisingly enough, it is the higher K -groups K,(Z) 

from algebraic K-theory, which take the lead. In fact, one ha� a mysterious 

canonical isomorphism 

 

 

The image R2� of a non.Lero element in K41- 1(Z) ®;;, Q is called the 2k-th 

regulator. It ir, well-determined up to a rational factor, i.e., it is an element 

of IJC /Q*, and one has 

((2k - I) a= R21c. mod Q�. 
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This discovery of the Swiss mathematician ARM,1N!J BoRFJ. has had a 

tremendous influence on further arithmetical ret-,earch, and hat-, opened up 

deep insight5 into the arithmetic nature of zeta function� and L-series of the 

most general kind. Thet-.e imight5 are �ummarized within the comprehemive 

Beilinson conjecture (t-.ee 1117J). In the meantime, the mathematiciam 

SPENCCR Ht.OCH and K11LUY,1 K,i.ro have found a complete description of the 

special 1eta values ((2/... - 1) (i.e.. not just a description mod o:;•i via a new 

theory of the Tamagawa measure. 

 

The zeroes of the Riemann zeta function command special aucntion.  

Euler's identity (I.I) shows that one hat-. ( (.1) -::f. 0 for Re(s) > 1. The gamma 

function I'(s) is nowhere 0 and has simple poles at s = 0. - I. - 2, ... The 

functional equation Z(s) = Z(l - s). i.e.. 

,,-,;, n.,/2J((.<J � ,,r,-1J12r( (1 - ,J/2) (( 1 - .,) . 

therefore showt-. that the only 7eroes of ((s) in the domain Re(s) < 0 arc 

the poles of I'(s/2), i.e., the arguments s = -2, - 4. - 6.  The�e arc 

called the trii·ial :croc.1 of ((s ). Other zeroes have to lie in the critical strip 

0 _:s Re(s) _:s 1, :c.ince ((s) -::f. 0 for Rc(s) > I. They are the �ubject of the 

famout-., t-.till unproven 

 

 

Riemann Hypothesis: The non-trivial zeroes of ((s) lie on the line 

Re(s) = �- 
 

 

This conjecture has heen verified for 150 million zeroes. It hat-. immediate 

consequences for the problem of the di�tribution of prime numbers within all 

the natural number�. The distribution function 

rr(x) = #/p prime number _:s x) 

may be \'.fitten. according to RIEMAAA·, as the seriet-. 

rr(_t) = R(x) - L R(rP)_ 
p 

 

where p varies over all the LCroes of ((s). and R(x) it-. the function 

ex, I ([ogx)11 

R(x)� 1+ I ------------------------ • 
n=1 1 ( (I1 1  + I)  n! 

On a microscopic scale, 1hc function rr(,-) is a �tcp-function with a highly 

irregular hehaviour. But on a large scale it i� its a�tounding smoothness 
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which poses one of the biggest mysterie<, in mathematic�: 

 
 

 

 
rr(x) 

 

 

 

 

 
 

 

 

On thi� matter, we urge the reader to consult the essay I 142) by Dm,' 7-1<,ltH 

 

Exercise 1. Let a, h be number�. Then the Mellin transform\ ur the 

function� / (y} ,md g(y) = 

L(f .1/h) =ha'i
1
'L(g,.1). 

Exercise 2. f"hc Bernoulli polynomials B, (.1.) arc defined by 

1 

t<'.:  �':'  =F(tlr"=I/1.C1)�, 
 

 
B.,,(r)= 

 

Exercise J, R,(1)- B.(t - 1) = /.,_r• 1. 

Exercise 4, For the power sum 

;.(n)=l'+2'+3'+  +n' 

one ha\ 

 

Exercise 5, Let 11(:-J = H(2z) = L"' Then for all matnce\ y = ( :1 
;; ) 

111 the group 

/i,(4) = {(:'. j) E SL,(ZJ j c '=O mud 4) 
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one ha� the formula 

where 

 
 

The Legendre �ymhol ( �) and the con�tanl id are defined by 

 

ift<0.d<0, 

otherwi�e. 

ifd-= I mod 4, 

ifd = 3 mod 4. 

 

 

Jacobi's theta function i!(z) is thu� an example of a modular form of weight { 

for the group The representation of L-�encs a� Mellin tran�form� of modulir 

form�, which we  introduced m the case of the Riemann Leta function, 1� one 

of the hasic tmd �eminal principle� of current number-theoretic rcsc:uch {see [ 1061). 

 
 

 

§ 2. Dirichlet £-series 

 
The most immediate relatives of the Riemann zeta function are the 

Dirichlet L-serie5. They are <lclined as follow�. Let m be a natural number. 

A Dirichlet character mod m i'> by definition a character 

X '(Z/m'L)' -  s' �1, EC I 1,1 �I\. 

It is called primitive if it does not arise a5 the compo�ite 

 

(Z/mzr--------)' (Z/ni'Z)* �  S1 
 

of a Dirichlet character x' mod m' for any proper divi�or m'lm. In the general 

case. the gcd of all �uch divisors i� called the conductor f of X· Sox is 

alway<, induced from a primitive character x' mod (. Given X, we define 

the multiplicative function x : Z ➔ C by 

x(nmodm) for(n.m)=L 
x(n) =  

0 for (n,m) -=I-I. 

The flfriaf charwter x0 mod m, x0(n) = I for (n,m) = I. x0(n) = 0 for 

(n, m) -=I- I, plays a �pecial role, When read mod I, we denote it by x = I. 
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It is also called the principal character. Considering it in the theory to be  

developed now has the effect of <;Ub�uming here everything we have done in 

the last 5cction. For a Dirichlet character x, we fonn the Dirichlet £-series 

oc x(n) 

L(x,�) = ,'f-1 ---- ;;;-· 

where � is a complex variable with Re(s) > I. In particular, for the principal 

character x = I, we get back the Riemann zeta function ((s). All the re�ults 

obtained for thi� special function in the la�t �ection can be tramferred to 

the general L-serie" L(x. s) using the same method�. This b the task of the 

pre�ent section. 

 
(2.1) Proposition. The series L(x,.1) converges absolutely and unifonnly in 

the domain Rc(.1) :=: I+ 0, for any 8 > 0. It therefore represent.� an analytic 
function on the half-plane Rc(s) > I. We have Euler's identity 

L(x,.,) � TT-- --· 

1, I - x(p)p-1 

 

In view of the multiplicativity of x and since lx(n)I,::: I. the proof is 

literally the same as for the Riemann zeta function. Since. moreover, we will 

have to give it again in a more general 1-,ituation in § 8 below (see (8.1 )). we 

may omit it here. 

Like the Riemann zeta function, Dirichlet L-series also admit an analytic 

continualion to the whole complex plane (with a pole at s = I in the case 

x = x0
), and they �atisfy a functional equation which relates the arguments 

to the argument I - s. Thi5 particularly important property doc� in fact hold 

in a larger class of L-serie�. the Hecke L-scrics, the treatment of which 

is an e1-,�ential goal of this chapter. In order to provide some preliminary 

orientation, the proof of the functional equation will be given here in the 

�pecial case of the ahove /,-seric1-, L(x,s). We recommend it for ciireful 

�tudy, abo comparing it with the preceding �ection. 

The proof again hinges on an integral representation of the function 

L (x. s) which ha� the effect of reali,dng it a� the Mellin tramfonn of a 

them �cric�. We do. ho½ever, have to distingui-,h now bet½een c1·cn and odd 

Dirichlet character� x mod m. This phenomenon will become increa�ingly 

important when ½e gcnerali1:e further. We detine the exponent p E {O, I) 

of X by 

xi-I)� (-1)1'x(l). 

Then the rule 
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defines a multiplicative function on the semigroup of all ideals (n) which are  

relatively prime to m. This function i:;. called a GriifJencharakter mod m. These 

GrOj]encharaktere are capable of substantial generalization and will play the 

leading part when \\IC consider higher algebraic number fields (see 97). 

We now consider the gamma integral 

I'(x,s) = r (s�+-p) =f e 

0 

 

Substituting y 1-+ nn2_v/m, we obtain 

m '¥ I 
-) -  I'(x.s)- = 
n n' 

 

We multiply this by x(n), sum over all n EN, and get 
 

Here, �wapping the order of �ummation and integration i� again jw,tified, 

because 
 

 

 

n=l 

 

dy 

 

 
m)(Rdll+p)/2 (Re(�)+p) 

:S ( -; r  --
2
- ((Re(s)) < oo. 

The �cries under the integral(*), 
 

arises from the theta seric5 
 

where we adopt the convention that o0 = 1 in case 11 = 0, p = 0. Indeed, 

x(n)nl' = x(-n)(-n)1' implic� that 

O(x. :) = x(O) + 2 I: x(n)n1' cn"'
2

:im 

11=1 

( 
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so that R(y) = {(0(x,iy) - x(O)) with x(O) = I, if x is the trivial 

character I, and )( (0) = 0 otherwise. When m = I, this is Jacobi "s theta 

function 

0(c)� I: e""'
0 

/IC:'!: 

which i� aswcialed with Riemann's .t:eta function as we o:,aw in *I. We view 

the factor 

L,.(x,s) = (�),n I'(x,-'-) 

in(*) as the "Euler factor" at the infinite prime. It joins with the Euler factors 

L1,(s) = 1/(1 - x(p)p-') of the product representation (2.1) of L(x.-1) to 

define the completed L-series of the character x: 
 

For this function(*) gives us the 

(2.2) Proposition. The function A(x, n admit.� lhc integr,-1./ represcnwtion 

A(x,s) =� f (O(x,iy) - xW))y1' i,,112!!!..., 

\' 
• 

 

 

Let us emphasize the fact that the rnmmation in the L -�cries i� only over 

the natural numhers, whereas in the theta �cries we sum over all integers. 

This is why the factor nP had to be included in order to link the L-�erics lo 

the theta series. 

We want to apply the Mellin principle to the above integral reprc..,cntation. 

So we have to show that the theta series H(x, iy) o:,atisfies a transformation 

formula a� a�sumed in theorem (1.4). To do this, we use the following: 

 

(2.3) Proposition. Let a, h, µ be real numbers,µ > 0. Then the �eric.-, 

01,(a,h.z) =  

 

convc1gcs ;1b.rnlutely ;.md uniformly in rile domain hn(z) 2: 8, for every 8 > 0, 

and for: E llil, one Ji.is the transformation fomw/a 
 

' 

' 
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This proposition will be proved in§ 3 in much greater generality (see (3.6)), 

so we take it for granted here. The series 01,(a,h,z) is locally unifonnly 

convergent in the variables a, h. This will also he shown in § 3. Differentiating 

p times (p = 0, I) in the variahle a, we obtain the function 
 

 

More precisely, we have 
 

and 
 

Applying the differentiation di'/ dal' to the transformation formula (2.3), we 

get the 

 

 

(2.4) Corollary. For a, h, fl E IR, 11 > 0, one ha.� the transformation 

form11fa 
 

 

 

Thi� corollary give:-. u:-. the required transformation formula for the theta 

series 0(x.a), if we introduce the Gauss sums which are defined as follow5. 

 

 

(2.5) Definition. For n E Z, the Gauss sum r(x,n) associated to the 

Dirichlet character x mod m is defined to be the complex. number 

 

For11 = I, we write r(x) = r(x. I). 

 

 

(2.6) Proposition. For a primitive Dirichlet character x mod m, one hw, 

r(x,n) = X(n)r(x) :md lr(x)I = ,Im. 



= L L 

2 m-1 

L 
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Proof: The lirst identity in the ca5e (n,m) = 1 follows from X(1Jn) = 
x(n)x(IJ). When d = (n,m) -I=- I, both sides are zero. Indeed, since x 

is primitive, we in this case choose an a =cc 1 mod m/d �uch that 

a¥'- I mod m and  #- 1. Multiplying r(x,n) by x(a) and observing that 

e
2
rrmw/m =  gives x(a)r(x,n) = r(x,n), so that r(x,n) = 0. 

Further, we have 

lr(x)l2= r(x)r(x) = r(x) "f:I ,X(v)e-2Jr1v/m ="f:I r(x, v)e-2JrlV/tll 

V=O V=O 

m-1 m I 

x(µ)  e2Jr1\'(11-IJ/m. 

/t-0 1'=0 

The last sum 

�= e2rr1(µ 

m for tl = 1. For µ -I=- I, it vanishes becau<,c then 

an m-th root of unity #- I, hence a root of the polynomial 

XIII -1  =Xf/1 I+ 

X - I 

Therefore lr(x)l2 =mx(l) = m. 

 
+X+I. 

□ 

 
We now obtain the following result for the theta seriec; O(x, z) . 

 

(2.7) Proposition. Jf x i� a primitive Dirichlet character mod m. then we 

have the transfonnation fonnula 
 

where Xis the complex conjugate character to x, i.e., its inverse. 

 

Proof: We split up the series 0(x, z) according lo the classes a mod m, 

a= 0, I. ... ,m - l, and obtain 

 

0(x.z) = L x(n)nfie1
"'' c/m = L x(a)  

<1=0 

hence 

 

 

By (2.4), one has 

 

 

 
m-1 

IJ(x,z) = x(a)0/:i(a,O,z/m). 
<1=0 



 

o�'.(a,O, - 1/mz) = 
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and this gives 
 

 
Multiplying this by x(a), then summing over a, and observing that 

r(x.11) = X(n)r(x), we find: 

 

Hix, -1/cJ 

 

 

 

 

□ 
 
 

 
The analytic continuation and functional equation for the function J\.(x. s) 

now falls out immediately. We may restrict oun,elve� to the ea<;e of a primitive 

character mod m. For x is alway� induced by a primitive character 

x' mod f, where f i� the conductor of x (see p. 434), and we clearly have 

L(x,,,) � TT(! - xlp)p-')L(x',.,), 
/Jim 

f!'f 

so that the analytic continuation and functional equation of J\.(x, \') follows 

from the one for J\.(x', s). We may further exclude the case m = I (thb i� not 

really necessary, ju�t to make life easy). this being the case of the Riemann 

zeta function which wa� settled in § I. The pole:,, in thb case are different. 

 

 

(2.8) Theorem. If x is a nontrivial primirive Dirichlet character. then the 

completed L-series J\.(x.s) admit.� an wwlytic continuation to the whole 

complex plane C and sati8fie:,, the functional equation 

 

with the factor W (x) = This factor /rn:,, ab:,,o/utc value I. 

  



' 
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and therefore 

By (2.2), one 

 
 
 

 

U(x, iy) = 2 f: x(n)n1 c n:,,
2

•im. 

11=1 

O(c n:i/111
), and likewi<,c g(y) 

 

 
dy 

 

 
We therefore obtain A(x ..1) and similarly abo A(X,.,) as Mellin transforms 

A(x.s) = L(f,s') and  A(X,s) = L(g,s') 

of the functions f(y) and g(y) at the points' = The tram.formation 

formula (2.7) give" 

I(-')=c(x) 0(x, - I/iv)= ( (�)T(X) yfl-f '!ocx.1_r)= 
y 2 - 2,t'Jrii 

Theorem (1.4) therefore telb u� that A(x . .'I) admits an analytic continuat10n 

to all of C and that the equation 

A(x,,,)�L(/,"f') �W(x)L(t,P+ ½-½") �W(x)L(g,' t'') 

�W(x)A(j', I -  ,,) 

hokh with W (x) = By (2.6), we have jW(x)I = I. □ 

 
The hehaviour of the special values at integer argumcnb of the Riemann 

1cta function generalizes to the Dirichlet L-scric� L(x,s) if we introduce, for 

nontrivial primitive Dirichlet characters x mod m, the generalized Bernoulli 

numbers B1.x. defined hy the formula 

m te"1 ex, 1A 

F,1.(f) = ,�I x(a) emf -  I = ).;) Bi..x k!" 

Thc:-e are algebraic numbers which lie in the field Q(x) generated by the 

valuc5 of x. Since 

m te(m-a)I 

Fx(-t) = 
1

�

1 

x(-l)x(m-a) emr _  
1 

= x(-l)Fx(/). 

WC fin<l (-l){H1. X = x(-l)Bk.x, sothat 

B1..x =0 for J. ""fop mod 2, 

if p E /0. I} i� defined by x(-1) = (-l)"x(l). 



(I) 1 

!
% , dt 
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(2.9) Theorem. For any integer k ==: I, one has 

 

L(x, I -k) = - B�.x · 
 

 
Proof: The proof is the same as for the Riemann zeta function (see (1.8)): 

the meromorphic function 

m ::e"z "" :J. 

Fx(z)= '� x(a) cmz-  I =  J.�1 B1.,1 kl 
 

ha� pole5 at most at z = 2:;v, v E Z. The claim therefore reduce� to <;hawing 

that 

t(x. 1 -k) . ,. 
-�=residue of F,.(z)z--  at z = 0. 

 

Multiplying the equation 

I'(s) !  =Jex, e-ntt,!!.!_ 

n' t 
0 

by x(n), and summing over all n, yields 

 

(2) 

 

with the function 

 

I'(s)L(x.�)=  G1.(t)t I 
0 

 

(3) G1(z) = nt x(n)e-nz = ati x(a)I �-;,:m: = F1(-z)z-
1
. 

 
From the equations (2) and (3) one deduces equation (I) in exactly the �ame 

manner as in (1.8). □ 

 
The theorem immediately gives that 

L(x,1-k)=0 for k¢.pmod2, 

p E {0, l}, x(-1) = (-])f!x(l), provided that x i� not the principal 

character l. From the functional equation (2.8) and the fact that L(x, k) f=. 0, 

we deduce for k 2:: I that 

8 
L(x.1-k)=- �·Xt=-O for  J..=cpmod2. 

 



The functional equation also gives the 



by 

§3. Theta Series 443 

 

 

(2.10) Corollary. Fork ='= p mod 2, k ::'.: I, one has 

L(  k)=  (-1)1+{�-p}/2�(�)1. B�.X. 
X, 2if'  m k ! 

 

For the values L(x,A) at positive integer arguments k ¢ p mod 2, 

similar remarks apply a� the ones we made in § 1 about the Riemann zeta 

function at the points 2k. Up to unknown algebraic factors, these values are 

certain "regulators" defined via canonical mapr, from higher K -groupr, into 

Minkowski space. A detailed treatment of this deep result of the Russian 

mathematician A.A. B1c1uN.\ON can be found in fl 10]. 

 

Exercise l. Let F1(t,x) = z:=;;1
_ 

 

 
The Bernoulli polynomials B, ,.(r) 

ass�ociated to the Dirichlet character x
�

arc 
,, 

F1(t,x) = �/' x(x)k!· 
1 

Thu� Rc,.(0) = Ri X. Show that 
 

Exercise 2. B, xfx)- B, 1(x -m) =kL;;•-i x(a)(a+x -m)' 1
, k 2". 0. 

Exercise 3. For the numbeVi S, xft') = z:=;;=1x(a)1/, k 2". 0, one ha� 

s._1{vm) = 
I 

k+[(B,+1.1 (vm)- B.+1 1(0)J. 

Exercise 4. For a primitive odd character x, one ha� 
 
 
 
 
 

 

§ 3. Theta Series 

 
Riemann's zeta function and Dirichlet's L-series are attached to the 

field IQ. They have analogues for any algebraic number field K, and the re�ults 

obtained in § 1 and 2 extend to these generalizations in the same way, with the 

same methods. In particular, the Mellin principle applies again, which 

allows us to view the L-serie5 in question a5 integrals over theta 5eries. 

But now higher dimensional theta series are required which live on a higher 

1 



dimensional analogue of the upper half-plane IH'.. A priori they do not have 

any relation with number fields and deserve to be introduced in complete 

generality. 
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The familiar objects C, !R, find their higher dimensional 

analogues a� follows. Let X be a i.e., a finite set with an 

involution TR  f (r EX), and let n = #X.  

C-algebra 

 

 

of all tuples z = (Zr )r'=x, z, E with componenlwisc addition and 

multiplication. lf: = (:,) E C, then the element Z E C is detincd to have 

the following componenb: 

 

We call the involution : r----+ Z the con_jugation on C. In addition, we have 

the involutions : i---+ ::* and z !---'I- �z given by 
 

One clearly has : =  The set 
 

form� an n-dimensional commutative IR-algebra, and C = R ®;-t 

If K is a number field of degree n and X = Hom(K. C), then R is the 

Minkowski space KIR ( � K ®G l?l.) which was introduced in chapter I, �5. 

The number-theoretic applications will occur there. But for the moment we 

leave all number-theoretic aspects aside. 

For the additive, re�p. multiplicative, group <.:. ret-.p. c�, we have the 

homomorphism 
 

 

Here Tr(:), resp. N(':), denotes the trace, resp. the determinant, of the 

endomorphism C-. C, .tr--+ zx. Furthcnnorc we have on C the hcnnitian 

scalar product 

 

It is invariant under conjugation, (x.y) = (X.. V). and restricting it yields 

a scalar product ( . ). i.e., a euclidean metric, on the R-vcctor �pace R. 

If z EC, then '? is the adjoint element with respect to (. ). i.e., 
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In R, we consider the �ubspace 
 

Thus we find for the component� of x = (xT) E R1- that xr = Xr E IR.. 

Ir 8 E IR, we simply write x > 8 to signify that xT > S for all r. The 

multiplicative group 

 
½-ill play a particularly important part. It com,i�ts of the tuples x = (xr) 

of positive real numbers x, such that xr = .1., and it occurs in the two 

homomorphbms 
 

We finally define the upper half-space as�ociated to the G(CllR)-set X by 

H=R1 +iR:. 

Putting Re(z) = ½<z + Z), Im(::)= fie: - Z), we may abo write 

H �I' EC I'�,' Im(,)> o) 

if z lie� in H, then so does -1/:, became zZ ER:, and Im(:)> 0 implies 

Im(- I/:) > 0, \ince zZ lm(-1/z) = - lm(::-1zZ) = Im(:) > O. 

For two tuples z = (::r), p = (p,) EC, the power 

zl'=(:f")EC 

is well-delincd by 

 

if we agree to take the principal branch of the logarithm and as�ume that 

the Zr move only in the plane cut along the negative real axis. The table 

llI s; IC 2 R = H 2 lR:. I I : lR* ---+ n:t:, log : R: ----=::....;. IR. 

H s; C 2 R 2 R± 2 R� ,  I I : R� ---+ R�,  log: R� ----=::....;. R1, 

shows the analogy of the notions introduced with the familiar one� in the ca�e 

n = I. We recommend that the reader memorize them well, for they will be 

used constantly in what follow� without special cross-reference. This also 

include� the notation 
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The functional equations we arc envisaging originate in a general formula 

from functional analysis, the Puiswn summation formula. It will be proved 

tlr5t. A Schwartz function (or rapidly decreasing fum rion) on a euclidean 

vector space Risby definition a C'";C-function f : R--+  which tends to 

Lero as x --+ oo. even if multiplied by an arbitrary power llx llm, m =:::. 0, 

and which shares this behaviour with all its derivatives. For every Schwartz 

function f, one form:;. the Fourier transform 

{(y) =f f(x)e-2Jr,1<, ,·) dx, 

R 

where dx i� the Haar measure on R associated to (  ) which ascribe5 

the volume I to the cube spanned by an orthonormal basis, i.e.. it is the 

Haar measure which is selfdual with respect to ( . ). The improper integral 

converges ab�olutely and uniformly and gives again a Schwartz function f. 
This i,; ea"ily proved by elementary analytical technique-,; we refer also 

to !98]. chap. XIV. The prototype of a Schwartz function is the function 

h(x) = 

All functional equation.. we are going to prove depend, in the final analysis, 

on the special property of this function of being its own Fourier transfonn: 

 

(3.1) Proposition. (i) The function h(x) = e-n(.\, ,) i,._ its  own Fourier 

tran.._fo,m. 

 

(ii) ff/ is an 1irbitrary Schwartz function and A is a linear tramfonmllion 

ofR, then the funclion f4(x) = /(Ax) has Fourier transform 
 

where 1A is the adJoint transformation of A. 
 

 
Proof: (i) We identify the euclidean vector space R with R" via "ome 

isometry. Then the Haar mea�ure  turns into the Lebesgue meaf>urc 

dx1 ••• dxn. Since h(x) = n;'=I 'wehave h = n7=1(t' ;n,C)', �o WC 

may assume 11 = 1. Differentiating 
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in y under the integral, we find by partial integration that 

= -2ni f xh(x)e-?.n,iyd, = -2nyh(y). 

 

This implies that h(y) = Ce·-n:12 for some constant C. Putting y = 0 yield� 

C = I, since it is well-known that J e-n:x
2 

dx = I. 

(ii) Sub�tituting .ti--+ Axgives the Fourier transform of fA(x) as: 

j,i,(y) = f f(Ax)e-2n:,(x,v)dx = f f(x)e-!,,-i1A-1x.v1ldetAl-1d_\ 

�-l-jf(x)e-2,,-,;'"',11�,dx=-l-f(1A-1y). □ 
fdetAI ldetAI 

 

 

From the proposition ensues the following result, which will be crucial 

for the ,;,equel. 

 

(3.2) Poisson Summation .Formula. Let I' be a complete fattice in R and 
let 

r � { g' E R I (g' g') E z fo,· all t E r} 

be the lattice dual to I'. Then for any Schwartz function f, one has: 
 

where vol( I') is 1hc volume of II fundamental mesh of I'. 

 

Proof: We identify a� before R with the euclidean vector space !Rn via some 

isometry. This turns the mearnre dx into the Lebesgue mem,ure dJ.1  dx11. 

Let A be an invertible n x 11-matrix which map<, the lattice zn onto I'. Hence 

I'= AZ" and vol(I') = I det Al. The lattice zn i� dual to itself, and we get 

I''= A"Z-:11 where A*= 1A 1
, as 

R' E r' <===} 
1
(An)g' = 1n ½g' E Z  for all n E Z-:11 

<===} '.4.g'EZ11<===}g
1E'.4. izn_ 

Substituting the equations 

� I ~ 
/',1(y) � -- f(A'y) 

vol(I') 
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into the identity we want to prove, gives 

L ls(n) � L f,(n). 
ncZ" 

In order to prove this. let us \\-rite f instead of fA and take the series 

s(x) � L f(x + k). 
k<cZ" 

It converges absolutely and locally uniformly. For :,,ince f i� a Schwartz 

function. we have, if x varies in a compact domain, 

I /(x + k)I • llkll"+' :SC 

for almost all k E zn. Hence g(x) is majorized by a con:-tant multiple of 

the convergent �cries LkcicO �- This argumcm work" just as well for all 

partial derivatives off. Sog-(x) is a C'''·-function. It is clearly periodic, 

g-(x + n) = g(x) for all n E ?/I, 

and therefore admits a Fourier expansion 

g(x) = L a c
2
·"

1111 

 

whose Fourier coefficients arc given hy the well-known fonnula 

I I 

iln = [· ··[ J.i(.X)e-lrr,'n� d.x1  dx11. 

 

Swapping :,,ummation and integration give� 

I 

a,�  
" 
�{(n). 

It follows that  

{(n) � g(O) � L a, � 
nc;f'.' 

 

q.e.d. □ 

 

 
We apply the Poi&'>on summation formula to the functiom 

{p(a, h , x=)   N( (x+ a)I'} ('-rr1a+r.a+,112rr1
1
1>. 1 

with the parameters a,h E R and a tuple p = (Pr) of nonnegative integer�. 

wch that  E {O, I} if r = f, and p, PT = 0 if r -I- f. Such an clement 



p E TT, will henceforth be called admh,sible. 



2 
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(3.3) Proposition. The function f(x) = fp(a. h,.\) is a Sd1wart/ function 

on R. Its Fourier transform is 
 

 

Proof: It is clear that fi,(a, h, t) is a Schwartz function, because 
 

for �ome polynomial P(x). 

Let p = 0. By (3.1), the function h(J.) = e :rr(i. 
1

' equals its own Fourie1 

lransfonn and one has 
 

We therefore obtain 

f(y)= ih(a+\)e2:rr,{h.,,e 2:r1,1.v1dx 

=i h(x)c-2rrr{r-h. ,-a) dx 

= c2rrr{r-h.aJj;(y _ h) 

For an arbitrary admis1,ible p, we get the fonnula by differentiating p times 

the identity 

fo(a,h.y) = e lm{a,/Ji fo(-h.a,y) 

in the variable a. No\\- the functions are neither analytic in the individual 

componcnh Or of a, nor arc !hc1>c independent of each other, when there 

exists a couple r -j. f. We therefore proceed as follow1>. Let p vary over 

the elements of X such that p = p, and let rr run through a �y�tem of 

representatives of the conjugation classes {r,T) such that r -j. T. Since 

pT Pr = 0, we may choose a in such a way that Pa = 0. Then one has 

(a+ i,a + \-) = L<a1, + \-p)2 
C 

We no\\- differentiate Pp times both sides of(*) in the real variable ap, for 

all p, and apply p(T time� the differential operator 

il I (  il il ) 

ilao= il�o- i il7Jo • 



J 
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for all a. Here we con�ider aii = �Fi+ i /Ja as a function in the real variables 

t,. /Ja ("'Wirtinger calculus"). On the left-hand side 

.fO(a, h. y)= e-rr1a+1.a 1 1J+2;r1(h, 1\ e-21r1(t, ,·\ dx. 

 

may differentiate under the integral. Then, observing that pr, = 0 and 

+ Xa )(a,r + Xo )) = (aa + ta), we obtain 

f TI(-2n(ap +xp)} /!p 

P Q( -2rr(aa+ x" )) P" e-TC'u+\.a+-1)+2Jr1\h, ,)-21r1'1, r) dx 

=N((-2;r)1'f}  N((a+x)P)e ;r1a+,.11+11-,-21r1(h.1·)e-l;r1(x.v,dx 

 

� N((-2nc)")];,(a,b,y). 

The right-hand �ide of(*), 
 

in view of 

(a, -h+y) =L
,
,
,
ap(-hp+Yp)+L,(arr(-hii+Ya)+ao(-ho +Yrr)}, 

and as p,r = 0, becomes accordingly 

N ( (2rri)"} N( (-h + y)") e-hi'a.h\ fil(-h.a, y) 

= N( (2::rri)") e-2rr1:a.h1fj,(-h, a.y). 

Hence 

lJ 
 

 

We now create our general theta scric� on the upper half-.,pace 

H � {'EC I'�,'. Im(,)> o} � R, + iR�. 

 

(3.4) Definition. For every complete lattice I' of R, we define the theta 

series 

0r(:::) = L, eJr'\½�-is',  z EH. 

)sEJ' 

More generally, foru.h ER ,md any admissible p E TTrZ, wcpul 

0j'.(a,h,z)= L, N((a+ /?)/!} t'rr1:(a+.d ,u+g1+2:r11h,is). 

KicT 
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(3.5) Proposition. The serie., 0j'.(a, h. z) conve1:ges absolutely and uniformly 

on every compact subset of R x R x H. 

Proof: Let<) E IR,<) > 0. For all z E H �uch that Jm(z) ?. 8, we find 

Let 

(a ER. g E I'). 

!-<or K <; R compact, put l.f�IK = sup 1./�(x)I. We have to show that 
<eK 

L l/glK < oc. 
1;"'r 

Let g1..... g11 be a Z-basis of r, and for g = L;'=1 m;g, E r. !el 

JL�=mrxlm,I. Furthennore. define llxll =�.If llgll?. 4��kllxll. 

then for all a EK: 

(a+ g,a + g) 2: ( llall - llgll)' 2: llgll2 - 211all • IIRII 
I  " I 

?. ?. c ;m�?. 
1 

where F: =Ei,�� L;'_;=I (g,, g1) y,y1 is the �mallest eigenvalue of the matrix 
1 

((g,,g,)). 

N((a + Lm,g,)I') j5 a polynomial of degree q in them,, (q = Tr(p)). 

the coefficients of which arc continuous functions of a. It follows that 
 

provided µ.x is sufficiently hig. One therefore finds a sub�ct r' <; r with 

finite complement such that 

L lf�IK :S :t P(µ)µq+le-½�1112. 

gecr' /L=O 

where P(1l) = #{ m E Z" I m ax lm,I = µ} = (211 + It - (2µ - !)". The 
1 

�eries on the right is clearly convergent. D 

 

 

From the Poisson summation formula ½C now get the general 



J/:) = N(t-1')L N( (ta+ tg)'') 1 
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(3.6) Theta Transformation Formula. One h;.is 

O/!,(a,h, - 1/::) = [1T,Cp)l'2ITl(Uh)vol(I')r1N((z/i)"-!)erc-h.a,z). 

ln particufor, one has for the function Or(z) = 0Y,(O, 0, ::): 

Hr(-lj,)� ✓N(,ji) Hr•(c). 

vol(I') 

 
Proof: Both sides of the transfonnation formula are holomorphic in : 

by (3.5). Therefore it suffices to check the identity for z = iy, with y ER�. 

Put 1 = y-112. �o that 

:=i� and  -l/:=it
2
. 

Ob�erving that t = t* =*I, sothat (�t. 11) = (�. *rr1) = (�, fr/), we obtain 

Uj,(a, h_, 
1 

C-IT,1a+1�,1a+tg)-2.rrrir- h.tg 

lfE/' 

Let a= ta, f3 =,-1h. We consider the function 

fi,(a,/3. ,)= N( (a+ r)'') c-"r,¥+,.<Y+>\+2.,1,fl. 1,, 

and put 

This gives 

(I) 

 

and :-imilarly z = i -/,s gives that 

(2) 0j',(-h,a.z) = N(tfl) 
 

Now apply the Poisson summation formula 

 
(3) 

 
to the function 

 

 

f(x) = ({Jr(a,/3,x) = .t;,(a,fJ,t,·). 

Its Fourier tran-;form is computed as follows. Let h(.1) = ,-), so that 

/(r) = h(tx) = h1(x). The tram,formation A: x f--->- Ix R �elf-adjoint 

and has determinant N(f). Thu� (3.1), (ii), gives 

f(y) = �h(t 1v). 
N(I) • 



! 
�. dy 
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The Fourier transfonn h ha� been computed in (3.3). This yields 

f(y) =[ N(i")N(f)e2rr1{a,h)rl /p(-/3.ft.t-ly) 

= [N(il')N(f)ehr'a,h,]-1,Pr 1(-/3,a,y). 

Sub�tituting thi5 into (3) and multiplying by N(t-1') gives. by (I) and (2): 

t!f(a,h. -1/z) = [N(iPt2fl+l)e2rr1{"·1))vol(I')J-
1

0J'.,(-h,a,z). 

1 = (z/i)P+½, this is indeed the transfor­ 

□ 
 

For n = I, we obtain proposition (2.3), which at the time wa� u5ed 

without proof for proving the functional equation of the Dirichlet L-series 

(and Riemann\ Leta function). 

 

 

 

§ 4. The Higher-dimensional Gamma Function 

 
The passage from theta serie� to L-series in* I and §2 was afforded by 

the gamma function 

 

I'(s)=  e-1y'-· 
y 

() 

In order to generalize thi5 proce:,.:,., we now introduce a higher-dimensional 

gamma function for every finite G(C IR)-,;et X, building upon the notation of 

the la:,.t section. First we tix a Haar measure on the multiplicative group R�: 

Let p = {-r. f} be the conjugation classes in X. We call p real or complex, 

depending whether #p = I or #p = 2. We then have 

R� = TTR:p· 
p 

where 
 

We define i:,.omorphism:,. 

 

by y f-----f y, re:,.p. (y, y) f-----f y2, and obtain an isomorphism 

!p:R: :::: ,..TTIR� 
p 
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We now denote by :!./- the Haar measure on R'.;_ which corresponds to the 

product mem,ure • 

n <it_ 
p  t 

where :lf- is the usual Haar measure on H�. The Haar measure thus defined 

is called the canonical measure on R�. Under the logarithm 

 

 

it i5 mapped to the Haar measure dx on R± which under the isomorphism 
 

Xp i-+ xµ, resp. (xp, \·p) P  2xp, corresponds lO the Lebesgue measure 

on nPJR. 

 

(4.1) Definition. For s = <sr) E C 1,uch th,1t Re(sr) > 0, we define lhc 

gamma function associated to the G(CIR)-1,et X by 

IX(s)= f  
•• 

The integrand is well-defined, according to our conventions from p. 445, 

and the convergence of the imcgral can be reduced to the case of the ordinary 

gamma function as follow&. 

 

 
(4.2) Proposition. Dccompo1,ing the G(CllR)-ser X into its conjugation 

c/:.18ses p, one ha� 

I'x(S)=nI'p(Sp), 
p 

wheresp =Sr  forp = {r}, resp.Sp= (�r,sr) forp= {r,r}, T f- f. The 

factors are given explicitly by 

ifp real, 

if p complex, 



J 
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Proof: The first statement is clear in view of the product decomposition 

(a�. d_y_) � (na�,. n d)') 
y p p }p 

 

The second is relative to a G(CIR)-set X which has only one conjugation 

cla<,s. If #X = I, then trivially I'x(s) = I'(s). So let X = {r, f}, r #- f. 
Mapping 

 
one then gets 

j N(e  'y')� �/ N(,-<Ji.,71(Jt.J,)''•·•,l)f 

I{� • IF.� 
 

 

=! e-2..... rr.;,1,(,)�' 

 

and, �incc d(t/2)2/(t/2)2 = 2dt/t, the substitution ti----+ (f/2)2 yield� 

N(e-1ys):!,!_ =2i-r,{slr(Tr(s)) □ 
R+ • 

 
The proposition shows that the gamma integral I'(s) converges for 

s = (sr) with Re(sT) > 0, and admits an analytic continuation to all of C, 

except for poles at points dictated in the obvious way by the ordinary gamma 

function I'(s). 

We cal I the function 
 

the L-function of the G(C IR)-set X. Decomposing X into the conjugation 

classes p, yield� 

Lx(s) � nL,(s,). 
p 

where as before we write Sp = sT for p = {r} and Sp = (s,.sr) for p = {r, f}, 

r #- f. The factor� tp(Sp) arc given explicitly, by (4.2), as 

if p real, 

if p complex. 

For a single complex variable s E C, we put 

I'x(s) = I'x(sl), 
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where I= (I. . I) is the unit element of C. Denoting r1, resp. r2, the 

number of real, re�p. complex, conjugation classes of X, we find 

rx (s)= z<1-21)r2 I'(.�)'"11'(2�)'2 

In lhe �ame way we put 

Lx(s) = Lx(sl) = JT-nv/l I'x(s/2), n = #X, 

and in particular 

L11ds)=Lx(s)=n-·'nrC1/2).  if X={r}, 

Lds) = Lx(s) = 2(2n)_'.r(s),  if  X = {r, r), r -f- T 

 

Then we have, for an arbitrary G(CIIR)-�ct X: 

Lx(�) = L:1.C1f1Lr:(s)"c. 

With this notation, ( 1.2) implies the 

 

(4.3) Proposition. (i) L:.:(l) = l. Le(!)=¼· 

(ii) L:1.(s + 2) = 5"L11,(s), L:;.(s +I)= 5°Lc(s). 

(iii) L:;i:(I - s)L11,(l + s) = 

(iv) LW;(s)LR:(s + 1) = L,c(s) (Legendre's duplication formula). 

 
As a consequence we obtain the following functional equation for the 

L-function Lx (s): 

 

(4.4) Proposition. Lx(s) = A(.1)/,x(l -s) with the factor 

A(s) = (cosns/2)11+12(sinns/2)"2L: (s)'1. 

 

Proof: On the one hand we have 

L[F!;(S) 

L.i(l - 1) 

and on the other 

Le(,) 

Le(!-.,)  Lc(I -s)L:r;(s) 

= co�ns/2 �inrrs/2 Ll'(s)2
. 

The proposition therefore rc�ults from the identity L x (s) = LIP (s)' 1 Lr,_,(s )1
2. 

n 
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Thi� conclude& the purely function-theoretic preparations. They will now 

be applied to number theory. 

 

 

 

§ 5. The Dedekind Zeta Function 

 

The Riemann zeta function ((s) = L�1 "[> is associated with the field Q 
of rational numbers. It generalizes in the following way to an arbitrary 

number field K of degree 11 = [K: :Qi]. 

 

 

(5.1) Definition. The Dedekind zeta function of the number field K is 

defined by the .�eries 

where a varies over the integral ideals of K, and O't(a) denotes their :ibsolute 
 
 

 
(5.2) Proposition. The series (K (�) converge abi,,olutely :.md uniformly in 

the domain Rc(.1·) � I + 8 for every 8 > 0, and one ha& 
 

where � nms through the prime ideals of K. 
 

 
The proof proceeds in the same way as for the Riemann zeta l'unction 

(sec (1.1)), hecau"e the absolute nonn O't(a) is multiplicative. We do not 

go into it here, because it is the same argument that also applie� to Hee/. (:' 

L-sai(:'s, which will be introduced in 98 as a common generalintion of 

Dirichlet L-serie" and of the Dedekind zeta function. 

 

Ju�l like the Riemunn zeta function, the Dedekind Leta function also 

admit� an analytic continuation to the complex plane with I removed, and 

it satbfies a functional equation relating the argument s to I - s. This is 

what we are now going to prove. The argument will turn out to he a higher 

dimensional gencrali.t:ation of the one used in 9 I for the Riemann zeta 

function. 
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First we split up the series (K(s), according to the classes .R of the usual 

ideal clas� group Cf K = J / P of K, into lhe partial zeta functions 

I 

'll(a)' 

 

sothat 

 

 

The functional equation is then proved for the individual funclion:-. ((.R.,1). The 

integral ideals in .R are described as follows. If a is a fractional ideal, then 

the unit group  of o operates on the set a*= a" {O}, and we denote by a* 

Jo* the set of orbib, i.e., the �et of cla��es of non-.t:ero a�sociated clement:- 

in a. 

 
(5.3) Lemma. Let a be an integral ideal of K and .R tile class of r/Je idea/ 

a-1
. T/Jen there is :1 bijection 

a*Jo* _::_,..lb E Jll b inlcgral), a f----.. b =aa-1 

 

Proof: If a E a*. then aa-1 = (a)a-1 i'> an integral ideal in .R, and if 

aa-1 = ha-1, then (a)= (h), �o that ah-1 E This shows the inject1vity 

of the mapping. But it is surjective as \\-ell, since for every integral b E Jl, 

one has b = aa-1 with a E ab� a. □ 
 

To lhe G(CIIR)-�et X = Hom(K, :C) corre<,ponds the Minkowski space 

K,, � R � [ I):::r 

The field K may be embedded into K11s• Then one finds for a EK* that 

'll((a)J� INK1,c(a)I � IN(a)I, 

where N denotes the norm on R� (see chap. I. § 5). The lemma therefore 

yields the 

 

(5.4) Proposition. ((Jl.1) = 1)1(a)' 
I 

IN(i/JI' 
 

 

By chap. L (5.2), the ideal a forms a complete lattice in R whose 

fundamental mesh has volume 

vol(a) = vr:i;., 



�(a)
2

•
1  f 1,,, Jy 

35. The Dedekind Zeta Function 459 

 

where da = �(a)21dK I denotes the absolute value of the di1>criminant of a, 

and dK is the discriminant of K. To the series ((Jl,s) we a5sot:iate the theta 

series 

 

 
It is related to ((Jl,s) via the gamma integral associated lo the G(CIIR)�set 
X = 1-Iom(K,C), 

I'K(I) = I'x(s) = f  
", 

wheres E  Re(s) > 0 (1,ee (4.1)). In the integral, we substitute 

y f------+ rrlal
2
y/d�/n 

with I I denoting the map R* .,,. R�. (x,) i---+ (lxrl). We then ohtain 

 

ldK l'n-"' I'K(s) IN(a)12' = e-:rr(ar;J" .a)N(y)' y· 
R'. 

Summing thir,, over a full system 91. of representative� of 04 /o*, yields 
 

with the 1,eries 

g(y) = 

 

Swapping summation and integration i� legal, for the same rca<.on a� in the 

case of the Riemann Leta function (seep. 422). We view the function 

Zcx_(s) = ldKl·'12n 11'i2rK(s/2) = lthl•'i2Lx(.1) 

a1> the "Euler factor at infinity" of the zeta function ((Jl..1) (1,ee *4, p.455) 

and define 

Z(Jl,s) = Z""(.1)({.R,s). 

The desire to reali/e this function as an integral over the theta �eric� 0(a. s) is 

frustrated by the fact that in the theta seric.:, we 1,um over all a E a, whereas 

summation in the '-Cries g(y) is only over a s,y1,lem of repre�entalivc<, of 

a*/o*. This difficulty - which was already hinted at in the ca�c of the 

Riemann zeta function - will now be overcome in the general ca1>c a� 

follow1>. 
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The image lo* I of the unit group  under the mapping I I : R* --+ R� 

is contained in the norm-one hypersurface 
 

Writing every y E R� in the fonn 

)' =xll/11, x= NC�')l/11' t=N(_r). 

we obtain a direct decomposition 

R: = S x IR:. 

Let d* x be the unique Haar measure on the multiplicative group S :.uch that 

the canonical Haar mea:.ure dy/y on R� become:. the product measure 

 
!!.!_=d*xx!:!.!.. 
y t 

We will not need any more explicit de�cription of lr.\. 

We now choose a fundamental domain F for the action of the group 

lo*l2 = { IEl2 It E o*\ on Sa:. follow�. The logarithm map 

log: R:------,. R±,  Ctr) 1--------+ (logxr), 

takes the norm-one hypersurface S to the trace-zero space H = {x E R± I 
Tr(t) = 0), and the group lo*I is taken to a complete lattice C in H 

(Dirichlet's unit theorem). Choose F to be the preimage of an arbitrary 

fundamental mc:.h of the lattice 2G. Any such choice :.at isfies the 

 

(5.5) Proposition. Tile function Z(Jl, 2s) i.� tile Mellin transform 

Z(Jl,2.,J � L(/ .,) 

of 1he funct ion 

f"(f) = f"F(a,f) =; 

 

where w = #µ (K) denote� the number of root� of unity in K. 

 
Proof: Dccompo'>ing R'.:_ = S x IR:, we find 

 

Z(Jl,2.vJ� l! e-;r; "111
·",, d*tr' !:!.!., 

I 
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with t' = (tjd")1111
_ The fundamental domain F cuts up the nonn-onc 

hyperwrfacc S into the disjoint union 

S= ry2F. 

 
The transformation x i----+ ry2 r of S leaves the Haar measure d*x invariant and 

maps F to r?F, so that 
 

 

 

= _!f_  L L ('-::r,uu1'.a1-)d*x 

W  cco•ac:ll 

r 

� _I_ j(e(a.;.n'1") - 1) J•x � f(I) - l(oc). 
U' 

F 

Observe here that we have to divide by 11J = #1l(K), bccau�e /L(K) is just 

the kernel of ---+ 1t1*I (sec chap.I. (7.1)). hence Litl = ¾L'°- Ob�erve 

furthcnnore that at: runs through the :,ct a* = a " {O) exactly once, and 

finally that /(oc) = �.J� d*x, as A(a.ix:::,o) = I. This rc�ult doe� indeed 

show that 

 

Z(K2.,)� j(i(t)-f(oc))r''¥-�L(f.,). n 
,, 

 
Using this proposition, the functional equation for the function Z (Jl. s) 

follows via the Mellin principle from a corresponding transformation formula 

for the function f",:(a. t), which in turn derive� from the general theta 

transfonnation fonnula (3.6). In order to find the prcci<,c equation, we have 

to compute the volume vol(F) of the fundamental domain P with re�pect 

to d* \. and the lattice which is dual to a in R. This i� achieved by the 

following two lemmas. 

 

(5.6) Lemma. The tlindamental domain F of S has the fol/owing volume 

with respect to d* \ : 

where r i:. the number of infinite place,; and R is !he regulator of K (see 

chap. I, (7.5)). 



- 

( ,,, 

462 Chapter Vil. Zeta Function� and L-�erie� 
 

 

Proof: The canonical measure dy/y on R� is transformed into the product 

measure d* x x dt / I hy the isomorphism 

a:SxR�-----+R:,  (x,f)i ------ +xt1111
. 

Since I= /t E IR: 11 :St :Se) has measure I with respect to dt/t, the 

quantity vol(F) is also the volume of F x I with respect to d*., x dt/t, 

i.e., the volume of a(F x /) with respect to dy/y. The compo�itc ifr of the 

isomorphbms 

R� � R_i_ � TT lFt = R' 
Pl= 

(see S4, p. 454) transforms dy / y into the Lebesgue measure of IF!.1 , 

vol(F) � vol0, ( v,a(F x I)) 

Let w, compute the image ifra(F x 1). Let 1 =(I. ............ , I)EST. hen we find 

ifra((l,t)) = clogt11n = �elogt 

with the vector e = (ep , ••• , ep,) E !Rr, ep = I, re'-p. = 2, depending 
1 1 

whether p1 is real or complex. By definition of F, we also have 
 

where <P denote:. a fundamental mesh of the unit lallice G in trace-tern space 

JI= {(x,) E IR' I Lx, = 0). Thb gives 

v,a(F x I)� 2<P + [ 0. �] c. 

the parallelepiped �panned hy the vectors 2e 1 .....2c, _1 . i c. if c1• , c, _1 

span the fundamental mesh <P. Its volume is t21 1 times the absolute value 

of the determinant  
'" 

det : 
e, L, Ce,) 

 

c,-1,,  <'p, 

Adding the first r - I lines to the last one, all entries of the last line become 

zero, except the last one. which is 11 = L ep,. The matrix above these 

zeroes has the absolute value of its determinant by definition equal to the 

regulalOr R. Thus we get 

vol(F) = 21 -IR. □ 
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(5.7) Lemma. The lattice I" in R which is dual to lhe lattice I' = a is 

given by 

where the aMerisk denotes the involution (xT) r---+ (" T) on KR 1:md () the 

different of K IQ. 

 

Proof: As (x._v) = fr(�ly). we have 

T' ~ /'a E R I (N. a) E Z foe all a E a} ~ Ix E R I T,·(xu) c:: Z j 

Tr(xa) £ Z implies immediately x E K, for if a1  ,an if, a Z-baf,if, of a and 

x = x1a1 +···+Xnlln, with x, ER., then Tr(xa1) = L, X1  E Z 
i,; a system of linear equations with coefficient� Tr(a,a;) = E Q. 

so all x, E QI, and thut. x E K. Il follows lhat 

'r· ~ { x  E K I h(xa) c:: Z I . 
By dclinition we have ()-I = {x E K I 
equivalences x E� I'' �  TrKl,(J(xao) £ 
�XE(u())-1. • 

£ Z}, and we obtain the 

for all a E a �  xa £ ()-1 

n 

 

(5.8) Proposition. The functions fF(a,t) satisfy the transfonmition formula 

fF(a,})=t
112

f{. 1((0())-
1
,t), 

and one ha.\ 

 

fixt----+ oo, 1· > 0. 
 

 

Proof: We make Uf,e of fonnula (3.6) 
 

for the lattice I'  in R, whose fundamental mesh ha,; volume 

vol(I') = IJ1(a)ld« The lattice I" dual to r it.  by (5.7) 

a<, *I" = (aD) 1
.  compatibility ();z. *g) = implies that 

Or(:::)= O,r(z). Furthermore we have 

d(aiJJ-1 = IJ1(a)-21J1(D) 2ld« I= l/(IJ1(a)2ld« ll = 1/da. 

The trant.fonnation r r---+ x· 1 of the multiplicative group S fixes the Haar 



measure d*x (in !he same way as x r---+ -r  fixes a Haar measure on JR.n) 



±/ 
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and maps the fundamental domain F onto the fundamental domain p-1
, 

whose image log( p-1
) is again a fundamental mesh of the lattice 2 log lo* I. 

Observing that N(x(tda)1i") = tda for x ES, we obtain 

 

fr(a �) � 0,(;,;':/fd:) d'x 

�±
F

f 
e,(-w,':/td:),r., 

p-, 

I I (fd)l/2 

vo�(a) 0(aw1(ix�)tr., 
r-1 

=,::,, 2 I 
/'-I 

 
e(aw1(i.,j1Jd(ao)-1)d*x 

= t1/2fi' -1((ai'l)-1,1) 

This 5hows the first formula. To prove the �ecoml. we write 

(F(a,t)=-
I
;,

/  
lrx+

I
;

/ 
(A(a,ixt 

l/n 
)-l)d�x=

v
-
o
w
l ( F

-
)
+r(t). 

F < 

t ---,. ex;, a� the 

 

 

 

The point X = (x,) varic� in the compact clo�ure F,;; [ nr IR:]- of F. 

Hence Xr 2: 0 > 0 for all r, i.e., 

(a.\,a) = L lwl2x, 2: O(a.a) 

 
and so 

r(t) :':: vo:�JF) (OaU8Vf')- I). 

Writing m = min{(a,a) I a Ea.a -1- 0\ and M = #\a Eal (a.a)= m),ii 

follows that 

+ L  

where ( = Jr8m/dl/n We thus get a:,, claimed 

 

 

 



/F(a, I)= vol(F)+ O(c_,11 "=)  � R+ O(c-111 "). □ 
U' w 



+ 
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This last propu;,ition now enables u'> to apply the Mellin principle (1.4) to 

the functions ft. (a, t). For the partial ?eta function::, 

 

 

 

 

this yields the following result, where the notation;, dK, R, U', and r r,ignify 

as before the di�criminant, the regulator, the number of roots of unity. and 

the number of infinilc places, respectively. 

 

(5.9) Theorem. The function 

Z(R,.1) = Z.,..,(s)((.R.s).  Re(.1·) > 1, 

admils m1 analytic continuation to 

equation 

Z(Jt1)=ZUl',l-s), 

where the idc1.1/ c/:18ses Rand Jf corrcr,pond to each other via .RJ{' = [i)I. It 

has -,imple poles ut .1· = 0 and .1 = I with residues 
 

 

Proof: Let .f (t) = /{. (a, t) and g(t) = .fr-1 ((ai)) 1
, I). Then (:'i.8) implies 

t(}) =t
112

g(t) 

and 
11 1 

f(t) = ao  0(('-'  '\  g(t) =au+ O(c " "). 

21 1 
 

with a0 = u� R. Proposition (1.4) thus cn;,ures the analytic continuation of 

the Mellin tran;,forms off and g, and the functional equation 

 

L(j.,) � L(e. � - ,) 

with simple pole;, of L(.f.s) at 1 = 0 and�= i with re�idues -an, rcsp. a0. 

Therefore 

 

admit� an analytic continuation to  '-- {O. I} with simple pole;, at s = 0 and 

s = I and residues 

2' 21 
-2a0 = -;-R, re;,p. 2a0 = ;-R 
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and :,,ati�fies the functional equation 

 

□ 
 
 

 
This theorem about the partial Leta functions immediately implies an 

analogow, result for the completed zeta function of the number field K, 

ZK(s) = L,::_(s)(K(s) = LZ(Jt,,1). 

' 
(5.10) Corollary. The completed zeta function ZA (5) 1:1dmib an analytic 

continuation to C "- {O, I) and satisfies the functional eqwition 
 

It has simple poles at., = 0 and .1 = I with residues 
 

where h is the c/w,s number of K. 

 
The last result can be immediately generalized as follows. For every 

character 

X: J/P-------+ .51 

of the ideal cla:,,s group, one may form the zeta function 
 

 

where  
x(a) 

'll(a)' 

and x(a) denotes the value x(R} of the class f-t = lo] of an ideal a. Then 

dearly 

Z(x..,) � I,:,x(JlJZ(.<L,). 

and in view of .ff' = .R 
1
10 ], we obtain from (5.9) lhc functional equation 

Z(x ..,) � x(O)Z(x. I - .,). 

If x #- l, then Z(x, �) is ho\omorphic on all of:['._ a:-, :[;11 x(m = 0. 



1 
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We now conclude with the original Dedekind zeta function 

 
(K(s)=L�.  Rc(s) > I 

a �•1(a)· 

The Euler factor at infinity, Zc,o(s), i� given explicitly by §4 a� 

2-.,Js) = ldKl'·/2Lx(.'i) = ldKl512Llli.(sY1LcC1f2. 

where r1, resp. r2, denotes the number of real, resp. complex, place�. By 

(4.3), (i), one has L,_,(l) = ldK 11/
2 /nr1. As 

(K(s) = Z,x,(1)-
1ZK(s) = ldK 1-s/2Lx(s) 1 ZK(S), 

we obtain from (4.4) the 

 
(5.ll) Corollary. (i) The Dedekind zc/1:l function (K(.1·) has an analytic 

continuation to C '- !I}. 

(ii) Ats= I it has a simple pole with residue 

2r1(2nY" 
!<:= wldKil/2hR=hR/e". 

 

Here h denote.� the class number and 

 

.R = log 

 

the genus of l11e number field K (see chap. III, (3.5)). 

(iii) It s,iti.�fks the functional equation 
 

with the factor 

A(s) = 
 

 

The proof of the analytic continuation and functional equation of the 

Dedekind zeta function was first given by the mathematician ERtC/1 H1cKt 

(1887-1947). along the <;ame general lines we have pre�ented here, albeit in a 

somewhat different fonnulation. Further, the theory we are about to develop 

in the following section"§ §6-8 also substantially goe� back to Hf.CKE 

The formul.i for the residue 
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is commonly known as the analytic class number formula. It doe1, allow 

us to delcnnine the class number h of the field K, provided we know the 

law for the decompo�ition of primes in this field sufficiently well to lay our 

hands on the Euler product and thu1, compute the .t:eta function. 

 
The following Hpplication of corollary (5.11) to Dirichlet L-series L(x, s) 

(see *2) i� highly remarkable, It results from studying the Dedekind zeta 

function (K (s) for the licld K = Q(µ,,,,) of m-th roob of unity. and i� based 

on the 

 

(5.12) Proposition. ff K = Q(µm) is the held ofm-t/1 roofs of unity, then 

(K (,) � G(.,) nL(X,.,), 

X 

where x varie.� over all Dirichlet diarnc1cr1, mod m. and 

G(,,)� n(l-'.l'l(p)-'J-'. 
Pim 

 

Proof: The proof hinge1, on the law of decomposition of prime numbers p in 

the field K. Let p = (p1 .. , p,f be the decomposition of the prime number 

pin K, and let f be the degree of the p;, i.e., \Jt(p1) =pl. Then (K(s) 

contaim the factor 

n(l-'.l'l(p) ')_, �(1-p ,,>-'. 
Pl/! 

On the other hand, the L-series give the factor nx<I - x(p)p_'•)-1
. For plm 

thi5 is I. So let pf m. By chap. I, (10.3). f' i5 the order of p mod m in 

and c = I. Since efr = tp(m), the quotient r = is the 

of the subgroup Gr> generated by p in G = A1,1,ociating 

x 1--'1' x (p) defines an i:-.omorphism G fl � 11f, and gives the exacl 1,cquence 

1-----+G/Gp-----+G-----+ /JJ-----+ I. 

where� indicate1, character group.s,. We therefore find r = #(G/G1,) = (G : 

Gp) clement1, in the preimage of x(p). It follow� that 

n(l - x(p)p-l)-I = n (I - (p-') I = (I - /J {.,)-/ 

X (E/11 

�no-'.l'l(p) •1-'. 
Pl/! 

Finally. taking the product over all p, we get (K(s) = G(s) TTx L(x.s). □ 
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For the trivial character x0 mod m. we have L(x0,s) = n,,nr(l - p ') 

((s). sothat 

\K(,) � G(.,) ITO - p-'m,) TT L(x,.,). 

plm xcf'Y11 

Since ((s) and (K (s) both have a simple pole at s = I, we obtain the 

 

(5.13) Proposition. For every non-trivial Dirichlet ch:.1racler x, one ha� 

 

 

 

This innocuous looking result is in fact rather profound. and yield� as a 

concrete con�equencc 

 

(5.14) Dirichlet's Prime Number Theorem. Every arithmetic progression 

a, a±m, a±2m. a±3m, ... , with(a.m)= I. 

i.e., eve1y class a mod m. conwim infinitely many prime number.�. 

 

Proof: Let x he a Dirichlet character mod m. Then one has, for Re(s) > I, 

logL(x.s) = - Llog(l- x(p)p-·') =LI: x(p"') = L x(p) +gy(.1), 

p p m�I mp"'
1 

p P-' 
 

where gx (s) is holomorphic for Re(s) > ½ - this follows from a trivial 

estimate. Multiplying by x(a-1) and summing over all character� mod m. yields 

L x(a-1
) logL(x. 1) =LL x(a-,i p) + g(s) 

X X I' p 
Ill I 

�I:I:x(u-'h) I: -+s<<I 
h=I X p=/,(111) p-' 

�  I:  �1�'J+x(.s). 
f!='C1("1)  /J 

Nole here that 

 
I:x(u-'h) � 
-., ip(m) = #(Z/mZ)�. 

 

if a#- h, 

if a= h. 

When we pas� to the limit s -----+ I (.1 real > I). logL(x,.1) �lays 

1 



bounded for x #- x0 because L(x, I) #- 0, whereas logL(x0
.1) = 
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Lplm log(] - p-·1) + log((5) tends to :xi because ((j) has a pole. The 

left-hand side of the above equation therefore tends to oo, and 5ince i:;(j) is 

holomorphic al s = I, we find 

Jim L  ip(m) ='.X.J 

•  1--,.I p=a(III)  /J' 

Thut-. the sum cannot con-.ist of only finitely many tem1s, and the theorem is 

proved. D 

 

For a = I, Dirichlet's prime number theorem may be proved by pure 

algebra (see chap. L § 10, exerci5e I). Searching for a proof in the general 

case Dirichlet was led to the study of the L-series L(x,s). This analytic 

method gives sharper ret-.ults on the distribution of prime numbers among 

the classes a mod m. We will come back to this in a more general context 

in§ 13. 

 

 

 

§ 6. Hecke Characters 

 
Let m be an integral ideal of the number tield K. and let Jm be the group 

of all ideals of K which are relatively prime to m. Given any character 

x: Jrn--+ s' � {, E c I 1,1 � I}, 

we may at-.t-.ociate to it, as a common generalization of the Dirichlet L-serie� 

as well at-. the Dedekind zeta function, the L-t-.cries 

L(x ..,)�I:�- 
0 'll(n)' 

Here ovaries overall integral ideal� of K, and one delincs x(o) = 0 whenever 

(o. m) -=/=- I. Searching for the most comprehensive clast-. of character� x for 

which the corret-.ponding L-series could be 5hown to have a functional 

equation, Ht,CKF was led to the notion of GriHkncharakterc. which we 

define as follows. 

 

(6.1) Definition. A Grtinencharakter mod m is a character x : .rm --+ 51 

far which there exists a pair of characters 

X1 : (o/mr   ,. 5
1

,  X'X) : R*   ,. S
1
, 

.�uch that 
x((a)) � x,(a)h(a) 

for every :Jlgcbrnic integer a E o relatively prime 10 m. 



= 
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A character x of .1m i� a GriJjJem harakter mod mas 5oon as there exist:;, 

a character X-x., of R* :c.uch that 

for all a E o such that a = I mod m. For if thi� is the case. then the rule 

x1(a) = x((a))x-x,(a) 1 define5 a character xr of (o/mr which sati5tle& 

x( (al) � Xr(a)h(a) 

for all algebraic integers a E n relatively prime to m. This last identity underlines 

the fact that the restriction of a Gri4ienr-haraktcr to principal ideal5 breaks 

up into a finite and an infinite part. From 

o(ml = { a E o I (a, m) =I). 

it extend& uniquely to the group 

K(m) � {a EK' I (a,m) � I} 

of all fractions relatively prime to m, hecau<se every a E K{ml determines 

a well-defined class in (o/m)*. The character and thus also the 

character Xi, are determined uniquely by the G,·i!Ber1ch,,ml,ta x, since 
the group 

Km=/ a E K(m) I a= 1 mod m) 

is dense in R�, hy the approximation theorem, and one has Xc-x,(a) = x((a)) 

for a E Km. Let us recall that the congruence a  I mod m signilie� that 

a = h/(, for two integers h, c relatively prime tom, such that h = c mod m 

or, equivalently, a E utf'l t;; Kp for Pim, if m = TIP p"P. 

The character x'">,) factors automatically through R* /o"', where 

om=/£ E  IF= I mod m) 

In fact, for F E o"' we have xde) = 1, and thus 

x((F)) = I. The two character� Xt and Xoo (o/m)*, 

as�ociated with a GriHJencharakter x &atisfy the relation 

Xr(f)xcx,(£) = I for all E E 

and it can he shown that every "uch pair of characters (xr- X~) comes from 

a Grfdlenchara/..ter x (exercise 5). 

 

The attempt to understand l,n>/in1< hrrmA/m in a conceptual way leads 

one to introduce ideles. In fact,  Griif.iencharaktere arise as characters of 

the idele class group of the number field K. We will not use this more 

abstract interpretation in what follows, but it will be explained at the end of 

this section. 
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(6.2) Proposition. Let x be a Gr6Jiencharokter mod m, and let m' be a 

divisor ofrn. Then the following conditions are equivalent. 

(i) x i.� the restriction of a Griij3cncharoktcr x : .Im'----+ SI mod m'. 

(ii) Xt factors through (o/m'r. 

 

Proof: (i) => (ii). Let  be the restriction of the 

x' : .1m' ----+ and let x� be the pair of character� 

Let Xt, rc�p.  be the compo�ite of 

 

 

wilh x'. 

 

 
so that Xi = Xr and x,.,_ = ;(c"' because Xt and Xxo are uniquely determined 

by X· Thus Xt !'actors through (o/m')� (and x'>J through R+ /o"'\ 

(ii)==} (i). Let Xt be the composite of (o/rn)* .......- (o/m')�  !i 51. In every 

das� a' mod pm' E 1m';pm', there is an ideal a E ]"' which j1, relatively 

prime tom. i.e., a'= aa for some (a) E pm'. We put 
 

Thi� definition doc� not depend on the choice of the ideal a E Jm. for if 

a'= a1a1. a1 E J"', (a1) E pm', then one has (aaJ1
) E Jm, and 

x(a)xi(a)xo-.(a) = x (a)x ( (aaJ
1

)) xr(a 1adx""'(a-1ai)x;(a)x""'(a) 

= x(adxi'(a1 )x,-,_,(ai). 

The restriction of the character x' from 1m' to 1m i� the Gr6Jk11charakter 

of J111
, and if (a') is a principal ideal prime tom' and a'= ah, (a) E 

(h) E pm', then we have 

x'((a'J) � x ((aJ) x'((h)) � x((a)) x,'(hJh(hJ 

= xr(a)xc,.,(a)x;(h)x,.,_,(h) = xi'(ah)X--x.,(ah) = x;(a'Jxc,.,(a'). 

Thus x' is a Grij.fienc lwraktcr mod m' with corre�ponding pair of characters 

�h LJ 

 

The  x mod m is called pl'imitive if it is not lhc 

 



a Grfdiencharaktcr x' mod m' for any proper divisor m'lm. 



�6. Hecke Characters 473 

 

According to (fi.2). thb b the case if and only if the character Xt of (o/m)* 

is primitive in the 1,ern,e that it does not factoriLe through for any 

proper divisor m'lm. The conductor of  is the smallest  f of m 

�uch that x b the restriction of a ChiWo,clu,m/.te,- mod f. By (6.2), f 

i5 the conductor of xi. i.e.. the 5mallest divisor of m such that x1 factors 

through (o/f)*. 

Let us now have a closer look at the character x1, and then at the 

character Xrx,- 

 

 
(6.3) Definition. Let x1 be a character of (o/m)* and y E m-1D-1

, where() 

i1, /he different of K IQ. 111cn we define the Gauss sum of x1 fo be 
 

 

 
where x varies over a system of rcprcsenlalives of (o/m)*. 

 

 
The Gau�s sum doe1, not depend on the choice of representatives r, for if 

x' =x  mod m, then   - ,y E mm-1D-1 = D-1 = {a EK I Tr(a) E z), 
so that 

Tr(x'y) = Tr(ty) mod Z 

and therefore c2rr1r,(i'yJ = c2rr, i,(,Jl. The same argument shows that 

rm(x1,y) depends only on the cosct y + ll-1, i.e.. it defines a function 

on the CJ/m-module m 1D 1 /D-1
. In the case K = Q, m = (m). 'we get back 

the Gaus1, sum introduced in (2.5) by r(x1.11) = 
define theta series and L-serie'> attached to Hecke·� Gn',Pe,,ch,mnltm with 

a view to proving functional equations. For this, the 

Gau1,1, sums will play a crucial rOle. 

propertie-" of 

 

 
(6.4) Theorem. Let x1 be a primitive character of (o/m)*, Jc1 y E m-1z, 1 

and a E o. Then one ha,, 

i((a.m) = I, 

if(a.m) # I. 

and furthermore 
 



1 
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The most diffcull part of the theorem is the last claim. To prove it, we 

make the following preparations. For integral ideals a= p:·1 - I':', 1!1 :::_ I. 

consider the MObius function 

1, if r = 0, i.e., a= (1), 

/L(ll)=  (-})",  if1J1=  =tJ,=J, 

0, otherwi5e. 

For this function we have the 

 

(6.5) Proposition. Jf a#- I, then L /.L(b) = 0. 

"'" 

 

Proof: If a= p\'1 
• • p:1

, v, :::_ I, then 

I:µ(b)�1,(l)+I:1,(p,)+ L ,,(p,,p,,)+··•+µ(p, .. p,) 
bla 11<12 

� I +(;)Hl+ (;)HJ"+ .. ·+ (:)(-1)' 

�(1+(-1))'�0 lJ 
 

 

 

Now, for _y E m 1 
()-

1 and for every integral divisor o of m. we look at 

the sums 

To(Y) � e2nt Tr\\y)  and Sn(Y=) L e2,rr Td, v). 

, moJ m 
nl-1 

These sum� do not depend on the choice of representatives x, for if 

x' =\'mod m, then (x' -x)y E D-1, hence Tr(x'y) =Tr(xy) mod Z. We 

find the 

 

 

(6.6) Lemma. One has 

T, (y) � L µ(n)So(Y), 
aln1 

 

and for every divisor aim, 

if y Ea li)-1, 

ify <f.. u-1()-1. 
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Proof: In view of (6.5), we have 

L 1,(a)S,(y) � L!'(a) LT,(y) � L T,,ly) L 1,(a) � T( v ) .  , 
aimb blm alb 

ulblm 

 

If y E u-
1
i)-

1 and a I_\. then xy E i)-
1

, sothat Tr(xy) E Z, i.e., all summands 

of Su are I and there are #(a/m) = 1)1( �) of them. If on the other hand 

y ¢ u-1i:l-1
, then we can find in a/ma class z mod m such that zy f_ i)-1, 

i.e., Tr(zy) ¢ Z, so that e2rr,·i,(:�l #- I, and we obtain 

('2rriTr(::y)Sa(Y=) L ('21 r,T,((1+:h=)   Sa(Y), 

r m,,o,J m 

:-ince \ + z varies over all the classes of a/m a:,, x does, so that we do find 

S,(y) � 0. □ 
 
 

 

Proof of Theorem (6.4): Let a E o, (a, m) = I. As x rum, through a system 

ofrepre:,,entatives of (v/m)�, so does xa. We get 
 

 

 
 

Let (a. m) = m1 #- I. Since xr is primitive, 

h mod m E (o/m)* such that 

can find a class 

 

xr(h) #- I 

 

and  h=c= 
m 

I mod-· 
m, 

 

A:,, a consequence. ah= a mod m. so that ahy - ay E Zl 1
, and by what ½e 

have ju:,,t :,,hown, 

 

Finally. in view of Xdh) -1- I, we llnd r111(x1, ay) = 0. 

 



As for the absolute value of the Gauss sum, we '>CC from (6.6) that 



1 1 
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lr,,,(Xf,}')1
2 = Tm(Xt y)rrn(X1-Y) 

We now make me of the condition (ymi'l, m) = I. It implies that 

 
v(:-l)Ea  D- {=::::}Z='=lmod�· 

O 

Indeed, if : - I E 1:C 
Im, then 

other hand : ¢. I mod �, i.e., 

prime divisor p of �. Since 

vµ(Y) = -vµ(m) - l'µ(D) and 

- I) E m-1
i'l-1a-1m = a-1

i:1-1. If on the 

1 (: - I). then vµ(z - I) < for a 

= 1, we have vµ(.rrnV) =  so that 

l'p(y(: - I))< Vµ(m)- Vµ(a) + L'µ(y) = -Vµ(a)- Vµ(D) = Vp(a-1 1 

and thu� y(:: - I) ,t_ a-1D-1. Thit-., together with (6.6). gives 

lrm(X1,y)l
2= L!L(a)�(�) 

aim O : 
�=I 

For a i- I the last character sum vanishes since is primitive. and therefore 

nonzero on the subgroup of:: mod rn E  such that:: == I mod rn/a: 

the sum reproduces itself under mulltiplication with a value xr(x) # I of the 

character. So we finally have that = 91(m). This prove� all the 

�tatemcnts of the theorem. D 
 

Having studied the character'> x1 

x'"-"' of R*. They arc given explicitly a� 

 

we now tum to the character� 

 

 

 
aim 



(6.7) Proposition. The characters A of R*, i.e., the continuou� homomor­ 

phisms 

;._: R*-+ .51_ 
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are given explicitly by 
 

for some admi.,sih/c p E TTr Z (see §3, p.448) and a q ER±. p and q arc 

uniquely detennined by A. 
 

Proof: For every x E R+ we may write x = 

a decomposition 

and obtain in this way 

R* = U x R�_, 

where U = { r E R* I IxI = I). It therefore suffices to determine separately 

the characters of U and those of R�. We write p instead of r for elements of 

Hom(K, :C) to indicate that r = f. and we choo�e an element u from each 

pair {r, f} �uch that r cp T. Then we have 

u�[ ns']' � TTi±l IX n[s' X s't. 
T /! rr 

 

and S1---+ [S1 x S1]+, trr i--+ (r<J,.ta), i� a topological i�omorphism. The 

characters of{± I} corrc�pond one-to-one to exponentiating by a Pp E {O, I}, 

and the character!-. of SI corrc<,pond one-to-one to the mappings i--+ x�, 

fork E Z. f--<"rom the correspondence k i--+ (k. 0), rc�p. (0, - k), for I.. 2: 0, 

resp. k _s 0, we obtain the character5 of [S1 x S1j� in a one-to-one way from 

the pairs (fh, Pr) with Pr, Pr 2: 0 and Pr Pr = 0. The characters of LT are 

therefore given by 

with a uniquely detennincd admissible p E TT, 

The character!-. of R".., arc obtained via the topological isomorphi�m 

log: R�----+ R+. 

Writing a!-. above 

and observing the isomorphism [ H x IR:.] 
1 

 :::_.,.. R., (X0, Irr) i--+ 2xrr, we sec 

that a character of R± corresponds one-to-one to a system (qp,t/o) via the 

rule 

.t f------:> TT e"fi,'" TT e21q"-1"_ 

,, a 

 

It is therefore given by an clement q E R= viu The 

bomorphisrn log then gives a character A of R''... via y i--+ 
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with a uniquely determined q E R±. In view of the decomposition 

we finally obtain the characters A of R* as 
 

 

If the character Xcx. associated to the Griljiencharakter x : ,1m -+ S1 is 

given by 

 

then we say that x is of type (p, q), and we call p - iq the exponent 

of x. Since Xoo factor& through R�/om, not all exponents aclUally occur (<see 

exercise 3). 

The class of all Gri�/Jent haraktcre subsumes in particular the generalized 

Dirichlet characters defined as follows. To the module 

m� n p"e. 
Pl� 

we associate the ray class group ./°'/ pm mod m (see chap. VI, *I). Here 

Jm is the group of all ideals relatively prime to m, and pm is the group of 

fractional principal ideals (a) such that 

a = I mod m and a totally positive. 

Thi5 last condition means that ra > 0 for every real embedding r : K ➔ Ill. 

 

(6.8) Definition. A Dirichlet character mod mis a charnclcr 

X :Jmjpm-➔ SI 

of the ray clas� group mod m, i.e., a character x : J"' ➔  SI such thar 

x(P"') = I. 

 

The conductor of a Dirichlet character x mod m is defined to be the 

smalle�t module f dividing m such that x factor� through Jf/pf_ 

 

(6.9) Proposition. The Dirichlet characten; x mod m are preci�cly the 

Gri;j,emharaktere mod m of type (p.O), p = (pr), such tliat Pr= 0 for all 
complex r. In other words, one has 

x((a)) = X1(a)N(( T,;"j)'} 

for some charnctcr Xi of (o/mt. The conductor oft/Je Dirichlet character is 

,it the same time aho the conductor of tile corresponding GriHiencharakter. 
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Proof: Let  be a Griij]cncharakter mod m with corresponding characters 

Xt, Xr-,o of R�/om, such that x,.,_, is of type (p, 0) with Pr = 0 for r 

complex. For totally positive a E o such that a = I mod m. we then obviously 

have xr(a) = 1, and X:x,(a) = I, and then x((a)) = X1(a)x00(a) = I. 

Therefore x factori7es through .rmJp•n, and i� thus a Dirichlet character 

modm. 

Convcr�ely, let x be a Dirichlet character mod m, i.e., a character of 1m 

such that x(Pm) = I. Let Km= {a E K* I a = I mod m), K�' = /a E Km I a 

totally positive} and R;+l = \Ctr) ER* I Xr  > 0 for r real}. Then we have 

an isomorphism 

Km/K�'----,. R*/R�+i � n {±!}. 
prcal 

 

Then the compo,;ite 
 

 

defines a character of R*/R( i· It is induced by a character X-x_, of R* which - 

because x,x,(R(+i> = I - is of the form K.-,..,(x) = N((fh)I') with p = (pr). 

Pr E /0, I) for r real, and Pr= 0 for r complex. We have x((a)) = x,x,(a) 

for a E Km, and 

gives us a character of (o/m)*. Therefore x is indeed a Crfdic11chara!..ter of 

the type claimed. 

Let f he the conductor of the Dirichlet character X mod m, and let f' he the 

conductor of the corresponding CrOJJcncharakter mod m. x : J"'/Pm----+ st 

is then induced by a character x': .ff/Pl----+ st, �o the Gri;fie,ichccml.tec 

x: 1m----;. S1 mod mi,; the restriction of the Cri!fk11charakter  : Jf----+ st. 

This implies that  If. On the other hand, the (;nHic.•wh,m,,ftc,,·  : .I"'----+ S1 

is the restriction  Gcij/le,wh,,calitec x":  

S1 (see (6.2)), By the above, x" give� a character 

Jf';pf'----+ S1 such that the Dirichlet character x : .!"'JP"'----+ st factors 

through Jf'JP11 Hence f If'. so that f = f'. D 
 

 

(6.10) Corollary. The charac/cn, of the ideal clw,s group CIK = .!JP, 

i.e., 1he charncters x : .I - S1 such that x(P) = I, are precisely the 

Grof>Cncharaktere x mod I sati8f"ying X,-x. = I. 
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Proof: Form= I we have (o/mr = {I}. A character x of J/P is 

mod I. The a-;sociated character Xt i� trivial, so 
= x1(ar1x((a)) = I, and thus Xe,.,= I, hecausc K* is dense 

If conversely x is a Gn?[:encharakter mod I satisfying Xoc. = I, lhcn 
 

for a EK�. Therefore x(P) = l, and xis a character of the ideal da�� 

group. □ 

 
To conclude this section, let us study the relation of Gn!fiencharaAterc to 

characters of lhc idele clai,i, group. 

 
(6.11) Definition. A Hecke character is .'l ch::irac/cr of the idclc ci.'1s.� group 

C = I/ K� of the number field K, i.e.. a contimwu,; homomorphism 

X: I------+ S1 

of the ideJe group I= []PK; such that x(K�) = I. 

 
In order to deal with Hecke characteri, concretely. consider an integral 

ideal m = np pllp of K, i.e., !Ip :::_ 0 and np = 0 for p IX. We ai,i,ociate to 

this ideal the s11hf{mup Jm of I. 

Jm = Ii" x L,_, where lt'1 = n U�nf'\,  I-...,= TT K�. 

pt-x. P1-..., 

If p f x,, then u;111 
is the group of units Up if n = 0, and the n-th group 

of higher units for n :::_ I. We interpret /"" as the multiplicative group R* of 

the R-algebra R = K   R = TTpl-x. Kp. Observe that Jm differs i,\ightly 

from the congruence suhgroup I"' = TIP u?pl introduced in chap. VI,* I, in 

that, for real p, we have the factor U�01 = R:, imtead of the component K;. 

The effect is that/ ;JmK* is not the ray class group r'/Pm mod m, but 

i<;ornorphic to the quotienl J "'/ pm by the group pm of all principal ideab (a) 

such that a== I mod m - this is seen as in chap. VI. (1.9). We will refer 

to J "'/ pm as the smalt ray class f.iroup. 

We call ma module of definition for the Hecke character x if 

 

 

Every Hecke character admits a module of definition, i,ince the image of 

X : nrtcx. Up .......,. .51 is a compact and totally disconnected subgroup of 
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S1, hence finite. and so the kernel has to contain a subgroup of the form 

flrt,X- ui11
") where llp = 0 for almost all p. For it we can take the ideal 

m = flpt,-,., p11
P as a module of definition. 

Smee x(Jt) = I. the character x : C = I/ K� --,,. S1 induce� a character 

x :C(m)-----+ S1 

of the group 

C(m) =l/1/"K*. 

But if will not in general factor through the small ray class group 

!/T"'K* ;::::: pn;pm (see chap. VI, (1.7), (1.9)), which bears the following 

relation to C(m). 

 

(6.12) Proposition. There i� an exact sequence 

I-----+ R�/om-----+ C(m)-----+ .!"'/Pm-----+ I 
 

 

Proof: The claim follo�� immediately from the two exact :-.cqucncc:-. 

1------+ 1"'K*/li11K"-----+ 1/lt'K�-----+ t/fmK•------+ I, 

 
I----+ JmnK*/1/"nK*-----+ /m/ft'-,. Jt''K*/1/"K*--,. I. 

In the second 0•1c. one ha:-. /m n K� = 0111
,  I/" n K* = I and 

□ 

 
Given a Hecke character x with module of definition m, we may now 

con�truct a Grijficnchara/.:.rer mod ma� follows. For every pf oo, we choo�c 

a fixed prime clement rrp of KP and obtain a homomorphism 

<': J111
--,.  C(m) 

 

which maps a prime ideal p f m to the class of the idele (rrp) = 
(.. , I. I. rrp. I. I, ... ). Thi:-. mapping doe:-. not depend on the choice of 

the prime elements. since the idClc� (up), up E Up, for pf m, lie in I/". 

Taking the composite map 
 

 

yield� a 1-1 correspondence between Hecke characters with module of 

definition m and GriHie11('haraktere mod m. The rca:-.on for this is the 

following 
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(6.13) Proposition. There i.<; a canonic,il exact sequence 

I ---+ K(ml /d" � Jm x (o/m)* x R*/om --1..+ C(m)---+ I, 

 

where O is given by 

O(a) = ( (a)-1
, a modm, a modom). 

 

Proof: For every a E K \ml, let a E / be the idele with components Gp = a 

for p f moo and (IP = I for p I moo. Il is then obviou<; that 

(((a)) =Zimodli"'K*. 

Let us decompose the principal idCle a according to its components in 

I = 11 x /'X, asaproduct a= a1acx., and define the homomorphi-;ms 

cp: (o/m)*---+ C(m). ifr: R*/om---+ C(m) 

by 

cp(a) = Jax, modl;"K*, ifr(h) = h-1 modIr'K*. 

where every h E R* = lex i� considered a� an ide!e in /. For a E o, 

a � I mod m, we have afG I E It' <; I, so we get in C(m) the equation 

rp(a) = [{Ja""J = [a1a-x,l = [aj = I, where I J indicates taking classe-". 

This -"hows that cp is well-defined. For every E E om, one has F1 E tt, :-o 

[e,,J = [E:xfr] = [sl = I in C(m). and thus 1/1(£,.,J = I. Con�equently 1/f is 

well-defined. We now define the homomorphism 

f": .Im x (o/m)* x R* /om------+ C(m) 

by 

f"( (a, a mod m, h mod om)) = c(o)rp(a),fr(h), 

and we :-how that the resulting sequence is exact. The homomorphism 8 i� 

dearly injective. For o E K(mJ one has 

f ( 8(a)) = c( 
1 

(o))- ({'(a)i,lr(o) = Q 1Zia-x,a�.} mod ItK* = I, 

sothat f" o 8 = I. Conversely, let 

j ( (a. o mod m, h mod o"')} = c(a)rp(a)ijr(h) = I, 

and let a= nr-tmx ):!''". Then 

c(o) = y mod lr'K* 

for some idele y with components Yr = n? for p f moo, and Yp = I 

for p I moo. This yields an identity 



ylla""h-
1 = l;x with I; EI/" and x EK*. 
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For p 1 moc one has (ycia"'-h- 1 )p = rr?a = .!;px in KP· and so 

vp = Vp(a-1x). For p Im one has (ycia,x,h-1
)p = I = .!;px, 50 that x E utrl, 

and also O = l'p = v.,(a-1x) since a is relatively prime tom. This gives 

a=(ax-1). 

As x E ut�1
, one has x == I mod m, hence 

rp(a.t-1
) = rp(a). 

Finally, for ploo we find (ycia""h-1)p = ahp1 = x in Kp, so that 

h = ar;cx -I. and thus 

 
So we have 

(a, a mod m, h mod CJm) = ((ax-1), ax-1 mod m, ax-1 mod o"'). 

and this shows the exactness of our �equence in the middle. 

The surjcctivity of/  j5 proved as follows. Let a mod ttK* be a cla�� 

in C(m). By the approximation theorem. we may modify the representing 

ide!e a, multiplying it by a suitable x EK*, in -;uch a way that Gip E ut"J 

for p Im. Let a = TTptrn"'- pvp(<>pJ. Then we have 

c(a) = y mod /�nK�. 

 

where the idele y has components Yp =  Ep E Up. for 

p f moo. and Yp = I for p Imoo. This gives E  and if we define 

h = a�1
• then f((n. l mod m,h mod vm)) = yh-1 = ya-x, = a mod lt"'K*. 

□ 
 

By the preceding propo�ition, the characters of C (m) corre�pond I - I to 

the characters of 1m x (o/m)� x R*/o'n that vanish on O(K(rn) /om). i.e., to 

the triple� X, xr. x,...., of characters of ,/111
, rc�p. (o/m)*. resp. R*/011

', such 

that 

x( (a))-
1 
xr(a mod m)x""(a mod om)= I 

for a E K(m). This makes x a Griif]cntharakter mod rn, and �ince x1 and 

x,...., are uniquely determined by x, we obtain the 

 

(6.14) Corollary. The correspondence x r+ x :ic is 1-1 between characters 

of C(m), i.e.. Hecke character.� with module of detini1i011 m, and 

Gri!ao,ch,rmi,tere mod m. 
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Exercise l. Let m = n',=1 m, be a 

arc pairwi�c n:httively pmnc. Then one ha\ 
 
 

 

and 
 

 
t:haracter.\ of (o/m, )' dclined 

arc the component\ of y v.ith 

 

 
 

 

Exercise 2. Prove the MObius inversion formula: let j (a) be any function of 

integral ideals a with values in an additive abelian group. and let 

g(a) =� f(b). 

 

Then one ha� 

 
Exercise 3. Which of the character� ).(x) = N(x1'lxl 1'

114
) of a• are characters of 

R•;orn? 

Exercise 4. The charm.:ter\ ot the --�mall ray das� group'' .I"'/ P"' mod mare the 

GnijJcndwrakterc mod m �ut:h that  = 1 

Exercise 5. th.it every pair of characters Xi  ((1/m)* ----,. S1 and 

x"- : R*/cJm----,.  �uch that 

X1(f)x,., (c}=l forall FE 

come� from a GrrijJrncharukter mod m. 

Exercise 6. Show that the hornomorphi�rn c: J n, ---c> C(m) 1s injective. 
 
 
 

 

§ 7. Theta Series of Algebraic Number Fields 

 
The group P of fractional principal ideals (a) is constituted from the 

elements a E K*, and it sits in the exact -;cquence 

I ---+ o* ---+ K* ---+ P ---+ I 
 

In order to form the theta seric& we will need, let us 110\li extend K * to a 

group K * whose clements repre�ent all fractional ideal& a E ./. 
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(7.1) Proposition. There is a commutative exact diagram 

I ------4- ------.- K� � P ------4- I 

1 1 
l------4- ------.-R*�./ ---------- 4-\ 

with a �ubgroup R* c; C* conwining K* .�uch rhal lal ER'.'._, and 

foral/u ER*. 

Proof: Let the ideal class group ./ / P be given by a basis rb I j ........... I b, I. and 

choose, for every one of the�e basic classes, an ideal b1, ... , b, Then every 

fractional ideal a E ./ can be written in the form 
 

where a E K* is well-determined up to a unit e E o*, and the exponent:,, 

v, mod h, arc uniquely detennined. h, being the order of [b1J in ./ / P. Let 

b;
1

' = (h,). For every T E Hom(K. C), we choose a fixed root 

h,r='� 

in C in wch a way that h,T = h,, whenever r is complex. We define R• to 

be the subgroup of c� generated by K* and by the elements h, = (h, r) E C*. 

Each class [bl E ./ / P contain� a uniquely determined ideal of the form 
 

and we con,;ider the mapping 

 

It is a homomorphi�m. for if b = b\·1 
• • • b;.·, and b' = b:,; • b,�•;. and if 

v, + v; = f.L + A, h,, 0 _::: µ; < h,. then b\' 1 
• • • b�' is the ideal belonging to 

the class [bl[b'], and 

f([bj/b'D=hf1 .h,1,, a=h{'1 .h,l'1h;1. •h:•I 

f is clearly �urjective. To show the injectivity, ]cl hi"1 
• • • hi'1 = a E K*. 

and let h = h1 ·h, be the cla�'> number of K. Then we have for 



h,, 

= 
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the ideal  1bt'1  b;·, E J that ah = a-h(h�1h/hi ···h,'',h/lr,) = 

a-hcht'1 = (1). Since .I is torsion-free, it follow:,, thal a= (I). and 

so bt1 • • • b,1
'' = (a) E P. From thif> we deduce that every element Q E i" 

admit. a unique representation 

Zi = aht1 
• h,1'1

•  0 :'.:: JJ, < a EK* 

We define a map 

c ):R*-------- +., 

by 

ll=aht'1-h,1
''�(G)=ab�·1   b,'' 

Arguing as above, we <;Ce that this i:,, a homomorphism. It j:,, surjcctive and 

obviously ha:,, kernel Finally we have that lhi I= (lhnl) ER� and 

<n((b,))"· � 'TI(b:·1 � IN(h,)I � 11) Th, I � I !)�';I � IN(b,ll"'. 

so that '.}l((h1)) = IN(h,)I, and thus lal E R'.;_, 91((a)) = IN(a)I for 

all a E f*. □ 
 

The clements a of i" w,cd to be called ideal numbers - a name which 

i:-. somewhat forgollcn but will be u:,,cd in what follows. The diagram (7.1) 

implies an i,;omorphism 

K'/K' "'J/P. 

For a,h   EK* we write a~ h  if a  and h  lie in the same class, i.e., if 

ah 1 E K*. We call a an ideal integer, or an integral ideal number, 

an integral ideal. The semigroup of all ideal integer5 will he denoted by 

Furthermore we write a I h  i! � E 3. and for every pair a, h  E f*, we have 

the notion of gcd(a.h) E K* (which is lacking inside K*). The greatest 

common divisor i:;. the ideal number d (which is unique up to a unit) such 

that the ideal (d) is the gcd of the ideals (a). (h). Observe that the ideal 

numbers are not defined in a canonical way. This is the reason why they have 

not been able to hold their own in the development of number theory. (They 

are treated in l46], [651.) 

We now form an analogous exten:;.ion of the prime residue groups 

(Z/ mZ)� For three ideal number� o, h. m, the congruence 

 
a=hmodm 

 
 

 

signifies that o ~ h and Y, E & U /0). If m = (m), we also write thi� 

relation as a = h mod rn. Let m be an integral ideal. The semigroup 3(mJ 

of all integral ideal number5 relatively prime to m i� partitioned by the 

etjuivalence relation  into classes. which we will write as a mod m. They 

are given explicitly as follow�. 
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(7.2) Lemma. For every a E C/tnJ one has 

a mod m = a +a(a 1)m. 

 

Proof: Lel h Ea mod m, h #- a, i.e., h = aa for some a EK*, a-/=- I, and 

h - a= cm, l E 3. Then 

a-1(h- a)= a - 1E (a - 1) = (a-1)(c)(m) s; (a- 1)m, 

so that h Ea+ a(a-1)m. Let conver�cly h Ea+ a(a-1)m,h #- a, and thus 

h/a = a EI+ (a-1)m. Then one ha<, h ~ a and (h- a)= (a)(a - I) s; 
(a)(a 1)m = (m), i.e., m I h - a and therefore h =; a mod m. D 

 
We now consider the set 

 

of all equivalence cla��es in the �emigroup 3(,nl of ideal integers prime tom. 

 

(7.3) Proposition. (3/m)* i.� an abelian group, and we have a canonical 

exact 1,equem:e 
 

1 -----+ (o/m)* -----+ (3/m)* -----+ ,I/ P -----+ I. 
 

 

Proof: For a, h E 3(m), the class ah mod m only depends on the cla""e1, 

a mod m, h mod m, �o ½e get a well-defined product in (3/m)*. Every 

cla5s a mod m has an inverse. Indeed, since (a)+ m = o, we may write 

I =   tL, 0 #- a E (a),µ Em. Consequently a la, so that a=  ax, 

XE and since I Ea(l+a-1m)=amodm,we�eethataxmodmis 

the unit class, i.e., x mod mi's inver.,,e to a mod m. 

The righl-hand arrow in the sequence is induced by a i----+ (a). It is 

surjcctive '>ince every class of J / P contains an integral ideal relatively prime 

tom. If the cla�s a mod m = a(I + (a)-1m) is mapped to I, then one has 

(a) E P, and so a E tJ, (a, m) = I. Hence a mod m =a+  m is a unit 

in o/m. The injectivity of the arrow on the left is completely trivial, i.e., we 

have shown the exactne�5. □ 

 

For an ideal cla<.� Jl E J / P, we will denote by Jf E .I/ P in what follows 

the class defined by 
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where Di� lhe different of K l:Ql. Let m = (m) and D = (d), wilh some fixed 

ideal numbers m, d. Form = o let m = I. We now study charactcr1> 

X: (3/m)* ------- + 

and put x(a) = 0 for a E o such that (a, m) #- I. In the applicatiom, x will 

come from a G,·iifle,nh,,rn!cta mod m, but the treatment of the theta series 

is independent an origin of X· 

 

(7.4) Definition. Let a E 3 be an ideal integer, and let fi. be the cla�s of(a). 

Then we define the Gauss sum 

r(x.a)=  L x(i)e21r1T1(fa/111d), 

; mod rn 

where X mod m runs through the cfa.�ses of ( 3/m)* which arc mapped lO the 

class ff. In particular, we put T(x) = r(x. l). 

 

The Gauss sum r(x. a) reduces immediately to the one considered in *6, 

x(.,)c2,.11i\1yJ_ 

 

 

In fact. on the one hand we have 

y = Xa/md E m-1iJ-1
. 

since the class of the ideal (v) = (a)(?)(m)-1(d) 1 i� the principal class 

.R.R'm 1
i) 

1
, soy EK*, and ;ne finds 

y E (y) = (aX)m-li)-1 s; m-1i)-1, 

because a and X are integral. On the other hand, if X mod m is a fixed 

class of (0/mr which maps to .R.', then, in view of (7.3), we  the others 

by Xx mod m, with A mod m varying over the clas5c5 of Therefore 

r(x,a) = x(X)rn,(x,y), 

and in particular 

with y = which sati5fies (ymtl. m) = I since ymi.'l = ( X) and 

((?),m) = Consequently, r(x,a) doc<, not depend on the choice of 

rcprc5cl1lative� ?, and theorem (6.4) yields at once the 

 

(7.5) Proposition. For a primitive character x of (0/mf, one has 

r(x,a) = Y(a)r(x) 

and lr(x)I = �- 
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The thela series H(x, z) used in § 2 in the treatment of Dirichlet L-1->cric;, 

arc attached to the field  We now have to find their analogue� relative to 

an arbitrary number field K. Given   admissible clement p E nr 2 (see 

§3, p.448) and a character x of we form the Hecke theta series 

X (a)N (a'') c::r1 la;/ ,mdl,a), 

 

 

where m.d are fixed ideal numbers such that (m) = m and (d) = D. We take 

m = I if m = I. The case m = I, p = 0 i� exceptional in that the constant 

term of the theta series j5 x (O)N(OI') = 1, whereas it is O in all other casc1>. 

Let us decompose the theta series according to the ideal classe!-. .R E J / P 

into partial Hecke theta series 

x(a)N(a'')cJT1(a�/lrmll,al, 

 

 

where a varies over all ideal integer1> in the class rt E R*/ K * which 

corresponds to the ideal cla1->s Jt under the i'iomorphism R* / K* � J / P. 

For these partial theta 1->cric'>, we want to deduce a transformation formula. 

and to thi� end we decompo�e them further into theta 1->erie1> for which we 

have the general transformation formula (3.6) al our di�posal. 

 
Let a be an 

clas1> Jt and let a E 

 
ideal relatively prime to m ½hich belong;, to the 

be an ideal number such that (a) = a. 

 

(7.6) Lemma. A.�sume !hat m i- I or p i- 0. If x mod m varies over the 

c/1,1.�ses of (o/m)*, lhen one has 
 

where r is the lattice m/a s; Rand 

Hj-(r.O, :)= L N( (,·+ -1;)1'} e::ri((,+gl� ,+,:, 

�E/' 

 

 

Proof: In the theta �eries ()l'(Jt x.:). it suffices to �um over the elements of 

fl n d"'1 because x i!-. zero on the others. Every X mod m E (?i/m)* 

i� either disjoint from Ji. or else it b contained in  In view of the exact 

�equence (7.3) 

I------+ (o/mr------+ (3/m)*------+ .!JP------+ 1, 

the clas1->e1> 
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arc the different residue classes of (3/m)* contained in�- Thi:-. givc5 

f)f!(Jtx,7)= L  L  x(ax)N((at+t(!;)l')c;r1la(1+�)�/1r11d,a(<+i:J\ 

-1 m"<lm g<cr 

= x(a)N(afl) L  x(x) LN( (x+ g)P) CJT!((�+g):la"/mJU-g' 

x nmd m  g<cI' 

[] 

 

 

 

For any admissible element p = (pr), we will write p for the admis�ible 

clement with componcnb P, = PT· From the transformation formula (3.6) 

for the series  and propo,;ition (7.5) on Gauss sums. we now obtain the 

 

(7.7) Theorem. For a primitive character x of (3/m)*. one has the 

transformation formula 

wilh the const;mt factor 

W(x.fi) = [ir,(fi1N((.!!!!! )")]-
1 

lmdl J<Tilm) 

This factor ha.� absolute value IW (x. P) I = I. 
 

Proof: The lattice r dual to the lattice r = m/a s; R is given. according 

to (5.7), by *r' = a/mD. (Here as in §4, the asterisk �ignilies adjunction with 

rc:-.pcct to { . ). i.e.. = (*ax.y).) The volume of the fundamental 

mesh of r is by chap. I. 

,ul(r) �<Jl(m/a)/id;l � N( lm/al)N( ldl)'
1
' 

From (3.6) we now get 

(I) 0/'.( cO, - l/lmd/a
21,) � A(cJH;,(o,x.,lmdja"I). 

with the factor 

A(,)� [l''"''N(lm/al)N(ldll"'] _, N( (lmd/a'l,j!)''+l) 

�[,''''''�] _,N( lmdja'I'') N( (c/l)l'+l) 

and the ,;cric� 

(2) ot,(n,x. -1md/ti21) = L N(g'1')c2,,,.,,,  

g'cl 

�. 



x(ax)Oj(.1.O. - l/zlmd/a 
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Writing g' = the rules c.;tated in § 3 give 

\t,g') = Tr(a,·g/md), 

1/lmd/a'lc,,') � l'g,lmd/a21/lmd/al','g) � {g,flmdl g) 

and N((*g)P) = N(gl'). If g' varies over the lattice I", then g varies over 

the set 

(md/a)T' = (md/a)a(mD)-1 = (j' n 0) U {O}. 

Suhstituting all this into (2) yields 

(3)  0J'.,(O,x,,lmd/a21) 

� N(( _!! )'
1) L N(i./')e2""1t !1(axg/md)en11_g:/,mdl.;:). 

nzd 
;:E(.�'nc;Ju[OI 

Let us now consider fir�t the special case m = I, p = 0 (which was 

essentially treated already in §5). In thi� case, we have (An 6) U {O} = 
\ag I g EK. (ag) s; o) = aa-1 = aI'. Consequently 

0"(.R,x,z)= L erriiag:/ldl,a;:=\ L en1(�:1a"/d1.g1 =0r(zla2/dl), 

g'c'I' �Er 

 

Equation (I) thus becomes 
 

Now assume m -I- I or p # 0. Then we have x(O)N(OI') = 0. Substituting 

(3) into (I) and (I) into formula (7.6), with - I /z instead of:, we obtain 

f;IP(Ji.x, - I/:)= N(a1') L 21) 
\ m()J m 

 

with the factor 

 
No½ consider the sum in parentheses. If x varies over a 1,ystcm of 

representative<;; of 

of those classes of 

cla1,s .it Furthermore. 

then aA varies over a "Y�lcm of representative!. 

which arc mapped under  -----'?- J / P to the 

i� an integral ideal in the Jf. and since Jt' 
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bear:- the �ame relation Jf .R = fmi)] to Jt as Jt doc5 to J.t'. we recognize the 

sum in qucqion as the Gauss sum 

r(x,.iz) = L x(a., )e2Jrl r,(a\�/nrdl. 

\ mod m 

Suhstituting: in now the rc�ult (7.5), 
 

we finally arrive at the identity 

(4) 01'(.fl,x, -1/c)� W(x,p)N((c/;J"+l)e"(.�,X,C) 

with the factor 

W(x,P=) 

 

 

= 

[ildp)�rlN(lmd/a21p) N(afi)r(x} 

N((md/u)I') 

r(xJ (( lmdl )")  ('"""'') 
iTi(pl�N � N � 

=�[il,(jj)N((_!!!!!_)I')] ', 
v"TTimJ lmdl 

where one has to observe that Tr(p) = 'fr([)). al'= *al', a*a = lal2, and 

lmdl1' = (�lmdl)1' = lmdll' because lmdl ER�. Since lr(x)I = �­ 
we have lW(x,I')l = l. n 

 

If m -=I=- I or p -1- 0, we find for the special thelil :,,eries: 

(;)l'(X,Z) = 
  

and (7.7) yields the 

 

 

We recommend lhill the reader who has studied the above proof allow himself 

a moment of contemplation. Looking hack, he will reali/.e !he peculiar 

½ay in which almm,t all fundamental arithmetic propertie� of the numher field 

K have been u�ed. Fir�t they served to hreak up the theta serie�, then these 

con�tituents were re�huflled by the analytic transfonnation law, hut in the end 

they are reassembled lO form a new theta �eries. Having contemplated this. the 

reader should reflect upon the admirable �implicity of the theta formula which 

encapsulates all these a�pect� of the arithme!JC o! the number field. 



§8. Hecke L-,eries 493 
 

 

There is however one important fundamental law of number lheory which 

does not enter into this fonnula, that is, Dirichlet's unit theorem. This will 

play an e�sential r61e when we now pa<,s from theta �eries to L-serie� in the 

next section. 

 

Exercise J. Deline ideal prnne numbeVi and '>how that unique prime factorirntion 
hold, in K* 

Exercise 2. Lct (1 be the scmigroup ideal rnteger,. If d = (a.h) is the gcd of 

a.h, then there cxi�t clements E (0! ,uch th.it 

d=.w+yh. 

rc�p. r ·� il/h, unle,\ ,1 = 0, re�p. y = 0. Here the 

Exercil'>e 3. The congruence 11,1 = h mod m ha'> a �olulion m 3 with integral ,1 1f 

and only 1t (a,m)lh. Thi'> �olu1iun i'> unique mod m, provided (a,m) = 1. 

Exercise 4. A man) congruence\ with pairwi'>e rel,nivcly prnnc 

moduli i'> if every congruence i� �olvablc individually m 

�olution� arc equivalent (with re�pect to~). 

Exercise 5. If a. m E 3. then there cxi�b m every re�idue cla\\ mo<l III prime tum, 

an ideal integer prime to a. 

.I"'/ f"'  the group pm of all pnnc1pal ideal, (a) 

the �cquencc 

I➔ o'/LJ"' ➔ (0/ml'----.. .1n•;pm ➔ I. 

where o"' = {I,- E  If = I mod m). 

Exercil'>e 7. Let R• mi he the preimage , .I, and let 

Km= (a E K' I as= 1 mod m). Then one ha� 

 

 

 

§ 8. Hecke L-series 

 
Let m be again an integral ideal of the number field K and let 

X : l"'------+ S
1 

be a character of the group of ideals relatively prime to m. With re.,pect to 

this character. we fom1 fhe L-'>eries 

Lix.n�I: _x_(a)  
"  91(0)' 

where a varies over the integral ideab of Kand we put x(a) = 0 whenever 

(a.. m) -I- I. Then the following propo:c,ition holds in complete generality. 



I 

I 
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(8.1) Proposition. The L-serie.� L (X, s) converges absolutely and uniformly 

in the domain Re(s) :::_ I + 8. for all 8 > 0, and one has 

Lix .. ,) � Q I -  xlp)ryJ(p)-·', 

where p varic.� over the prime ideal� of K. 

 
Proof: Taking formally the logarithm of the product 

£(.,)� Q I -  x(p)ryJ(p) 

gives the scric� 

logf:(s)�I: I: _x_(IJ!"_. 
p 11=1 nlJ1(p)111 

It converge� absolutely and unifonnly for Re(s) = a 2: 1 + 8. In fact, 

�ince lx(P)I :': I, and IIJl(p}'I = IIJ1(p)l0 2: p/r(l+llJ 2: p1+\ and since 

#{pip] :'.:: d = [K : it admits the following convergent upper bound 

which is independent 
 

This shows that the product 

. I �  x(P)" ) 
f,(s)�9 1-x(p)ryl(p)-' �exp(�('�' ,m(p)') 

is absolutely and uniformly convergent for Re(�) 2:: I+ 0. Now develop in 

this product the factors 

I �I+ _x (l>)_+ x(p)' + 
I - x(p)ryJ(p)-' ryJ(p)'  ryJ(p)'' 

for the finitely many prime ideals p1, ... , p, <;uch that 91(p,) ::: N, and 

muhiply them. This yields the equation 

I 

(*) ,r:i,  I - xlp,)ryJ(p;)-' 

 
 

 
� I:'  xln) 

x(P1)1
'1 • • • x(P, )v, 

(IJt(pi)l'J  . IJt(p,-)''1 )' 

ryl(n)'. 

where L' denotes the sum over all integral ideals a which are divisible at 

most by the prime ideals p 1,  , p1 . Since the mm L' contains in particular 



the Lenn� such that 91(a) 2 N, we may also write 



�I 
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Comparing now in(*) thesum L' with the series L(x. s),we gel 

I . -L(x,.,)j < j I: 
  

1 - X()Ji)IJ1(p, )-5 
-  <Jl(n)>N IJ1(a)·' 

p,fn 

 

:S •n(f>N IJ1(a)1+.•s 
 

For N ---+ oo the right-hand side tends lo zero, as il is the remainder tenn of 

a convergent serie�. since the sequence (Lmcn)<:N 'Jl(a�i+o) NcN is monotone 

increasing and bounded from above. Indeed, with the previous notations we 

find 

 

 

 
 

 

and 

I , I 

<Jl(�N 01(a)l-+b ::':�  01(a)1+<1 

� 11( I - 9'l(p,)-(l+Si) _,, 

l=I 
 
 

 

log(,◊ (l-91(p,) (>+bl)-')� t,log((l -9'l(p,)-!"'>)-') 
1 

,- rx, I 

= l�l�I n01(p,)(1+8)n 

oo I 

::':� ,�1 n\Jl(p)(l+M11 

I 

:SE d np"(1+8) 

�dlog(W H)) □ 
 

 
We now face the task of analytically continuing the L-serie� L(x.s) 

attached to a Gr6Bencharnkter x mod m, and setting up a suitable functional 

equation for it at the same time. So we are given a characler 

X : J"' ---+ S
1
, 

such that 

x((a)) � x,(a)xoo(a) 

for ail integers a E o relatively prime to m, and there arc two associated 

characters 

xr: (o/m)* ---+ S1 and x'° : R* ---... S1 



J 
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The character Xt extends in a unique way to a character 

Xf: (3/m)*--+ 5'
1 

such that the identity(*) holds for all integral ideal numbers a E &(ml prime 

to Indeed, the restriction of the function x1(a) of 3(ml 

to  is given by the original character Xt of 

trivial on 1 + m and thus yields a character of 

The L-series of a Grqj3cncharacter of 1m is called a Hecke £-series. 

If x is a (generalized) Dirichlet character mod m, i.e., a character of the ray 

class group .rm/ pm, then we call it a (generalized) Dirichlet £-series. The 

proof of the functional equation of the Hecke L-scries proceeds in exactly the 

same way as for the Dedekind zeta function, except that it is based on the 

theta transformation formula (7.7). 

We decompose the Hecke L-series according to the classes Jl of the ideal 

da�:;, group ./ / P as a sum 

 

 

of the partial L-series 

/,(x.,)=r, L(fi.x.s) 

" 

 

L(Rx.-<)= 

 
and deduce a functional equation for those. If all one wants is the functional 

equation of the L-series L (X. s), this decompo�ition is unnecessary; it may 

also be derived directly using the transformation formula (7.8), because we know 

how to represent any ideal a. by an ideal number (this wa� not yet the case 

when we were treating the Dedekind zeta function). However, we prefer to 

establish the finer result for the partial L-series. 

By (7.1). we have a bijective mapping 

cRnO)/o* �  { ll E Jtl a integral}'  a J------'1- (a), 

where J1 E f* /K* corresponds to the class Jl E J / P with respect to the 

iwmorphism K•/ K* � J / P. Therefore we get 

L(Rx.s)= L x((a))- 

ae'fl. IN(a)l1 

where 9'l is a sy�tem of representatives of 

function as a Mellin transform. To this end, we 

Lx(s) = N(rr-�12)I'x(s/2) = N(n-"12) 

•·, 



We want to write this from *4 the L-function 
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which has been attached to the G(C IR)-set X = Hom(K, C). The character 

X-x: of R* corresponding to x is given by (6.7) as 

xcx,(x) = N(x"lxl-p+,q), 

for an admissible p E fl, Zand a q ER±- We puts= sl + p - iq, where 

s E C is a single complex variable, and 

L,,J(x.s) = Lx(s) = Lx(sl + p- iq). 

In the integral 

 
we make the subt>litution 

y i-------+ nlal
2

y/lmdl  (a E 9l), 

where m.d E 3 are fixed ideal numbers such lhat (m) = m and (d) = i) is 

where c(x) = N(lmdl-!'+1'1)112_ Mulliplying this by xr(a)N(aP) and 

summing over a E 9l yield5, in view of 

 

 

 

the equation 

x1(a)N(aP) 

� 

Xr(a)N(aPlal-p+ul) 

N(lal') 

x((a)) 

~ IN(a)I'' 

 

 
with the series 

x(y=) L x1(a)N(af')e-rr{a)'/!mdl,a). 

a,=9'1: 

We now consider the completed L-series 

 

N((  



A(Jl,x,s) ~ (ldKl;Jl(m)l'12Lx(x,s)L(Jl,x,sJ. 
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A(Ji,x,,) � c(x

·
)�I g(y)N(y'i')r· 

We now want to write this function as an integral over the series 
 

 

where the summation is extended not only - as in the case of g(y) - over a 

system of representatives Vl of (J1 n 3)/o*, but over all a E Jin 3. We have 

E(X) = I ifm =land p = 0, and e(x) = 0 otherwise. We will proceed in 

the same way as with the Dedekind zeta function (see (5.5)). Just as we did 

there, using 

y = Xt!/n'  x = N(;�l/n, I= N(y), 

with n = IK : Ql], we decompose 

 
 

 

Then, observing that 

!!!_ =d*x x !!.!  
y t 

N(y•/2=) N(xs/2)N(ts/2n=) 
 

N(x(p-14)Jl)r-½(s+Tr(p-1q)/n), 

 
we obtain the identity 

(*) A(.lt,x,s)=c(x) JJN(x\l'-"!ll2)g(xt1111)d*xt''� 

OS 

withs'= ½ (s + Tr(p - iq)/n). Thefunction under the second integral will 

be denoted by 

!,'!}l(X,t) = N(;·/p-tq)/2) 

 

From it, the theta series fJ(ft. x, ixt l/n) is constructed as follows. 

 

(8.2) Lemma. N(x(p-iqlf2)(0(Jt,x,ixt1111)-E(x)) = 
 

 

Then we get 



Proof: For every unit f E o*, one has Xcx,(f)X1(f) = x((F)) = I, :,,o that 

we get 
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We put for short� = xt lfn Jlmdl and obtain 

R91(1£12x.t) = N(x{r,-,q)/l) L x1(w)N( (w)P} e-:rr(n,$,1-a) = RF91(x.t). 
aE()t 

Since � n 3 = U F9l:, we get 
1-EO* 

 

= L L N(x(p--,q)/2)xr(rn)N( (w)") e-;,r(wf;.rn) 

rco•aecF'R 

□ 
 
 

 

From this lemma we now obtain the desired i.ntegrn.1 representation of 

the function 11(.R.. x.5). We choo:;,e as in § 5 a fundamental domain F of S 

for the action of the group F is mapped by log : R�  :::_,.. R± to a 

fundamental mesh of the lattice  This means that we have 

 
 

(8.3) Proposition. The function 
 

is the Mellin transfonn 

A(Jl,x,,)�L(f,<') 

of the function 

f(t) = fp(.R., x.r) = c(x) j N(x(p-,qlfl)f)(.R., x,ixt11n)d*x 

w 
F 

at s' = ½<s + Tr(p - iq)/n). Here we have set n = [K : Q], c(x) = 
N(lmdl-p+iq)112, and w denotes the number of roots of unity in K. 

 

Proof: One has 
 

 
dx)F(xl 

f(oc)= --w- 



f 
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We have seen before that 

!
= , dt . , 

 

 

where 

A(Jl.x.,)�  fo(l)t ,�L(f.,) 

0 

fo(t)=c(x) j gm(x,f)d*x. 

s 

Sinces = u')El'-�*lry2F, one has 

fo(t)�c(x) Lf g,;(x.l)d'x. 
rJElo•I 

,12F 

In each one of the integrals on the right, we make the transformation 

F ➔ r,2F, x 1----+ ,.,
2x, and obtain 

fo(t) � c(x)f  L Mffi(ry°x_t)d'x. 
1/EIO*I 

The fact that we may swap summation and inlegration is ju5tified in exactly 

the same way as for the case of Dirichlet L-serie� in §2, p.436. In view of 

the exact sequence 

I-----➔ 11-(K)-----➔ o*-----➔ lo*I-----➔ I, 

where /L(K) denotes the group of roots of unity in K, one has 

#{c E I lei= 11} = w, so that we get 

L g,;( 1,12x. t) � wg,n(ry°xJ). 
ltl=>/ 

Using (8.2), this gives 

fo(t) � c(x) / I: Rvt( lel2x.t) d'x 
W f"e'O* 

F 

= c�)   N(x(p-,q>f2)(0(.R,x,ixt11n)-c(x))d*x 

F 

� f(t) - f(oo). 

Thir, together with(*) yields the claim of the propo�ition. □ 

 

It is now the transformation formula (7.7) for the theta �eries 0(.R, X, z) = 
0P (.It., xr- z) which guarantees that the functions f (t) = f,, (.R, x ,t) satisfy 
the hypotheses of the Mellin principle. 

' 



ao = N(idl'
01

'J) 

38. Hecke L-�eries 501 

(8.4) Proposition. We have fi(Jt X, !) = a0 + O(e-"
11

/") for some c > 0, 

and 

--w-- N(x-,qf'-)d*x 

F 

if m = 1 and p = 0, and a0 = 0 otherwise. Furthennore we have 

J,. (..R, X, I) = W(x)d+Ti(p)/n jF-1(..R', X.t) 

where ..R..R' = [mi:!]. and the constant factor is given by 

W(x) = [it,(flN((_"'! )l')]-l �. 

lmdl � 

 
Proof: The first statemenl follows exactly as in the proof of (5.8). For the 

second, we make use of formula (7.7). It gives us 

0(Sl, X, - 1/c) = &P(Jl, X1, - 1/,) = W(x)N( (,j;JP+l)&"(Jl', xr,,) 

= W(x)N( c,;;iP+l)e(Jl', ,,,), 
 

because X'.'X.,(t) = N(xl'lxl-P+1'!) = N((*x)fllxl-p-,q) = N(xf'lxl-f'-rq). 

Observing the fact that the transformation x 1---+ x 1 leaves the Haar measure 
d* x invariant and takes the fundamental domain F to the fundamental domain 

p-l, (7.7) yields for z = ixt l/n: 

.f"F(Jtx, �) = ("(X) JN(x(p-u;)/2)0(..R,x,ix/tlfn)d*x 
t w 

= c�)I  ,, , 

I 

N(x-(p-iqJ/2)0(..R,x, -1/ixt1f")d*>.. 

= c(x):(xI) N(x-9-+r+!)N(t(p+j:)Jn)t)(..R', X, ixt1111)d*x 

p-, 

= c(x),W, ,  (x) J N(x(f+1q\/2)11;2+T,(p)/11a(..R' y.ixr1fn)d*x 

p-, 

= W(x)d �l,(p)/nf,.-1(..R',y,!). 

We have used in this calculation that N(x1I2) = N(t)112 = I and 

N(x") = N((*x)P) = N(xP), and that the character Xoc, the complex 

conjugate of Xx;, is given by 



□ 
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From this proposition and (1.4), we now finally get our main result. 

We may assume that x is a primitive GrOJJencharacter mod m, i.e., that 

the corresponding character Xf of (o/m)* is primitive (�cc §6, p.472). 

The L-series of an arbitrary character differs from the L-series of the 

corresponding primitive character only by finitely many Euler factors. So 

analytic continuation and functional equation of one follow from those of the 

other. 

 

(8.5) Theorem. Let x be a primitive GrjjJ:Jem haracter mod m. Then the 

function 

A(Jl,x,,s) � (ldKl'll(m))';,Loc(x,s)L(Jl,x,,s),  Re(.,)> I, 

has a meromorphic continuation to the complex plane C and .�atisiies the 

functional equation 

A(Jl, x,s) � W(x)A(Jl', X, I - .,·) 

where Jt!t' = fm-0J, and the constant factor is given by 

W(x) = [iTr('plN((_!!!!  )")]-1 �- 

Imd I jln(mj 

It has absolute value IW (x) I = I. 

J\(R.,x.s) is holomorphic except for pole.� of order at most one at 

s = Tr(-p +iq)/n ands= I+ Tr(p +iq)/n. In the case m -1- 1 or p -1- 0, 

J\(R.,x,s) isholomorphiconallo[C. 

 
Proof: Let_{it) = /,;(fi..,x,t) and ;� (!) = f,. 1(.ll',X,t). From f(t) = 

ao + O(e-u 
1 1 

), g(t) =ho+ O(e-''  ) and 

!(�) = W(x)d+T1(p)/ng(t), 

it follows by (I .4) that the Mellin transforms L (f s) and L (g, s) can be 

meromorphically continued, and from (8.3) we get 

J\(.it.. X,s) = L(f, �(s + Tr(p - iq)/n)) 

� W(x)L(,, �+'fr(p)/n - �(s+T,(p - iq)/n)) 

= W(x)L(g, io- s + Tr(p + iq)/n)) 

� W(x)A(Jl',x. l - .,), 

where we have to take into account again that Xx(.r) = N(xl'lxl-p-,"). 
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According to (1.4), in the case ao i- 0, L(f,s) has a simple pole at s = 0 

ands = ½ + 'fr(p)/n, i.e., A(.R, x.s) = L(.f, ½(s + Tr(p - iq)/n)) has a 

simple pole at s = Tr(-p + iq)/n and�-= I+ Tr(p + iq)/n. If m #- I 

or pf. 0, then a0 = 0, i.e., A(.R, X, s) is holomorphic on all of IC. □ 

 
For the completed Hecke L-series 

A(x,,) � (ldK 191(m))'1'L~<x ..,)L(x. ,) � I: A(Jl. x. ,) 

" 
we derive immediately from the theorem lhe 

 

(8.6) Corollary. The L-series A(x,s) admits a holomorphic continuation 

lo 

 
and satisfies the functional equation 

A(x ..,) � W<x)A(x.1-.,). 

It is holomorphic on all of IC, ifm i- I or pi- 0. 

 

Remark I: For a Dirichlet character x mod m, the functional equation 

can be proved without using ideal number�. by splitting the ray class group 

Jm / pm into its classes .R, and then proceeding exactly as for the Dedekind 

zeta function. The Gauss sums to be used then are those treated by HAS.SH 

in [52). On the other hand, one may prove the functional equation for the  

Dedekind zeta function by using ideal numbers, imitating the above proof,  

without decompm,ing the ideal group at all. 

 

Remark 2: There is an important allemative approach lo the results of 

this section. It starts from a character of the idele class group and from 

the representation (8.1) of the corresponding L-series as an Euler product. 

The proof of the functional equation is then based on the local-to-global principle 

of algebraic number theory and on lhe Fourier analysis of p-adic number fields 

and their idcle class group. This theory was developed by the American 

mathematician JOHN TM1c, and is commonly known for �hort as Tate's thesis. 

Even though it does meet the goal of this book of presenting modem conceptual 

approaches, we still decided not to include it here. The reason fur this is the 

clarity and conciseness of Tate's original paper [241, which cannot be improved 

upon. In addition SF.RGF l.ANG''c. account of the theory [94J provides an 

illustrative complement. 
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Thu:;. instead of idly copying thi:;. theory, we have chosen to provide a  

conceptual framework and a modem treatmenl of Hecke's original proof 

which is somewhat difficult to fathom. It tum� out that Hecke's approach 

continues to have a relevance of its own, and can even claim a number of  

advantages over Tate's theory. For the functional equation of the Riemann 

zeta function and the Dirichlet L-scries, for example, it would be out of 

proportion to develop Tate's fonna!ism with all its p-adic expense, since 

they can be settled at a beginner's level with the method u:;.cd here. Also, 

L-series, and the very theory of theta series has to be seen as an important  

arithmetic accomplishment in its own right. 

It wa� for pedagogical rear,ons that we have proved the analytic 

continuation and functional equation of L-series four times over: for the 

Riemann zeta function, for the Dirichlet L-scries, for the Dedekind zeta 

function, and finally for general Hecke L-series. This explains the number 

of pages needed. Attacking the general case directly would shrink the expose 

to little more than the size of Tate's thesis. Still, it has to be said that 

Tate's theory ha1- acquired fundamental importance for number theory at 

large through it1- far reaching generalization1-. 

 

 

 

§ 9. Values of Dirichlet L-series at Integer Points 

 
The results of§ I and 92 on the values ((I - k) and L(X, I - k) of the 

Riemann zeta function and the Dirichlet L-scries will now be extended to 

generalized Dirichlet L-series over a totally real number field. We do this 

using a method devised by the Japanese mathematician TAKURO SH1N1At,'l (who 

died an early and tragic death) (see [127], [128]). 

 

We first prove a new kind of unit theorem for which we need the following 

notions from linear algebra. Let V he an n-dimensional JR-vector space, k 
a subfield of JR, and Vk a llxed k-structure of V, i.e., a k-subspace such 

that V = Vi ®k !R. By definition, an (open) k-rational simplicial cone of 

dimension d ir, a 'iubset of the fom1 
 

where v1....,VJ are linearly independent vectors in Vk. A finite disjoint 

union of k-rational simplicial cones is called a k-rational polyhedric cone. 

We call a linear fonn L on V k-rationaf if its coefficients with re1-pect to a 

k-basis of Vi, lie ink. 
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(9.1) Lemma. Every nonempty subset different from /0) of the fonn 

P= {x EV IL,(t·) �O, O<i _::: £, M1(x) > 0, 0 < j :'.Sm} 

with nonzero k-rational linear forms L,, M1 (€ = 0 or m = 0 is allowed) is 

a di.�joint union of finitely many k-rational cones, and possibly the origin. 

 

Proof: First let P = {x EV I L1(x) � 0, i = 1, ... ,£}, with k-rational 

linear fonns L 1, ... , Lt #- 0. For n = I and n = 2 the lemma is obvious. We 

asf.ume it is established for all R-vector spaces of dimension smaller than n. 

If P has no inner point, then there is a linear form L among the L 1, ... , Lt 

such that P is contained in the hyperplane L = 0. In this case the lemma 

follows from the induction hypothesis. So let u E P be an inner point, i.e., 

L 1 (u) > 0 .... , L1(u) > 0. Since Vk is dense in V, we may asf.ume u E V.. 
For every i =I, .... £, let aip = {x E PI L,(x) = 0).If [J1P #- {OJ, then 

O,P,  {OJ is by the induction hypothesis a disjoint union of a finite number 

of k-rational simplicial cones of dimension < n. If a simplicial cone in a,P 

has a nonempty intersection with some i11 P, then it is clearly contained in 

a, P n 01P. Therefore i11Pu ... U OrP, {0} is a disjoint union of k-rational 
simplicial cones of dimension < 11, so that 

U Jr P,  /0) = LJ C1 , 

,c.1 

where C.1 = C(v1. 

we put C1(u) = C(v1, 

simplicial cone. We claim 

E \/�, d1 < n. For every j E J 

a (d; + I )-dimensional k-rational 

P, {0} = LJ C1 L:J LJ C.1(u) L:J R�u. 
J<cJ JE./ 

Indeed, if the point x E P, {OJ lies on the boundary of P, then it belongs 

to some O,P, hence to LJ,E.1C1. On the other hand. if., belongs to the 

interior of P, then L, (x) > 0 for all i. If x is a scalar multiple of u, then 

we have x E As1-ume this is not the case, and let s be the minimum 

of the numbers  Thens > 0 and x - :,u lies 

on the boundary of P. Since x - su #-  there is a unique j E ./ such that 

x - su E Cj, and thus there is a unique j E J such that \ E C1(u). This 

proves the claim. 

Now let 

P = {x EV I L,(x) � 0, 0 < i :'.:S £. M1(t) > 0, j = I, ... ,m} 

Then 

P � {,EV I L,(x) c: 0, M;(x) 2: o} 
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i� a disjoint union of a finite number of k-rational simplicial cones and {OJ. For 

every j = I, ... ,m, let a,P = {x E Pi MJ(x) =0). lfa simplicial cone 

in P has nonempty intersection with 01P, then it is contained in aJJ. As P 

= Ji" LJ:1
� J P, we see that since P " {0} is a disjoint union of finitely 

many k-rational simplicial cones, then so is P. □ 

 

(9.2) Corollary. lf C and C' are k-rational polyhedric cones, then C " C' 

is also a k-rational polyhedric cone. 

 
Proof: We may assume without loss of generality that C and C' are k­ 

rational cones. Let d be the dimension of C'. Then there are n /,,.-rational 

linear forms L 1.... , Ln-d, M1, ... , Mt1 such that 
 

If we define, for each i = I, ,n -d, 
 

and for each j = 1,.  ,d, 

l I
L,(x)� .. �L, J(x)�o, 

C,= xEC M1(x)>0, ... ,M
1
_1(.r)>O.Mj(x)_:::O, 

then we find, as can he checked immediately, that C "- C' is the disjoint 

union of the sets ct. ,c;_ J• Ci, .. , c;;_J, C1, ... , CJ. By (9.1). these 

are either empty or k-rational polyhedric cone�. Therefore C "- C' i5 also. D 

 

It is a rare and special event if a new substantial in5ight is added to the 

foundation� of algebraic number theory. The following theorem, proved by 
SHJN1i\Nt in 1979, falls into this category. Let K be a number field of degree 

n = fK: QlJ, and let R = [ n,ct be the corresponding Minkow5ki space 

(r E Hom(K, C)). Define 

R�+J = { (xr) ER* I Xr > 0 for all real r} 

(Observe that one has R:+i = R� only in the case where K i� totally real.) 

Since R = K @,; IR, the field K is a IQ-structure of R. The group 
 

of totally positive units acb on R?11 via multiplication, and we will show that 

this action has a fundamental domain which is a Q-rational polyhedric cone: 

I 
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(9.3) Shintani's Unit Theorem. If E is a subgroup of finite index in 

then there exist.� a IQl-rational polyhedric cone P such that 

(disjoint union). 
 

 

Proof: We consider in R7+i the nonn-one hypersurface 
 

Every .l E R�+i is in a unique way the product of an element of S and of a 

positive scalar element. Indeed, x = IN(x) Il/n(x/lN(x)l 11"). By Dirichlet's 

unit theorem, £ (being a subgroup of finite index in o*) i'> mapped by the 

mapping 

onto  a  complete  lattice  r  of  the  trace-zero  space  H  = 

{x E (TTrRJ+/ Tr(x) = 0). Let </J be a fundamental me�h of r, let 

"iii be the closure of </J in H, and put F = £ 1("iii). Since "iii is bounded and 

c\o'ied, �o is F. It is therefore compact, and we have 

(I) 

 

Let\. E F and Us(x) = /y ER I lit - yll < 8},; R�11, 0 > 0. Then there 

is clearly a basis 1•1, ... , Vn E UA(x) of R such that X = !1 V1 + ··· + t,,v,. 

with t1 > 0. Since K i'> den�e in R by the approximation theorem, we may 

even choose the v1 to lie in Kn VJ(\). Then Cs = C(v1, ....v,,) is a 

IQl-rational simplicial cone in R7+i with x E Cs, and every y E Cii is of the 

form y = AZ with A ER: and z E Uo(x). We may now choose 8 sufficiently 

small so that 

Con SC/j = 0 for all FE£, c #- l. 

If not, then we would find sequences Avz1,, E C1;,,, A, ,A;, ER:, 

z,,,z;, E and t',. E £,  #- I, such that = s"A;,z�, and thus 

PvZv =    and :
1 

, would converge lO x; now Pc- would 

converge to I as   = N(z�), i.e., x = (limc,.)x. This would mean 

that Jim E,, = I.  is impossible. since£ is discrete in R. 

F being compact, we thu'i find a finite number of IQl-rational cones 

C1••••• Cm in R�1l such that 

 

(2) F�LJ(C,nF) 
l=I 
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and C; n EC, = 0 for all F E £, t #- 1. and all i = L .. , rn. From (1) 

and (2), we deduce that 

R(1i=U LJtC,. 
1=1 FE£ 

In order to lurn this union into a di5joint one, we put c/
1

l = C1 and 

c,(IJ=Ci-..... 
,
L
,,

JEC1. i=2, .. ,rn, 

eC1 and C, are di:,,joint for almost all£ E £. Hence, by (9.2), C,°\ is a 

Qi-rational polyhedric cone. Observing that C1 n EC, = 0 for EE£, e i- I. 

R�+, = u LJ £C?l 
1=1 cc£ 

and £Cl1l n c?J = 0 for all£ E t,' and i = 2, .. , m. 

We now as:,,ume by induction that we have found a tinite system of 

(Qi-rational polyhedric cones c\vl. . ct1, v = I, ... , rn - 2 satisfying the 

following properlies: 

(i) c,c"l i;C;, 

(ii) R7+ = U LJ £Lt1, 

1=1 cc£ 

(iii) cci�) nC1 =0 for all£ E £, ifi :S v and i -=f-j. 

We put c,<"+I) = ci'') for i :s \J + I, and 

civ+I) =Ci''1" u FC��I for i:::. 11+2. 

HcF 

 

Then c[v+1l, ... ,c�;'+IJ is a finile 5ystem of Qi-rational polyhedric cones 

which enjoys propertie:,, (i), (ii), and (iii) with v+ I instead of \J. Con:,,equently, 

c/"'-ll, .. c,�;n-lJ b a 5ystem ofQ-rational polyhedric cones wch that 

R(+i = LJ LJ cC,i'" 
11 

(disjoint union). □ 
1=1 tE.E 

 

 

Based on Shintani 's unit theorem, we now obtain the following description 

of Dirichlet'5 L-series. Let m be an integral ideal, 1m; pm the ray class group 

mod m. Let x : 1m / pm -,,.  be a Dirichlet character mod m, and 

x(o) 
L(x,.<) � � 'Yl(o)' 

we obtain 
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the associated Dirichlet L-series. If R varies over the classc� of .rm/P"', 

then we have 

L(x,.n � I:x(Jl)Wl,.,J 
;; 

with the partial zeta functions 

((Jl..,)� 1 'll(a)' 

nmtegral 

 

Let R be a fixed class, and a an integral ideal in .R.. Furthermore let 

(I+ a-1mh =(I+ a-1m) n R7+i be the set of all totally positive elements 

in I+ a-1m. The group 

E=o�'={eE IF=lmodm,t:ER�+i} 

acts on (I+ a-1m)+, and we have the 

 

(9.4) Lemma. There is a bijection 
 

 

on/o the 8et R,111 of integral ideal." in R. 

 

Proof: Let a E (I+ a-1m)+- Then we have (a - l)a c; m, and :;.ince a and 

m are relatively prime, we get a - I E m, i.e., (a) E p(mJ. Hence aa lies 

in it Furthermore, we have aa c; a( I + a-1m) = a+ m = o, :;,o that aa is 

integral. Therefore a 1-l- aa gives us a mapping 

(I+ a-1m)+---+R,111. 

It is sur:jective, for if aa, a E pm, is an integral ideal in R, then 

(a - l)a c; ma c; m, so that a E I + a· 1m. and also a E Rr+J' and :;,a 

a E (I+  a-
1
m)+- For a,h E (I+ a-

1
m)+, we have aa = ha if and only 

if (a)= (h), �o that a= he with EE Since r E (I+ a-1m)+, it follow:;, 

that E E £, i.e., a and h have exactly the �ame image if and only if they 

belong to the same class under the action of £. D 

 

 

The lemma implies the following fonnula for the partial zeta function 

((Jl..,), 



1 
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where Vl runs through a syslem of representatives of (I+ a-1m)+/ E. To thi,; 

we now apply Shintani's unit theorem. Let 

 

R�+J = LJ LJ £C, 
i=lfE/!, 

 

be a disjoint decomposition of R7+J inlo linilely many Q-rational simplicial 

cones C,. For every i = I, , m. let v, 1, . , .. v,J be a linearly independent 

syslem of generators of C,. Multiplying if nece..sary by a convenient totally 

positive inleger, we may assume that all V;f lie in m. Let 

c/ = { t1 v;I + ... + !J, V1J1 I O < ff .:s I}, 

and 

 
Then we have the 

 

(9.5) Proposition. The set.� R(fi.,C;) are finite, and one has 
 

with the zeta functions 
 

where z = (z1, ...• z,1 ) varies over all d; -tuples of nonnegative integers. 

 
Proof: R(fi.,C,) is a bounded subset of the lattice u-1m in R, translated 

by I. It is therefore fmite. Since C, £ R(+J is the simplicial cone generated 

by v, 1,   , V1J Em, every a E (I + u-1m) n C, can be written uniquely as 

 

 

 

with rational numbcri,, Yt > 0. Putting 

Yf = Xf + Zf,  0 < re .:s I,  0 .:s  E Z. 

we have E l+a 1mbecauseLztV,t Ems;a-1m.lnotherwords, 

every a E + a-1m) n C1 can be written uniquely in the form 



�9. Values of Dirichlet L-scric1, at Integer Point� 511 

 

with t = L:Xev;e E R(Jt,C1). Since 

(I+ a-1m)+ = lJ LJ (l + a-1m) n cC,, 
/=]CE.t. 

a=x+LZfV,c runs through a system 9'l: ofrcpre!,cntatives of (l+a-1m)+/ E 

if i runs through the numbers I, , m, x through the elements of R(.\t, C1 ), 

and z = (z1, , ZiJ,) through integer tuples with 2: 0. Thus we indeed 

find that 

□ 
 
 

 
(9.6) Corollary. For the Dirichlet L-1,eries attached to the Dirichlet character 

x : J m/ P '11 
--;. C*,we have the decomposition 

x(a) m 

L(x,,)� � 'll(a)' ,� 
 

where .It runs through the classes 1m;pm, and a denotes an integral ideal 

in .It, one for each class. 

 
The relation between zeta functions and Bernoulli numbers hinges on a purely 

analytic fact which is independent of number theory. This is what we will de1-

cribe now. 

Let A be a real r x n-matrix, r _::: n, with positive entries a1,. 1 .:S j .:Sr, 
1 :'.:: i :'.:: n. From this matrix we con1-truct the linear forms 

 
and L'j(z1.  ,z,)=[:a11z1 

J=I 

For an r-tuple x = (x1, ... ,x,.) of positive real numbers, we write the 

following series 

t(A,x,s) = n L:<, + x)-·'. 
l=I 

On the other hand we define the generalized Bernoulli polynomials B� (A, t) 

by 

where Bi.(A, x)(1l /(k !)11 is the coefficient of 

U(k-l)n(tl  . l1 1ft1 I., .,,,/-1 
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in the Laurent expansion al O of the function 

fI exp(ux1Lj(r)) I 

;=I  exp(uL1(t)) - I 1,=l 

in the variables u. t1, .  , t,_1, t,+1, .. , t,,, For r = n = 1 and A = a, 

we have Bk(a, i:-) = a'--1Bdx), wilh the usual Bernoulli polynomial B/.:(x) 

(see § I, exercise 2). The equation 

Bk(A, I -x) = (-l)"(k l}H Bk(A,x), 

 

where I - x signifies ( I - x1,  .. I - x,), is easily proved. 

 

(9.7) Proposition. The series ((A,x,s) is absolutely convergent forRe(s) > 

r / n, and ii can be meromorphically continued to the whole complex plane. 

Its values at the points s = I - k, k = I. 2,  aregiven by 

((A.x, 1 -k) � (-1)' 
8
'\�·x) · 

 

 

Proof: The ab�olutc convergence for Re(s) > rJ n is deduced from the 

convergence of a series L�1 
iH  by the same arguments that we have used 

11 
 

repeatedly. lt will be left to the reader. The remainder of the proof is similar 

to that of (1.8). In the gamma function 

 

we sub�titute 

 

and obtain 

 

r(s)'1 ,Oi L;(z + x)-s 

= J. ••l exp [ - ,� t,L;(z + x)](t1• • •t,,)'·-I dt1 • • dtn. 

0  0 

Summing this over all: = (:1,  , z, ), z, E Z, :, 2::: 0, and observing that 

L" 
t,L�(z + x) = L

' 
(z1 +x1)L1(t). 

1=1 j-"1 
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yields the equation 

with the function 

,t,i=) TI exp((] -xJ)LJ(t)) _ 

,=1  exp(L1(t)) - I 

We cut up the space IRn imo the sub�ets 

D, = / t ER." IO .:S ft .:S /1, £ = I. .. , i - l,i +I, ............ n) 
for i = I,  .,n, and get 

 

(1) ((A.x,s) = I'(s)n 

 

� g(r)(/1  ·l11)'-
1

dt1  dt11• 

1 
D, 

In Di we make the transformation of variables 

t=uy=u(.n,  ,Yn)- 

whereO<u,O_:S_vt .:SI forfcf.iand_y, = I.This gives 

I'(s)-11 
l

[

n, 
g(t)(t1 - t,,)'-1d11 · dt,, 

 

� I'(,)-, g(uy)(n yr)' 'n  dye]u"' 'du. 
f#, 1-,t, 

0  0  0 

 

For O < c < I, let now 1,(1), re�p. I, (+x). denote the path in C consisting 

of the interval [I, FJ, resp. l+x. cj, followed by a circle around O of radius 

t: in the positive direction, and the interval lF, IJ, re5p lf, + ooj. For E 

,;ufficicntly small, the right-hand side of the last equation following ( 1.9) 

becomes 

(2) 

 

with the factor  
r(s)-' 

A(s) = (ehins _ l)(e2JT11 _ 1y1 

where one has to observe that the linear fonn� L1, ...• Lr have positive 



coefficients. It is easy to check that the above expre5Sion, as a function of the 
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variable .l, is meromorphic on all ofC. As for lhc factor A(s), (1.2) implies 

that 
I I'(l-s)11 

A(s) = (2rri)n (c2rrin., _ l)(e2-'m _ 1)-1 enrris• 

Let us now puts= 1 -k. The function eu:rr1.'(e2ru11s - l)/(e2nn - I) takes 

the value (-1)11r1-1ln at s = I - k. Thus expression (2) turns into 

(-l)"(k-l)  r(k)" . -.I -n/ / [ µ-(uy)u"(l - AJ-](TT yr) - kn dYlf du, 
n (2m) ff, f,i1 

K, K�-I 

where Kc denotes the positively oriented circumference of the circle of radius 

f, and where we have to observe that the integrals over (oo,£1 and Le,oo), 

resp. over 11,c] and [E, Jj, kill each other in (2) ifs= I - k. This 

obviou:;,ly ( (- I )"(l- lJ I'(k)" /n) times the coefficient of un(k-l) (TTr,,:ci 
in the Laurent expansion of the function 

R(U.}'1, ·--,llYi-1,ll,ll}';+1, ... ,uyn) = fI exp(u(l -Xj)Lj(y)I) , 
 

which i:;. a holomorphic function of u, t1, 

product of n copies of the punctured 

of (2) at s = I - k equals (-l)11
(k 

into (1) gives 

j=I exp(uL1(y)) - 1  y,=I 

. ,t1. 1, ft+!, ... !11in the direct 

of radius F. Therefore the value 

I - x)(iJ /n. Inserting this 

((A,x, I - k) = (-l)"ik-lJk-" _!_ t Bk(A, I -  x/1) 

n i=-1 

= (-])"{k -l} Bk(A�!-  X).  

 

Together with the equation Bk(A, 1 - x) = (- l)"(k 11 ,r Bk(A, x) mentioned 

above, this gives the de�ired rc<;ult. 0 

 
Theorems (9.5) and (9.6) now imply our main result concerning the value:;, 

of Dirichlel L-<;crie5 L(x,s) at integer points s = 1 -k, A.= 1,2,  If K 

is not totally real, then these value� are all zero (except if x is the trivial 

character, for which s = 0 is not a zero). Thi<; can be read off immediately 

from the functional equation (8.6) and (5.11). 

So we let K be a totally real number field of degree n. Numbering 

the embeddings r : K ----+ lP/. identifies the Minkow�ki R with !Rn. 

and R7+i = R� with the set JP/.: of vector� (x1, with positive 

coefficient<; x1• Given the Q-rational simplicial cone C � IR: generated by 

1•11, . , Vu/,, we again consider lhc zeta functions 



((C,,r,s)=�IN(x+:11111+· +zd,v1111)I ·' 
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If 

 

then A1 = (ai�
1

) b, a (d, x 11)-matrix with positive entries, and the k-th 

component of z1v11 +· + ZJ, v,J, becomes 

 

 

For x E R:, we therefore get 

((C,,x.s) = Lfl Lj;(z1, ... ,z11Y
1 = ((A;,x,s), 

z k=l 

and, from (9.5) and (9.6), we obtain by putting s = I - k the 

 

(9.8) Theorem. The values of the partial zeta function ((.il, s) at the integral 

pointss = I - k, k = 1,2.3, ... , are given by 
 

and the values o(thc Dirichlet L-series L(x,s) ,ire given by 

m  [   B  (A    ,)]
L(x,I-k)�I:x(n)91(n)'-'

 (-1)",  I: 

.!I /=I EN(.fi..(,}  k 
 

Here u is an integral ideal in the class 5t of J "'/ P"'. 

 
This result about the Dirichlet L-series L (X, s) also covers the Dedekind 

zeta function (K (s ). The theorem says in particularthat the values L ( x. I -k), 

fork ?. I, arc algebraic numbers which all lie in the cyclotomic field Qi(x1) 

generated by the values of the character xr. The values (K (1 - k) are even 

rational numbers. From the functional equation (5.11), 

(K(l - s) = ldK 1s-l/2
( cos¥ r+,, 

2 

we deduce that (K(l -/...) = 0 for odd k > I, and it ir, =I=- 0 for even k > l. 

If the number field K is not totally real, then we have (K(s) = 0 for all 

S=-1,-2,-3, 

 
(9.9) Corollary (S1H;J:L-KuNc;nv). The values of the partial 7Cta function 

((R, s) at the points s = 0, - I, - 2, are rational numhern. 

I: �, 
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Proof: Lcta1, .. ,.ar be nonzero numbers in K, and let A be the (r x n)- 

matrix (a; ),  where a is the i-th componenl of a , after identifying R = R.n 
1 

11 1 

according to the chosen numbering of the embeddings r : K -----f lFL It is 

enough to show that B!,_(A,x) is a rational number for every r-tuple of 

rational numbers.\ = (x1, .... Xr), To see this, let LIQ be the normal 

closure of KIQ and cr E G(LIQ). Then a induces a permutation of the 

indice� {1,2, ... ,n) so that 

aa11=Gjrr(i)  (l_:::j_:::r,i=l. ..........,n). 

= ¼ L�=l Bk(A,xtl, where Bk(A,_\){1l was the 

coefficient 

of the function 

,t;_1,t,+1, .. ,,tn)J..-I in the Taylor expansion 

Ur fI exp(XjULj(f)) 

J=I exp(uL1(t) - 1) 

with L1(t) = a11t1 + •··.+ a1ntn, This makes it clear that Bk(A,x)Ui lie� 

in Land that aBk(A.x)(,) = Bk(A,x)i"11ll_Therefore Bk(A..t) b invariant 

under the action of the Galois group G(L IQ), and thus belongs to Q.  □ 

 

The nature of the special values of L-series at integer points has recently found 

increasing interest. Like in the class number formula, which expresses the 

behaviour of the Dedekind zeta function at the point� = 0, the properties 

of all the 5pecial values indicate a deep arithmetic law which appears 

to extend to an extremely wide cla:;r, of L-scries, the L-series attached 

to "motives" According to a conjecture of the American mathematician 

Sn.PHFN LffHJl:cNIJAl!IW, th� i gen i f i c a n c e  of these L-values can be explained 

by a strikingly simple geometric interpretation: they appear according lO 

the Lichtenbaum conjecture as Euler characteristics in etale cohomology 

(�ee [99], I12J). The proof of this conjecture is a great, if �till remote, goal 

of number theory. On the way towards it, the inr,ights into the nature of 

L-series which we have encountered may prove to he important. 

Finally we want to mention that the French mathematicians DANltL BARSKY 

and P11:.Rtfrt Ct.55ou-Noccts have used S111,'.TAl\'1's result to prove the exi�tcnce 

of p-adic L-series. These play a major r61e in lwasawa theory, which we 

have mentioned before. The p-adic zeta function of a totally real number 

field K is a continuous function 

(p :Z" "-{IJ �  Q". 

which is related to the ordinary Dedekind zeta function (K (s) by 

(,(-n) � (K{-n) n(I - 'll(p)") 
pip 
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for all n E .N such that -n = I mod d, where d = [K(/1.-2p): K] denotes 

the degree of the field K(µ2,,) of 2p-th root& of unity over K. The p-adic 

zeta function is uniquely determined by this relation. Its existence hinges on 

the fact that the rational value& /;K (-n) are subjected to ,;:evere congruences 

with respect top. 
 

 

 

§ 10. Arlin L-series 

 
So far, all L-series we have considered were associated to an individual 

number field K. With the Artin L-series, a new type of L-series enters the 

stage; these are derived from representations of the Galois group G(LIK) 

of a Galois extension LjK. This new kind of L-series is intimately related 

to the old ones via the main theorem of class field theory. In this way they 

appear as far-reaching generalizations of the old L-serie&. Let us explain this 

for the case of a Dirichlet L-scrie� 

attached to a Dirichlet character 

X : (Z/mZ)* --+ 

Let G = G(Q(µm)IQ) be the Galois group of the field Q(µ,,,) of m-th roots 

of unity. The main theorem of class field theory in thi& particular ca:-.e simply 

describes the familiar isomorphism 

(Z/mZ)' ..'.':.; G, 

which sends the residue class p mod m of a prime number p f m to the 

Frohenius automorphism (j!p, which in turn i,;: defined by 

'Pp(= (f!  for ( E µ,,,. 

U&ing this isomorphism we may interpret x as a character of the Galois 

group G, or in other words, as a I-dimensional representation of G, i.e., a 

homomorphism 
X: G--+ GL1(C). 

This interpretation describe,;: the Dirichlet L-series in a purely Galois­ 

theoretic fashion, 

L(x.s) � TT 
1 

, 

Ptm 1 - x(rp,,)p-5 

and allows us the following generalization. 
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Let LI K be a Galois extension of finite algebraic number flclds with 

Galois group G = G(LIK). A representation of G is an action of G on a 

finite dimensional C-vector space V, i.e., a homomorphism 

p: G --+ GL(V) = Autr:(V). 

Our shorthand notation for the action of er E G on v E V is av. instead of 

the complete expression p(u)v. Let p be a prime ideal of K, and let $Ill be 

a prime ideal of L lying above p. Let G<;p be the decomposition group and 

113the inertia group of ,.P- over p. Then we have a canonical isomorphhm 

onto the Galois group of the residue field extension K(l,JJ)IK(IJ) (see chap. I, 

(9.5)). The factor group G'll/ /13 is therefore generated by the Frobenius 

automorphism lf'll whose image in G(K(l.l})IK(p)) is the q-th power map 

x f--+ .-,;11, where q = '.Jl(p). 'P'+I is an endomorphism of the module V''ll of 

invariants. The characteristic polynomial 

det(l - (f'qJI; V
1

':P) 

only depends on the prime ideal p, nol on the choice of the prime ideal � 

above p. In fact, a different choice �'Ip yields an endomorphism conjugate 

to ({'<,p, as the decomposition groups G13 and G<,p', the inertia groups lti 

und f.-:µ,, and the Frobenius automorphisms 'P'+l and 'P'+l' arc :c.imultancous 

conjugates. We thus arrive at the following 

 

(10.l) Definition. Let LIK be a Galois extension of algebraic number fields 

with Galois group G, and lcl (p, V) be a representation of G. Then the Artin 

L-series ,ittached to p is defined to be 

C(LIK ,p,s) = Q det(l - tpii91(p)-s; V1•1J) 

where p runs through all prime ideals of K. 

 
The Arlin L-series converges absolutely and uniformly in the half-plane 

Rc(5) � 1 + 0, for any ti > 0. It thus defines an analytic function on the 

half-plane Re(s) > I. This is shown in the same way as for the Hecke 

L-series (see (8.1)), observing that the E", in the factorization 
 

arc roots of unity because the endomorphism 'P'+l of Vt,,,,, ha� finite order. 
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For the trivial representation (p,C), p(a) = I, the Artin L-serics is 

simply the Dedekind zeta function f;K(s). An additive expression analogous 

to the expansion 

 
does not exist for general Artin L-series. But they exhibit a perfectly regular 

behaviour under change of extensions LI K and representations p. This 

allows to deduce many of their excellent properties. As a preparation for this 

study, we first collect basic facts from representation theory of finite groups. 

For their proofs we refer to [125]. 

 

The degree of a representation (p, V) of a finite group G is the dimension 

of V. The representation is called irreducible if the G-module V doer, not 

admit any proper G-invariant r,ubspace. An irreducible representation of an 

ahe!ian group is simply a character 

p:G- =GL1(C). 

Two reprer,entations (p, V) and (p', V') are called equivalent if the G­ 

modules V and V' are isomorphic. Every representation (p, V) factors into 

a direct sum 

V=ViEB ··EBV.1 

of irreducible representation1-. If an irreducible representation (Pa, Va) is 

equivalent to precisely ra among the represcmations in this decomposition, 

then ra is called the multiplicity of Po: in p, and one writes 
 

 

where Po: varies over all non-equivalent irreducible representations of G. 

The character of a representation (p, V) is by dclinition the function 

Xp: G -  C,  Xp(a) = trace p(u). 

One has Xp(l) = dim V = degree(p), and Xp(ara-1) = Xp(r) for 

all a, r E G. In general, a function /  G -cl- C with the property 

that /(aru-1
) = .f(r) is called a central function (or class function). 

The special importance of characters comes from the following fact: 

 
Two representations are equivalent if and only if their characters are equal. 

If p ~ La ro:Pa, then 
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The character of the trivial representation p : G ---+ GL(V), dim V = I, 

p(u) = I for all a E G, is the constant function of value I, and is denoted 

by 1a, or simply I. The regular representation is given by the G-module 

V � C[G] � { I: x,r Ix, EC}, 
rEG 

on which the u E G act via multiplication on the left. It decomposes 

into the direct sum of the trivial representation V0 = C LaEG u, and 

the augmentation representation { La<=G x,,.u I Lcr x,,. = 0}. The character 

associated with the regular, resp. the augmentation representation, is denoted 

by re, resp. uc. We thus haver<; = uu + le;, and explicitly: rc(a) = 0 

for u -=f=. I, rc;(l) = g = #G. 

A character x is called irredulihle if it belongs to an irreducible representation. 

Every central function rp can be written uniquely as a linear combination 

rp=Lrxx, 'x EC, 

of irreducible character�. rp is a character of a representation of G if and only 

if the ex are rational integers ::'.: 0. For instance, for the character re of the 

regular representation we find 
 

where x varies over all irreducible characters of G. Given any two central 

functions rp and if; of G, we put 

(�,\lf)� I_ L �(a)V,(a), g�#G, 
!? ("fEG 

where ifr is the function which is the complex conjugate of ifr. For two 

irreducible characters x and x', this gives 

,  \ '-  if x = x', 

Ix' X ) � 0,  ifX ,' x', 

In other words, ( , ) is a hermitian scalar product on the space of all central 

functions on G, and the irreducible characters form an orthonormal basis of 

this hermitian space. 

For the representations itself, this scalar product has the following 

meaning. Let 

V=ViEB·--EBV, 

be the decomposition of a representation V with character x into the direct 

sum of irreducible representations V,. If V' is an irreducible representation 

with character x', then (x, x') is the number of times that V' occurs 
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among the V1, up to isomorphism. For if x, is the character of V,, then 

X =Xi+ ····· + Xrs, othat 

(x,x') � (x1,x'l + ·· + (x,.x'), 

and we have (X,, x') = 1 or 0, depending whether V, is or is not isomorphic 

to V' Applying this to the trivial representation V' = C, we obtain in 

particular that 

dim VG= � L x(a), g = #G. 
g ,JEG 

 

Now let h : H ---+ G be a homomorphism of finite groups. If cp is a central 

function on G, then h�(cp) = cp oh i& a central function on H. Conversely, 

one has the following proposition. 

 

(10.2) Frobenius Reciprocity. For every central function ijJ on H there is 

one and only one central function h*(i/1) on G such that one has 

(�.h,(,fr)) � (h'(�).,fr) 

for all central functions cp on G. 

 

This will be applied chiefly to the following two special cases. 

a) H is a subgroup of G and h is inclusion. 

In this case we write cplH or simply cp instead of h*(cp), and ifr* instead 

of h*(i/1) (the induced function). If cp i5 the character of a repre:;.entation (p, 

V) of G, then cplH is the character of the representation (plH, V).lf ijJ is 

the character of a representation (p, V) of H, then ifr* is the character of the 

representation (ind(p), lnd1(V)) given by the induced G-module 

lndg(V) � { f: G--+ VI /(rx) � rf(x) forall r E II}, 

onwhich a E G acts by (crf)(x) = f(xa) (see chap. IV, §7). One has 

,fr,(aJ�I:,fr(wr·1
), 

 
where T varies over a system of representatives on the right of G / H, and we 

put i/l(TcrT-1) = 0 if TOT-I rf. H. 

b) G is a quotient group H /N of Hand his the projection. 

We then write cp instead of h*(cp), and i/11 instead of h*(i/1). One has 

,fr,(a) � �  L ,fr(r). 

If cp is the character of a representation (p, V) of G, then h*(cp) is the 

character of the representation (po h. V). 

The following result is of great importance. 
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(10.3) Brauer's Theorem. Every character x of a finite group G is a Z­ 

linear combination of characters Xi* induced from charncter� Xi of degree 1 

,,s�ociatcd to subgroups. H1 of G. 

 

Note that a character of degree 1 of a group His �imply a homomorphim1 

X: H--+ 

 
After this brief survey of representation theory for finite groups., we 

now return to Artin L-series. Since two representation.s  V) and (p', V') 

are equivalent if and only if their characters X and coincide, we will 

henceforth write 

L(L IK, X,.,)� Q det(I - p(�•o)91(p)-·'; viv) 

instead of £..(L IK, p, s ). These L-series exhibit the following functorial 

behaviour. 

 

(10.4) Proposition. (i) For the principal character x = I, one ha� 

L(LIK,1..<) � (K(S). 

(ii) If x, x' are two characters ofG(L IK), then 

L(LIK,x + x',.<) � C(LIK, x,.,)L(LIK,x ,.,). 

(iii) For a bigger Galois extension L' I K, L' 2 L 2 K. and a character x of 

G(LIK) one has 

C(L'IK.x,.,) � C(LIK.x,.,). 

(iv) If M is an imermediate field, L 2 M 2 K, and X is a character 

ofG(LIM), then 

C(LIM, x,.,) � L(LIK, x,..,). 

 
Proof: We have already noted (i) earlier. (ii) If (p, V), (p'. V') are 

representations of G(LIK) with characters X, x', then the direct sum 

(p EB p', V EB V') is a representation with character x + x', and 

det(l - rp,:µr; (V EB V
1
)1'1l) = det(l -rp,;pt; V1'+')det(I - ({),:µt; V'

1
'1l)_ 

This yields (ii). 

(iii) Let 'l3'l'l31P be prime ideals of L' IL IK, each lying above the next. Let x 
be the character belonging to the G(L IK)-module V. G(L'IK) acts on V via 

the projection G(L'IK)--+ G(LIK). It induces surjective homomorphisms 

G,;p,---+ G,,p, l'+.v---+ I,:µ, G,p·/fo,_11---+ G,,pfl,;p 



1 
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of lhe decomposition and inertia groups. The latter maps the Frobenius 

automorphism rp13, to the Frobenius automorphism 1/J<.p so that (rprp, V
1
·v') = 

(rp'l}, yl-P), i.e., 

This yields (iii). 

(iv) Let G = G(LIK) and H = G(LIM). Let p be a prime ideal of K, 

q1, .... q, the various prime ideals of M above p, and ,P, a prime ideal 

of L above q,, i = I, , r. Let G,, resp. I;, be the decomposition, resp. 

inertia, group of ,P, over p. Then H, = G1 n H, resp. /1' = /1 n H, arc the 

decomposition, resp. inertia, groups of ,P, over q1• The degree of q, over p 

is_{, =(C; :H;/1),i.e., 

 

We choose elements r1 E G such that ,p1 = ,P�'. Then C, = r,-1CI r1, 

and/, = r,-
1

/1r1. Let rp E G1 be an element which is mapped to the 

Frobenius rp,ii1 E C1//1. Then rp1 = r -
11{Jr, EC, is mapped to the Frobenius 

ifl'lJ, E G1//1, and the image ofip(
1 

in H J!/ is the Frobenius of,P, over q,. 

Now let p : H ➔ CL(W) be a representation of H with character x. 
Then x* is the character of the induced representation ind(p) : C ➔ GL(V), 

V = lndJ (W). Clearly, what we have to show is that 

det(l -l{)t; V
I

1

) = JJdet(l -l{J 
I
't 

J
1 W 

I'
,). 

1 ; 

 

1 

We reduce the problem to the case G1 = G, i.e., r = l. Conjugating by r,. 

we obtain 
1 

det(l-ip('r.11
; W , )=det(l-ipf,r.l1

: (r1W) '�r,Hr,- ) 

and .f, = (C (C n r Hr 
1 

For every i we choose a system of 

1             
:  

1  1 
)/ ). 

1 
1 

representatives on the left, a; 1, of GI mod GI n r, Hr,.-1
. One checks 

immediately that then {a,Jr,/ is a system of representatives on the left of 

G mod fl. We thus have (see chap. IV, §5, p.297) the decomposition 

V=EBrr11r1W. 

Putting V, = EBJ a,J r, W, we obtain a decomposition V = EB,- V1 of V as a 

C 1-module. Hence 

det(I - ipl; V11
) = � 

1 1 

Itis therefore sufficient to prove that 

 

det(l - rpt; \/ 
11 

). 



det(l-l{Jt; V,11)=det(l-l{)f,rl1; (r,W)1
1nr,Hr,-

1
)_ 
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We simplify the notation by replacing G1 by G, /1 by/, G1 nr,Hr,-
1 

by 

H, f, by f = (G: HI), V, by V, and r,W by W. Then we have still 

V = Indt(W), i.e., we are reduced to the case r = L G1 = G. 

We may further assume that/ = I. For ifwe put G = G/ I, Fi= HJ lnH, 

then V1 = lndg(w111H)_Jndeed, a function f: G ➔ W in V is invariant 

under / if and only if one has f (xr) = f (x) for all r E /, i.e., if and only if 

it i� constant on the right (and therefore also on the left) cosets of G mod I, 

i.e., if and only if it is a function on G. It then automatically takes values in 

wtnH, because rf(x) = f(rx) = f(x) for r E / n H. 

So let/ = I. Then G is generated by cp, f = (G : H), and thus 
 

Let A be the matrix of ({!J with respect to a basis w1.  , wd of W. If E 

denotes the (d x d) unit matrix, then 

 

0 E  ...  0) 

( 0  0 H 

A  0 0 

i� the matrix of (/J with respect to the hasis {(fJ1 
Wj} of V. This gives 

-tE 

det(l-tpt; V) =det ( : 

-tA 

as desired. The last identity is obtained by first multiplying the first column 

by t and adding it to the second, and then multiplying the second column 

by t and adding it to the third, etc. D 

 
The character 1* induced from the trivial character l of the subgroup 

{1} � G(L IK) is the character re = Lx xO)x of the regular representation 

of G (LI K). We therefore deduce from (10.4) the 

 

(10.5) Corollary. One ha.� 

,d,) �(K(-<l ,[,1.,C(LIK.x.,)''". 

where x varies over the nontrivial irreducible characters of G (LI K). 
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The starting point of Artin's investigations on L-series had been the 

question whether, for a Galois extension LIK, thequolient t;L(s)/t;K(s) is 

an entire function, i.e., a holomorphic function on the whole complex plane. 

Corollary (10.5) shows that this could be deduced from the famous 

 

Artin Conjecture: For every irreducible character x i- 1, the Artin L-series 

L(LIK, x ,s) defines an entire function. 

 

We will '>CC pre:,,ently that this conjecture holds for ahelian extension'>. In 

general it is not known. In view of its momentous comcquences, it constitutes 

one of the big challenges in number theory. 

 

We will show ncxl that the Artin L-series in the case of ahelian extensions 

LIK coincide with certain Hecke L-series, more prcci:,,ely, with generalized 

Dirichlet L-series. This means that the propertie5 of Heckc's series, and in 

particular their functional equation, trarn;fer to Artin series in the abelian 

case. Via functoriality (10.4) they may lhen be extended to the non-abelian 

 

The link between Artin and Hecke L-series is provided by class field 

theory. Let LI K be an abelian extension, and let f be the conductor of LI K, 

i.e., the smallest module 

 

 

such that LIK lies in the ray class field KIIK (see chap. VI, (6.2)). The 

Artin symbol ( �)  then gives us a surjective homomorphbm 

 

Jf/P1---+G(LIK), amodPff-------+ (L�K), 

 
from the ray class group .If/Pf. Here JI is the group of fractional ideals 

prime to f, and p! is the group of principal ideals (a) such thal a = I mod f 

and a is positive in K11 = IR if p is real. 

Now let x be an irreducihle character of the abelian group G(LIK), i.e., 

a homomorphism 

X, G(LIK)- 

Composing with the Artin symbol ( !.l!S..), this gives a character of the ray 

clas:,, group Jf/Pf, i.e., a Dirichlet character mod f. It induces a character 

on J f, which we denote by 

X:.!i--+ 

By (6.9), this character on ideals is a GrOBencharacter mod f of type (p, 0), 

and we have the 
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(10.6) Theorem. Let LI K be an abeli.m extension, /et j be the conductor of 

LIK, let x -=I=- 1 be an irreducible character of G(LIK), and X the associated 

Grq/3encharakter mod f. 
Then the Artin L -series for the character X and the Hecke L-scries for 

the GrOjJencharakter X satisfy the identity 

L(LIK,x,.,) � f1 I L(i/,.,), 
pE.s 1 - x<'PiYJ1(p)-s 

whece S � {plf I x(I�) � I}. 

 

Proof: The representation of G(LIK) associated to the character x h 

given by a I-dimensional vector space V =Con which G(LIK) acts via 

multiplication by X, i.e., av= x(a)v. Since f is the conductor of LIK, we 
find by chap. VI, (6.6), that 

Plf {=::::::> pisramitied {=::::::> l,p#-1. 

If x(/,p) -=I=- I, then V1'll = {OJ, and the corresponding Euler factor does not 

occur in the Artin L-f.cries. If on the other hand x (/'l,l) = I, then V 1-ii = C, 

so that 

We thus have 

L(LIK,x,,)�[1 I f1 I 
plf I - X(�>p)'ll(p)-' pcS I - X(�>p)<Jl(p)-> 

and 
~ f1 I 

L(x .. ,) � Plt I _ i/(p)<Jl(p)-'• 

For )J f f, one has ( bJf-) = (/J<:p, and so X(p) = x (<p,:p). This proves the 

claim. 0 

 

Remark: If the character x: G(LIK)----+ i� injectire, then S = 0, and 

one has complete equality 

In this case Xis a primitive Griijiencharakter mod f. 
If on the other hand x is the trivial character le;, then X is the trivial 

Dirichlet character mod f, and we have 
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The theorem implies lhat the Artin conjecture holds for all Artin L­ 

series .C(L IK, x.s) which correspond to nontrivial irreducible characters x 
of ahelian Galois groups G ( L I K). For if Lx  is the fixed field of the kernel 

of x and Xis the Griij]cncharakter associated with X : GU-x IK) ' + 

lhen the above remark shows that L'.(LIK.x,s) = L'.(LxlK.x,s) = 

Hence L'.(LIK.x.s) is holomorphic on all of C, because the �ame true 

for L(X, s), as was shown in (R.5). This also scllles the Artin conjecture for 

every solvable extension LI K. 

Our goal now is to prove a functional equation for Arlin L-serie1>. The 

basis for this will be lhe above theorem and the functional equation we have 

already e�tablished for Hecke L-series. We however have lo complete the 

Artin /.-series by the right "Euler factors" at the infinite places. In looking 

for these Euler factors, the first nalural guideline is provided by the ca1>e of 

Hecke L-series. But in order to go the whole way, we need an addilional 

Galois-theoretic complement which will be dealt with in the next section. 

 

 

 

§11. The Arlin Conductor 

 
The discriminant()= Dr.iK of a Galois extension L IK of algebraic number 

fields admits a fine structure based on group theory. It is expressed by a 

product decomposition 

 

where x varies over the irreducible characters of the Galois group 

G = C(LIK). The ideals f(x) are given by 

f(x) = n p/p(,() 

Pt">:.' 

with 

 
where \/ is a representation with character x. GI is the i-th ramification 

group of L,i1IKµ, and R, denotes its order. This di<,covery goes back to HMIL i\Rn1v 

and HcLMUI HA,v The ideals f(x) are called Arlin conductors. They play an 

important r61e in the functional equation of the Artin L-series, which we are 

going to prove in the next <,cction. Herc we collect the properties needed for 

thi�, following essentially the treatment given by J.-P. SrRRt: in! 1221. 
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First let u� consider a Galois extension LI K of local fields, with Galois 

group G = G(LIK). Let f = hiK =IA: K] be the inertia degree of LIK. 

In chap. II*, I0, we defined, for any rr E G, 

ir;(a) = vL(ax - x), 

where x is an element such that 01. = oKlxl, and l'L i� the normalized 

valuation of L. With thi� notation we can wrile the i-th ramification group as 

G, =/a  EC I i(;(a) =::: i + 1 j 

One has ic;(rar 1
) = ir;(a), and iu(a) = iu(o) for every subgroup 

H � G. If LIK is unramificd, then iu(o) = 0 for all a E G, a -=I=- I. We put 

for a-=/=- 1, 

fora= 1. 

ar;i� a central function on G, and we have 
 

We may therefore write 

ar;�"£fix)x. /lx)EC. 
X 

with x varying over the irreducible characters of C. Our chief problem 

i� to prove that the coefficients j (X) are rational  =::: 0. Once we 

have 1,hown this. we may form the ideal fp(X) = which will be the 

p-component of the global A11in conductor that we want. First we prove that 

the function ac 1>atistie1> the follm\.-ing properties (we use the notation of the 

preceding 1,ection). 

 

(11.1) Proposition. (i) If His a norm1:d .�ubgroup oJ"G, then 
 

(ii) Jf // is any subgroup ofG, and if K' is the fixed field with discriminant 

i)K' K = p''' lhen 

(iii) Let C, be rhe 1-1h rnmification group of C, u, the ,wgmenlillion 

charncler of G 1, and (u, )� the character of G induced from u,. Then one ha1, 

� I 

ac = ,�1 (Co: G,) (u,L. 
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Proof: (i) follows immediately from chap. II, ( 10.5). 

(ii) Let a E H, a -=/= I. Then 

ac;(a) = -.fi,1Ki(;(a).  aH(a) = -.hwiH(a).  ru(a) = 0. 

Since iu(a) = i11(a) and ft.,K = fr.whnK, this implies 

ar;(a) = IYH(a) +fK'iKaH(a). 

Now let a= 1, and let '.DLIK he lhe d1Jferentof LIK. Let 01 = OK[r] and 
g(X) be the minimal polynomial of .1 over K. By chap. III, (2.4). '.DLIK is 

then generated by g'(x) = TT,.,.11(a r - .1 ). Consequently, 

vL('.DL1K) = v1_(g'(x)) = L ic;(a) = �ac;(l). 
rrjl /J1K 

By chap. III, (2.9), we know. on the other hand, that ()L1K = NLIK ('.DL1K ), 

so VK o NLIK = .fl1KVL gives the identity 

au(l) = h1Kvd'.DLIK) = vK(()L1K), 

and in the same way a11(1) = VK'(()LIK'). From chap.Ill, (2.10), we get 

furthermore that 

()f.lK = (()K'IK )IL K'iN K',K (()t.lK'). 

Thus ru (I) = [L : K'J and P = vK(()K'IK) yields the formula 

a(; (I)= [L : K' ]vK (()K':K) + fK'1KVK1(()LIK') = \!l"H( 1) + fK, KllH (I). 

(iii) Let g, = #G,, g = #C. Since G, i� invarian1 in G. we have (11,L(a) = 0 

if a <f._ G,, and (u,)*(a) = -g/K, = -f · Rn/!�1 if a E G,, a -=I= I. and 

Lrr<:cG(II; )*(a)= 0. For a E G� '°' GA+I, we thu� find 

ac(a) = -f(k +I)= L�-. -.-(u,)*(a). 
(Co: G,) 

Thi� implies the identity for the case a = I a� well. �ince hoth sides are 

orthogonal to le. D 

 

For the coefficients f(x) in the linear combination 

ac; � Lf(xlx. 

we have, in view of a(;(a-1) = a<;(a), that 

f(xl = (a1;.x) =� L aG(a)x(a•1
) =� L aG(a-1)x(a) = (x,a(;). 

g ,-,-,J; g ,-,-�(j 

g = #G. For any central function i.p of C, we put 

f(�) � (�.ac;] 

and  

�(G,) � _I_ L q;(a), g, � #G,. 
!?1 r,�G, 



! 
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(11.2) Proposition. (i) lfrp is :1 central ftmctio11 on the quotient group C /JI, 

and rp' i� the corresponding central function 011 G, then 

(ii) Jf rp is a central function on a .�uhgroup II of G, and rp. is lhe central 

function induced by rp on C, then 

l(�,) � VK(OK'IK)�(I) + Jic,K f(�). 

(iii) For a central function rp on G, one has 

f(�J � I: "'(o(l) - �(G,)). 
,c':o go 

 

Proof: (i) f(rp) = (rp,ac;flt) = (rp,(ac;)q) = (rp',ac) = f"(rp'). 

(ii) f(rp*) = (rp.,ac;) = (rp,aulH) = v(rp.rH) + fK11drp,a11) = vrp(I) + 

fK'IK f(rp) with V = v{((i.'JK'!K). 

(iii) We have = (rplG,, u,) = rp(l)-rp(G, ), -.o the formula follows 

from (11.1),  □ 

 

If x is the charncler of a representation (p, V) of C, then x ( I) = dim V 

and x(G,) = dim vG,, hence 

/(x) = L�codim V(;,. 

1c::ll go 

Now consider the function 

 

rJL1d.1) = 
D 

 

 
(Go: G1), 

which was introduced in chap. II, � 10. For integers m 2: -1, it i�· given by 

l/L1K(-l) = -L IJL1d0) = 0, and 

IJL1dm) = f,� form 2: I. 
1=1 go 

The theorem of HAs.11:.-ARF (sec chap. V, (6.3)) now gives ut-. the following 

integrality statement for the number f (X) in the case of a character x of 

degree I. 

 
(11.3) Proposition. Let be a character of G of degree 1. Let j be the biggest 

integer such that -1- 1(,'J ( w/Jen x = l(,' we put j = - I). Then 
we lrnve 

/'(X) � ryLIK(}) +I, 

' h 



:.md thi� i� a rational integer :=:: 0. 
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Proof: If i::: j, then x(G,) = 0, so that x(I) - x(G,) =I.If i > j, then 

x(G,) = 1. and so x(l) - x(G,) = 0. From (11.2), (iii), it thus follows that 
 

provided j 2: 0. If = -1, we have x(I) - x(G,) = 0 for all i 2: 0, and 

henceby(ll.2), f(x)=0=rwd-1)+1. 

Let H be the kernel of x and [,' the fixed field of //. By Herbrand':,, 

theorem (chap. II, (10.7)) one has 

G1(LIK)H/H = G1·(L'IK)  with  j' = T/t.1L1(J). 

In terms of the upper numbering of the ramification groups, this translate:,, 

into 

G'(LIK)H/H ~ G'(L'IK), 

where t = T/LIKCi) = f/11,KCTJL!L'Ci)) = T/1.'1KC/) (sec chap.II, (10.8)). But 

x(G1(LIK)H/H) # 1, and x(G,<e(LIK)H/H) ~ x(G1+,(LIK)H/H) 

= I for all 8 > 0, and in particular G1(LIK)H/H -f. G111,(LIK)H/H for 

all 0 > 0. Since r1, IK (s) i� continuous and <;trictly increasing. it follows that 

G'(L'IKJ ~ c'(LIK)H/H t, c'+>(LIK)H/H ~ c'+>(L'IKJ 

for all 1:' > 0, i.e., I is a jump in the ramification filtration of L'IK. The 

extension L'IK is abelian and therefore t = IJLIK(J) is an integer. by the 

theorem of l/,1.Ss1:; and ARF □ 

 

No½ let x be an arbitrary character of the Galois group G = G(LIK). 

By Brauer\; theorem (10.3), we then have 
 

where Xi* is the character induced from a character x, of degree I of a 

subgroup H,. By ( 11.2), (ii), we have 
 

where K1 i<; the fixed field of H,. Therefore /(x) i:,, a rational integer. On the 

other hand, (I 1. I), (iii) show� that g0ac is the character of a representation 

ofG, 50 gof(x) = (x.goau) 2: 0. We have thus e:,,tablished the 

 

(11.4) Theorem. If x is a char,-1.cter of the Galois group Ci = G(LIK). then 

f(x) is a rnlional integer 2: 0. 
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(11.5) Definition. We define the (local) Artin conductor of the character x 

ofG = G(LIK) lo be the ideal 

fo(X) =p/(Jl_ 

 

 

In chap. V, ( 1.6), we defined the conductor of an ahclian exten<,ion L IK 

of local tield.., to he the smallest power of p, f = p", such that the 11-th higher 

unit group utl is contained in the norm group NLIKL*. The latter is the 

kernel of the norm residue :-ymhol 
 

which map� v¼J to the higher ramification group G' (LIK) = G 1(L IK) with 

i = 1/f.'K<i) - see Y. (6.2). The conductor f = p" is therefore given by the 

smallest integer n 2: 0 such that G"(LIK) =I.Prom (11.3) we thus ohtain 

the following remit. 

 

(11.6) Proposition. Let LI K be a Galois extension of local fields, and let x 

be a cluiracter of G (L IK) of degree I. Let LI be the fixed field of the kernel 

of x, ;Jnd f the conductor of Lx IK. Then one has 

 

Proof: By (I 1.3), we have f"(x) = 
integer mch that G1(LIK) i_ G(Lllx) =: 
has 

 

+ I , where j i� the largest 

Let t = 1/LiK (}). Then one 

G'(L,IK) � G'(LIK)H/H � G,(LIK)H/H. 

and G11c(Lx1K) i; G1+1(LIK)H/H = 1 for all£> 0. Hence r i-; the 

largest number such that C1([,11K) #-I.By the theorem ofll11.11F-AR1•, tis 

an integer, and we conclude that f(x) =t +I is the smallest integer >ouch 
tha1ct111(LxlK)= l.i.e.,f(x)=n. D 

 

We now leave the local situation. and suppose 1hat LIK is a Galois 

extcmion of global fields. Let p be a prime ideal of K, \.PIP a prime 

ideal of L lying above 1-J. Let L,:plK11 be the completion of LIK, and 

G,:p = G(L,:vlKp) the decomposition group of l1J over K. We denolc the 

function ac,ll on G'+J by a,:p, and extend it to G = G(I.IK) by zero. The 



central function 



, 
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immediately tum5 out to be the function (a,:µ)* induced by a13IG,,p. It is 

therefore the character of a representation of C. If now x is a character of G, 

then we put 

/(x.pl � (x.ap) � /(xlG,µ). 

Then fr(X) = p/i,,: pl j._ the Artin conductor of the rc�triction of x to 

G,p = G(L:plKr)- In particular, we have fr(X) = I if pi� unramified. We 

define the (global) Artin conductor of x to he the product 

fix)� TT fp(XJ- 
P]� 

Whenever preci�ion i:-. called for, we write f(LIK.x) in�tead of f(x). The 

propcrtie� ( 11.2) of the numbers f(x, p) transfer immediately to the Arlin 

conductor f(x), and we obtain the 

 

(11.7) Proposition. (i) fix+ x') � f(xlf(x'), f(l) � (I). 

(ii) If l,'IK i.\ ,1 Galois subextemion of LIK, and x is a charncter o( 

G(L'[K), then 

f(LIK.x) � f(L'IK.x). 

(iii) If His a subgroup ofG with fixed field K
1 

and if xis a character 

of H, then 
 

 

Proof: (i) and (ii) are trivial. To prove (iii). we choose a fixed prime ideal \.ll 
of L, put 

 

with p = llJ n K. and con\kler the decomposition 

 
 

into double coset�. Then representation theory yield� the following formula 

for the character x of H: 
 

where x' i� the character x' (a)= x(r-1ar) of G,:p nr //r-1
, and x: i'> the 

character of G13 induced by x' (see [ 119], chap. 7, prop. 22). Furthermore 

ll]� = \.ll' n K' are the different prime idcab of K' ahove p (see chap. L *9, 

p. .55). and we have 

G-:µ, = r-1G,:pr = G(Lpr IKp). H,:µr = G,;pr n H = G(Lw IK�l�)- 
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Now !el il<;p' = p 'l-'� be the discriminant ideal of K�. IK p, and let f''lJ' be the 

degree of;� over K. Thu� NK'IK('-13�) = pf,v,. Sin�c ' 

fp(LIK, X*) = pf(x,IG,lll and t'lJ;(LIK', x) = -,p'!(xlH-i_.,i, 

we have lo show that 

/(x,IG,,) �� v,,,;x(IJ + h,; /(xlH'lJ,), 

or, in view of ( 11.2), (ii), that 

 

Bul H-+Jr = r 1(G<;pn rHr-1)r, and xiii<,µ,, resp. 

conjugation a � ra r-1 from x r, resp. x:. Therefore 

l(x;), and(**) follows from(*). □ 
 

We apply (iii) to the case x = lH, and denote the induced character X* 

by sc;H• Since t(x) =I.we obtain the 

(ll.8) Corollary. i)K'IK = t(LIK,�·u;fl). 

If in particular H = I I}, then sc;;11 is the character re; of the regular 

represenlation. Its decomposition into irreducible characters x is given by 

cc;� LX(l)x. 
I 

Thbyields the 

 

(11.9) Conductor-Discriminant-Formula. For an arhitra,y Galois exten­ 

sion LI K of global fields, one has 

i)LIK = nf(X)x(I)• 
I 

where x varies over the irreducible characters ofG(LIK). 

 

For an ahelian extension LI K of global field�, we defined the conductor 

tin VI. (6.4). By chap. VI, (6.5), it is the product 

1�n1, 
p 

of the conductors fp of the local exten�ion:-. L.plKµ. (I 1.6) now gives rise to 

the following 

11 
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(11.10) Proposition, Let LIK be a Galois extension o[glohal fields, x ,1 

clwracter of G ( L IK) of degree I , L x the fixed field of the kernel of x , and f 
the conductor of Lx I K. Then one ha� 

i� f(x). 

 

Now let LI K be a Galois extension of algebraic number field�. We fonn 

the ideal 

c(LjK, x) = D}(1gNK1�(f(LIK, x)) 

of Z. The po'>ilive generator of this ideal is the integer 

dLIK.x) � ldKl''"'ll(f(LIK.xJ) 

Applying (I 1.7) and observing the transitivity of the discriminant (chap. Ill, 

(2.10)), we get the 

 
(11.11) Proposition.  (i)c(LIK,x+x') =c(LIK,x)c(L!K,x').c(l,IK,1) 

= idK], 

(ii) c(LIK,x) =c(L'IK,x), 

(iii) c(LIK.x,J =c(LIK',x). 

Here the n01ation is that of (11.7). 
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The tir<,t task is lo complete the Artin L-scries 

1 

£(1.IK.x ..<J� TT 
ptoc det(l - <p,;plJt(p)-1

: V 'v) 

for the character x of G = G(LIK), by the appropriate gamma factors. For 

every infinite place p of K we put 

Lc(s)l(1l_ ifp is complex, 

£,(LIK,x ••,)� / L,,(.,)""L
0
(s+ Ii", if pineal, 

with the exponents n➔ = x(tJ+t,o-i,l, n- = x(IJ [('f!•i,l. Here ({'•:p i� the 

distinguished generalOr of G (L'-J:JIK p), and 

L1r.:(s) = IT ··'12I'(s/2), L:.._·(s) = 2(2n)_1.I'(.1) 

(sec S4). For p real, the exponent� n1
·, 11- in Cp(LIK,x,s) have the 

following meaning. 
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The involution tpq:; on V induces an eigen-;pace decomposition V = 

V-'-- EB v-, where 

v+ � { x E V I��x � , \, v- � { , E VI �•ax� -x \ . 

and it follow1> from the remark in S 10, p.521, that 

 

dimV' ��(x(ll+x(�•oJ),  dimv-��(xilJ-x(�,,,J) 

The functions Lp(L IK, x,s) exhibit the same behaviour under change of 

fields and character1, as the L-serie1, and the Artin conductor. 

 

(12.l) Proposition. (i) .Cp(L IK, x + x',s) = .Cµ(L IK, x,.\).Cp(L IK, x ,_1). 

(ii) lfL'IK isaGaloi.�1,ubextensionofLIK andx aclwr.:ic1crof"G(/, IK). 

then 

L,(LIK.x ..,) � Cp(L'IK.x ..,). 

(iii) IfK' i1,an intermediate fieldofLIK :md x acharacterofG(LIK'), 

then 

C,(LIK, x,..,) � [1Cq(LIK', X, ,). 
q,P 

where q varie1> over 1he place,; of K' lying above p. 

 

Proof: (i) i1> trivial. 

(ii) If i;plq:.J'lp arc place-; of L 2 L' 2 K, each lying above the next. 

then 'P'll is mapped under the projection G(LIK) ---+ G(L'IK) to <P'll'· 

So  = x('f1-r). 

(iii) Ifp complex, then there are precisely m = \K': KIplace� q above p. 

They are abo complex, and the claim follows from xAIJ = mx(l). 

Suppo-;e pi� real. Let G = G(LIK), II= G(LIK'), and let H\GJG,"11 be 

the set of double cosets HrG,"+3 with a fixed place i;p of L above p. Then v...c 

have a bijection 

H\G/Gii--+ {q place of K' above p),  HrGq.1 ,----:,. q, = ri;pJK, 

(sec chap. I, §9, p.55). q, is real if and only if 'Pr'".+J = T<iJ,".+JT I E H, i.e., 

= rGq:;r-1 <; II. The latter inclusion holds if and only if the double 

1/rG,J,J comists of only one co1>et mod H: 

HrGw, = (HrGri.ir -I )r =Hr. 

We thus obtain the real places among the q, by letting r run through a 

system of representatives of the cosets 1/r of 1/\G such that Ttpq:;r-1 EH. 

But, for .'>uch a :-.yqem. one ha1i 

x*(tp,p) = Lx(rtp1-ir-
1
) = Lx('Pr'll). 

' ' 



812. The Functional E4uation of Artin L-�eric� 537 

Putting Q = r\l], makes q = DIK' run lhrough lhe real places of K' above p, 

i.e., 

x,(�,,) � I: x(�oJ. 
qlp 
,�,ti 

On the other hand we have 

X,(IJ � 2xo1 + I: x(tJ. 
qrectl 

 

Legendre's duplication formula LIR(s)Li(.1 +I)= Lc(s) (see (4.3)) turn� 

this into 

Cp(LIK,X»·') � 

n L:'(s)X(I)n LJ_(-1)111•+:ll',li fl L11.:_(.1·+ l);,;,IJ ;i�•o)= 
qrnmpln qredl qre,,I 

� nc,(LIK .x,.,). [l 

"" 
 

 

We finally put 

C�(LIK,x,.,) � n C,(L[K.x ..,J, 
p'x 

and ohtain immediately from the above proposition the equations 

L"'-(LIK,x + x',s) = L-x,(LjK,x.�·)Lx..,(LIK,x',s), 

L"'--(L[K.x,.,) = L,.;,(L'IK,x.s), 

Cx(LIK. x...,1�Cx(LIK', x..,). 

 

(12.2) Definition. The completed Artin L-series for the ch,1rncter x of 

G(LIK) is defined 10 be 

A(LIK.x ..,) � ,(LIK.x)'12C�(l.[K.x.,)C(LIK,x .,). 

where 

 

The behaviour of the factors c(L IK, x ), Lcx.JL IK, x,s), L(L IK, x, s) on 

the righl-hand side. which we studied in (10.4), (11.11 ), and above, carries 

over to the function A(LIK, x.s), i.e.. we have the 



□ 
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(12.3) Proposition. (i) A(LIK X + x',s) = A(LIK,x,s)A(LIK,x',s). 

(ii) /f L'IK is a Galois subextension of LI K and x a cliaracter ofG(L'IK ), 

then 

(iii) Jf K' is an intermediate field of LI K and x .:1 character of G(L IK'), 

then 

 

For a character X of degree I, the completed Artin L-series A(L iK. x,s) 

coincides with a completed Hecke L-series. To see this, !el Lx I K be the 

fixed field of the kernel of x, and let f = TTP p"1• be the conductor of L x IK. 

By (I 1. 10), we then have 

f � f(xJ. 

Via the Arlin symbol 

 

1!;p1---+G(LxlK),  af ------- +(Lx�K), 

x become-. a Dirichlet character of conductor f, i.e., by (6.9), a primitive 

GriH]encharakter mod with exponent p = �o that Pr = 0 if r i5 
complex. This G,·ij//e,,ch,,mlita will be denoted 

We put Pp = Pr if p is the place corresponding to the embedding 

r : K ➔  The numbers Pp have the following Galois-theoretical meaning. 

 

(12.4) Lemma. For every real place p of K one /Ja.� 
 

 

Proof: We con<,ider the isomorphism 
 

 

where fl=  TIP ut"l is the congruence rnbgroup mod f of the idele group 

I= PK�(see chap. VI, (1.9)), and consider the composite map 
 

Ut p be a real place of K, and let a E / be the idele with components 

aµ = - I and aq = I for all places q different from p. By chap. VI, (5.6), 

the image /f<,p = (a, L1 IK) = (-1, Lx•,plKµ) in G(L-., IK) i:-. a generator of 
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the decomposition group Gp= G(LxidKp)- By Lhe approximation theorem, 

we may choose an a EK* rnch that a= I mod f, a< 0 in Kp, and a> 0 

in K q, for all real places q -1- p. Then 

fi = r.rn E JO)= {XE'' ·'PE ui"p) for Plfxi). if f = np p"P. 

Ai, explained in the proof of chap. VI, (1.9), the image of a mod nK• in 

Jljp! is the clas� of (/J) = (a), which therefore maps to 'P'-J.l· Consequently, 

x((a)) = x1(a)x-x,(a) = x(t/-h.p). 

Since a=  I mod f, we have Xr(a) = I and x.., ,(a) = N((�}") = 

( �;P)P" = (-1)1'1>, i.e., x(<p<:p) = (-I)"P, so that 'P'-J.l = I for /Jp = 0, 
1 

and (f-l<p -f. I for /Jp = I. But this b the i,tatement of the lemma. D 

 

(12.5) Proposition. The completed Artin 1.-scrie.\ for the characier x of 

degree I and the completed Hecke L-series for the Grij_/iewharakre, X 
coincide: 

A(LIK,x,,<J � A(x,,,), 

 

Proof: The completed Hecke L-series is given, according to §8, by 

A(x,,,) � (ldKl91(f(x)J)'
12

L%(x,,)L(x,,,) 

with 

 

ands= sl + p, where 

 

L,)X,s) = Lx(s). 

Lx(s) = ,n,�Lp(Sp) 

is the L-function of the G(Clil{)-i,ct X = Hom(K,C) defined in §4. The 

factors Lp(sp) are given explicitly by 

Lc(s), if p complex, 

(*) Lp(Sp) = [ l."J,.(S+ pp), ifp real, 

(i,ee p.454). On lhe other hand we have 

A(LIK, X,,,,) � c(LIK, x)'12C�(LIK, X, ,)C(LIK, X, <) 

with 

and 

 

 

C,%(LIK,x,<I� n C,(LIK,x,,J, 

Pl� 



I 
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Let Lx be the fixed field of the kernel of x. By (I I. 11). (ii), and the remark 

preceding lemma (12.4). one has 

,(LIK, x) � c(L,IK, xl � ldK l'll(f(x))' 

and by (10.4), (ii), and (10.6), and the subse4uent remark, one ha� 

L(LIK, x..<J � C(L, IK, X,,,) � LC/ ..n. 

We arc thu� reduced to proving 

L'.p(LIK' x. �) = Lµ(Sp) 

for Ploo ands= .11 + p. Firstly. we have L'.p(LIK, x,s) = L'.11(Lx IK. x,s) 

(�cc p. 537). Let <P<p he the generator of G(Lx,:plK11). Since x is injective 

on G(Lx IK), we get x(<P,v) = -1 if <P'll i- I. and x(rp,:p) = I if <P'-P = I. 

Using (12.4) this gives 

Le(�). for p complex, 

L'.11(Lx1K,x,s)= LJR(,1), forprealandl.'preal,i.e.,p11=0, 

L1k(s + I). for p real and l.'p complex. i.e.. f)p = I . 

Hence (*) shows that indeed L'.11(L IK, x. j) = Lp(Sp)- LJ 

 
In view of the two results (12.3) and (12.5), the functional equation for A11in 

L-series now follow� from Brauer\ theorem (10.3) in a purely formal fa�hion, 

a� a com,cqucncc of the functional equation for Hecke L-�eries, which we 

have already established. 

 

(12.6) Theorem. Tile Artin L-series A(LIK,x,1) admit,; a meromorp/Jic 

co11ti11u:1tio11 to C ,md .�alis/ie� /he functional equation 
 

with a comtant W(x) ofab.mlute value 1. 

 

Proof: By Brauer·s theorem. the character xi� an integral linemcumbina1ion 

x=Ln,xn, 

where the x,* arc induced from characters Xi of degree I on subgroup� 
H1 = GU,IK,). From propositions (12.3) and (12.5), it follow� that 

A(LIK.x. '1�n A(LIK,x,,. ,)"' 
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where 7, is the Crfdlem hara/.:ter of K1 as!-.ociated to x,. By (8.6), the Hecke 

L-series A(;(1.. 1) admit meromorphic continuation1-, to C and 1-,atisfy the 

functional equation 
 

Therefore _;\ (L IK, x,s) satistie!-. the functional equation 

A(LIK, x. ,) � W(x) TT ACx,. I - ,) � W(x)A(LIK. X, I - .,) . 

where W(x) = n, W(X1) i" of absolute value J. 

 

The functional e4uation for the Artin L-series may be given the following 

explicit form, which i1-, easily deduced from (12.6) and (4.3): 
 

with the factor 

Alx ..,) � W(xl[ldKl'"''l'llf(LIK.xJJ]'  ! 

X (COSJr1/2)"+(sin;rs/2)11 n,(.1)"y(I) 

and the exponents 
 

Here the summations arc over the real place5 p of K. This gives immediately 

the zeroe� of the function L(LIK ,x,s) in the half-plane Re(.1) -S 0. If xi!-. 

not the principal character, they arc the following: 

ats = 0. - 2. -4. . .t:eroes of order �x(I) + L 
prec1I 

at s = -1,  - 3, -5,  ..  zeroe!-. of order �x(l) - L 
- p·�-11 

 

 

Remark: For the proof of the functional equation of the completed Arlin 

L-serie5, we have made essential use of 1he fact that "Euler factors'' 

Lp(L I K, x,s) at the infinite place� p, which are made up out of gamma 

function�. behave under change of fields and character� in exactly the ..,ame 

way as the Euler factors 
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at the finite places. This uniform behaviour i� in striking contrast to the 

great difference in the procedures that lead to the definition� of the Euler 

factors for and p 1 oo. It is in thi� context that the mathematician 

C11rmTOPHU1 recently made a very interesting discovery (see 126], 

[27]). He 'ihows that the Euler factors for all places p can all be written in 

the same way: 
 

Here 1/(Xp/K..,p) is an infinite dimensional C-vector space which can he 

canonically constructed, (";)p is a cenain linear "Frobenius" operator on it, 

and det-,., i� a "regulari.wd determinant" which generali7es the ordinary 

notion of determinant for finite dimen�ional vector :;,paces to the infinite 

dimensional case. The theory based on this observation i� of the utmo�t 

generality. and reaches far beyond Artin L-series. It sugge�ts a complete 

analogy for the theory of L-series of algebraic varieties over finite fields. 

The striking succes'i which the geometric interpretation and treatment of the 

L-�eric� ha5 enjoyed in this analogom �ituation adds to the relevance of 

DE11'f,\•GER\ theory for present-day re'iearch. 

 

 

 

 

§ 13. Density Theorems 

 
Dirichlet's prime number theorem (5.14) say� that in every arithmeti£ 

pn,gression 

a. a±m. a±2m, a±3m,. 

u.m EN. (a,m) = 1, !here occur infinitely many prime numbers. Using 

L-�cric:;., we will now deduce a far-reaching gcneralintion and sharpening 

of this theorem. 

 

 

(13.1) Definition. Lei M be <l scl of prime ideals of K. The limit 

I: 91(W' 

d(M) = lim �. 
\'--->l+O L91(p)--1 

µ 

provided it exi&b, is called the Dirichlet density of M. 
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From the product expansion 
I 

1K(,) ~ Q I_ <Jl(p) , ,  Re(,)> I, 

we obtain as in § 8. p.494, 

log(K(,~)  L I_�  L  _I_+ L    1_. 
 

p,mm>J1(pyn' p >J1(p)·'  p,m:c-2 mlJ1(p)111
•1 

The lauer sum obviously defines an analytic function at s = l. We write 

f(s) ~ R(S) if f(s) - f?(s) is an analytic function at s = I. Then we have 

log(K(.,)~I:-1-~  L _1_, 
p IJ't(p)I  de�(p)=I IJ't(p)S 

because the sum LJq,:(pJ:c- >J1(p)-1 taken over all p of degree:::_ 2 is analytic 

at� = 1. Furthermore, by (5.11). (ii), we have (K (s) ~ �. and so 

L _1_ ~ log _I_. 
p >J1(p)' ,1· - I 

So we may abo write the Dirichlet density as 

d(M=) lim Lp"M >J1(p)-s• 

., ,1+0  log2-T 

Since the sum L >J1(p) ·' over all prime ideals of degree > 1 converges, the 

definition of Dirichlet density only depend!> on the prime ideals of degree I 

in M. Adding or omitting finitely many prime ideals also does not change 

anything as far as existence or value of the Dirichlet density is concerned. 

One frequently abo considers the natural density 

b(M)� lim #{p EM I <Jl(p) 'S ,). 

,➔� #{p I <Jl(pJ -s xi 

It is not difficult to show that the existence of S(M) implies the existence 

of d(M), and that one has 8(M) = d(M). The convcr�e is not always true (see 

[123], p. 26). In the notation of chap. VI, SI and p, we prove the 

gcnerali7ed Dirichlet density theorem. 

 
( U.2) Theorem. Lc1 m be a module of K and Hm an ideal group such th;.it 

Jm 2 Hm 2 pm with index hm = (.P'; Hm)_ 

For every cfa.,8 Jt E Jm/ H111
, the .�et P(.R) of prime ideals in .R h:.1.� dcmity 

I 
d(P(Jl)) � ;;;;,· 



I 
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For the proof we need the following 

 

(13.3) Lemma. Let x be a nontrivial (irredU1.:iblc) character of J111
/ pm (i.e., 

a character of degree /). Then the Hecke L-scrics 

L(x,.,)� Q 1-  x(p)91(pJ-• 

(x (p) = 0 for plm) s<1li�fics 
 
 

 

Proof: By (8.5) and the remark following (5.10) (in the ca�e m = I), L(x, �) 

doe-; not have a pole al s = I. Let LIK be the ray clas<s field mod m. 

1,0 G(LIK) �r1/P111
• Interpreting x as a character of the Galois group 

G(LIK), the function L(x,s) agree.1, with the Artin L-series L([,IK,x,s) 

up to finitely many Euler factors - �ee (10.6). Like L(x,s), this Artin 

L-serie� doe� not have a pole at ., = 1. So all we have to show is thal 

L(LIK, X, I) -1- 0. According to (10.5), we have 

(L(,l)=(K(s) n L{LIK,x,.1Y(lJ_ 

Jr' 

where x rum  through the nontrivial irreducible character.'. of G(LIK). 

By (5.11), both (K(s) and (L(s) have .1,imple poles at s = I, i.e., the 

product i.1, nonzero at s = I, Since none of the factors ha.1, a pole, we 

tinuL(LIK,x.1)#0. lJ 

 

Proof of (13.2): Exactly as for the Dedekind Leta function above, we obtain 

for the Dirichlet /.-series 

logL(x ..,)~I:�� 
p 91(pJ' 

Multiplying this by x(-�-1) and wmming over all (irreducible) x yields 

log(KC.'1+ I: x(Jl-')logL(x ..,) ~ ') I: _I   
x7"1 pec•l.' IJ1(p)' 

Since L(x, 1) -1- 0, logL(x--1) is analytic at s =I.But 

L X (Jt'Jl' ')�  0, ifJl' # -�' 
1 hm,  if .it' =fl. 

Hence \\--e get 

log _I_~ log(K(s) ~ hm L �I_, 
s-1 pec�IJ1(p)' 

and the theorem i.1, proved. □ 
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The theorem show� in particular that the density of the prime ideals 

in a class of ;m;H"' is the same for every cla,;,s, i.e., the prime ideals 

are equidistributed among the classes. In the ca"e K = Q, m = (m), 

and H"' = P"', we have J"'/P"' � (Z/mZt (sec chap. VI, (1.10)), 

and we recover the classical Dirichlet prime number theorem recalled at 

the beginning, in the stronger form which say� that the prime number� 

in an arithmetic.: i.e., in a class a mod m, (a,m) = I. have 

density 'P(�ul = 
 

Relating the prime ideals p of a cla�s of J"'/pm, via the cla),.., field 

theory isomorphbm pn;pm � G(LjK), to the Frobenius automorphisms 

'Pp = (�),  gives u� a Galois-theoretic interpretation of the Dirichlet 

density theorem. We now deduce a more general den�ity theorem which 

i� particularly important in that it concerns arbitrary Galoi� exten:-ions (not 

nece�sarily abelian). For every a E G (LI K ). let us consider the set 

 

 

of all unramified prime ideals p of K such that there exists a prime ideal $Ip 

of L �atisfying 

 
where ( '=if) i� the Frobcniu� auto?1orphism <p,:p of 11] over K. It is clear 

that this �ct depends only on the con.1ugacy clas:- 

la)� { WT_, Ir E G(LIK)) 

ofa and that one ha), P,1K(a)nPL1K(r) = 0 if (o) #- (r). What is the 

den'>ity of the set PL1K(a)'? The amwcr to thi), que�tion i� given by the 

Cebotarev density theorem. 

 

(13.4) Theorem. Let LI K be a G,ilois ex.tension with group G. Then for 

eve1y a E G, the ..,et PLIK (a) ha� a demity, and it is given by 

d(P1.1K(o)) = #G. 
 

 

Proof: We fir:-t assume that G J), generated by a. Let m be the conductor of 

LjK. Then /.IK is tile class field of an ideal group H111
• 1m 2 Hm 2 P"'. 

Let� E .l"'/1/m he the class corresponding to the element o under the 

isomorphism 
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Then PL1K(u) consists precisely of the prime ideals p which lie in the 

class .it. By the Dirichlet dem,ity theorem (13.2), we conclude that P1.w(a) 

has density 
I I #(a) 

d(PL1drr)) = -  = -  = -• 
hm  #G #G 

In the general case, let E he the fixed field of a. If .f is the order of a, 

then, as we just saw, d(P11r(a)) =  Let P(a) be the set of prime ideals 

13 of L wch that 131P E Pt K(a) and ( �)  =a.Then P(a) corresponds 

bijectively to the set P{1r(a) of thO'-C prime ideals q in PL1r(a) �uch 

that Eq = Kp, qlp. Since the remaining prime ideals in PL1r(rr) are either 

ramified or have degree > I over Q, we may omit them and obtain 

d(PL
' 
1r(a)) = d(PL1r(a)) = yI · 

Now we consider the surjective map 

P: P;.IL(a)-----;, PL1K(a).  qi---+ q n K 

As P{1r(a) � P(u), we get, for every p E P1.1K(a), 

p-
1
(p) "/'ll E P(rr)I 'Jllp} "Z(rr)/(a). 

where Z(a) = {r E GI ra = ar) is the ccntra[i7er of a. So we get 

 

d(PL 

I , j  I #(a) 

Kia))� (Z(rr)' (a)) d(P, 1c:(a)) � #Z(a) f � #G. 

 

 

The Cebotarev density theorem has quite a number of surprising 

consequence�, which we will now deduce, If S and T are ,my two "cts 

of primes, then let us write 

Sr:;T 

to indicate that S is contained in T up to tinitely many exceptional elements. 

Furthermore, let us write S = T if Sr:;_ r and Tr:;_ S, 

Let LI K be a finite extension of algebraic number fields. We denote by 

P(LIK) the set of all unramified prime ideals p of K which admit in La 

prime divisor 13 of degree I over K. So. if LIK i5 Galois, then P(LIK) i» 

just the �et of all prime ideals of K which 5plit completely in L. 

 
(13.5) Lemma. Let NIK be a Galois extension conwining L. ;.md let 

G = G(NIK), H = G(NIL). Then one has 

P(LIK)= PN1K(a) (di8jointunion). 

□ 
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Proof: A prime ideal p of K which is unramitied in N lic5 in P(LIK) if 

and only if the conjugacy clas� (a) of a = ( N�K), for some prime ideal 

'lJIP of N, contains an element of H, i.e., if and only if p E Ptv 1K(a) for 

some a E G such that (a) n H #- 0. □ 

 
(13.6) Corollary. If LI K i� ,m extemion of degree 11, then 1he .\et P(L IK) 

h,1s den.�ity d(P(L IK)) :::_ ¾. Furthermore, one h,1s 

 

d(P(LIK)) = - {==} LIK is Galois. 
n 

 

Proof: Let NIK be a Galois extension containing L, and let G = G(NIK) 

and /I= G(NIL). By (U.5), we have 

P(LIK) ~ LJ  P,,K(a). 
((r)l1Jlcj=V, 

 

The Cebotarev density theorem (13.4) then yield� 

d(P(LIK)) ~ 
 

Since fl£ U'rr),7H,d•1(o-), it follow<.; that 

#H I 

d(P(LIK)) ': #G ~ ;;· 

LI K h Galois if and only if H is a normal subgroup of G, and this is the 

case if and only if (a) £ H whenever (rT) n II #- 0, and so this holds if and 

only if H = U(rr)GH#M{a). Thi� implie,;, the second claim. D 

 

(13,7) Corollary. If a/mo.\t all prime ideals split completely in the finite 

extension LI K, then L = K. 

 

Proof: Let NIK he the normal clornrc of LIK, i.e.. the smallest Galoi� 

exten<.;ion containing /.. A prime ideal p of K split� completely in L if and only 

if it splits completely in NIK (sec chap. I. *9, exercise 4). Under the hypothc�is 

of the corollary, we therefore have 

I 
I ~d(P(LIK)) ~ d(P!NIK)) ~IN, K( 

sothat [N: K] = I and N = L = K. C 
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(13.8) Corollary. An exten.,;ion L IK is Galois if and only if every prime 

ideal in P (LI K) split.,; completely in L. 

 

Proof: Let again NIK he the normal closure of LIK. Then P(NIK) 

consists preci,;cly of those prime ideals which t-.plit completely in L. Hence 

if P(NIK) � P(LIK), then by (13.6), 

I I 
rNcKI �d(P(NIK))�d(P(LIKJ)e>_ [LcKJ' 

i.e., [N: Kl.::: IL: K], so L = N is Galois. The convcr,;;e is trivial. D 

 
(13.9) Proposition (M.BA/Jf.H). If LIK is Galoi.,; and MIK is an arbitrary 

finite extension. 1hen 

P(LIK)2P(M[K) <==> Lr;;M, 

 

Proof: L <; M lrivially implies that P(MIK) c; P(LIK). So at-.wme 

convert-.ely that P(LIK)2P(MIK). Let NIK be a Galois extension 

containing Land M, and let G = G(NIK), H = G(NIL), If'= C(NIM). 

Then we have 

P(MIK)� P,vlK(a) <; P(LIK)=  LJ  P,1i,•1drr). 
-r,),llirvl 

 

Let a E //1• Since P.v1K(a) i,; infinite by (13.4), there mw,t exist some 

p E P,v1K(a) such that p E PNIK(r) for a '>uitahle r E G wch that 

(r) n fl i- 0. But then rr i,; conjugate to r, and since // i!'. a normal 

subgroup of G, we find {rr) = \r) c; II. We therefore have f/
1 

<; H, and 

henceL<;M. D 

 

(13.10) Corollary. A G;.J/ois extension l,IK is uniquely determined by rhc 

:set P(L IK) of prime idea/,; which ,;plit completely in ii. 
 
 

Thi,; beautiful result is the beginning of an answer to the programme 

formulated by lt.OPow KHOMCKf:.H (1821-1891), of characterizing the 

extensions of K, with all their algebraic and arithmetic properties, solely 

in term'> of sets of prime ideab, "in a similar way as Cauchy"s theorem 

determines a.function hy its houndarv rn/ue�" The re...ult raises the quct-.tion 

of how to characterize the sets P (I, I K) of prime ideals solely in tcnw, of 

the ba�c Held K. For abelian extensions, c\ast-. Held theory gives, a concise 



§ l :t Den\1\y Theorem\ 549 

 

an<,wcr lo !hit-., in that it recognize� P (LI K) as the set of prime ideals lying 

in the ideal group H"' for any module of definition m (see chap. VI. (7.3)). 

If for instance LIK is the Hilbert class Held. then P(LIK) consists precisely 

of the prime ideals which are principal ideals. If on the other hand K = Q 
and L = Ql(/L111), then P(L IK) comist" of all prime numbers p == 1 mod m. 

In the case of nonabelian extension� LI K, a characterization of the �eb 

P(LIK) is e%cntialty not known. However. this problem is part of a much 

more general and far-reaching programme known as "Langlands philo�ophf", 

which it-. undergoing a rapid development at the moment. For an introduction 

to this circle of ideas, we refer the interested reader to [ 106]. 
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